TITLE
INSTITUTIUN
REPORT NO pUB DATE NOTE
AVAILABLE FROM

PUB TYPE
EDRS PRICE
DESCRIPTORS

Fifth Report to the President and Congress on the Status of Health Personnel in the United States. Health Resources Administration (DHHS/PHS), Hyattsville, Md. Bureau of Health Professions. HRP-0906767; HRS-P-OD-86-1
Mar 86
534p.; Some , ata tables contain small print. U.S. Department of Commerce, National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.
Reports - Research/Technical (143)
MF02/PC22 Plus Postage.
*Allied Health Occupations Education; *Dental Schools; Dentists; *Employment Patterns; *Enrollment Trends; Health Occupations; *Health Personnel; Higher Education; Labor Supply; *Medical Schools; Nurses; *Nursing Education; Occupational Surveys; Optometrists; Pharmaceutical Education; Pharmacists; Physicians; Public Hec th; Veterinary Medicine

Information is presented on the number and characteristics of health professionals in the United States, students preparing to enter these fields, and the schools in which they are enrolled. Derelopments and issues currently affriting these health personnel and the possible impact of these trends on health care delivery are considered. Included is information on accreditation, curricula, enrnllments, applicant and student characteristics, student costs and financial aid, gzaduates, women and minority physicians, medical costs and cost containment, geographic distribution of physicians, allopathic medical education, and osteopathic medical education. Information is included on data collection and analytical activities that are currently ongoing and the areas in which further information or analyses are needed. Recommendations about program activities for nursing and public health are included. The following personnel are covered: physicians, physician assistants, dentists, pharmacists, optometrists, podiatrists, veterinarians, nursing personnel, public health personnel, and allied health personnel (including clinical laboratory technicians, dieticians, medical records technicians, occupational therapists, physical therapists, radiologic technicians, respiratory therapists, and speech, language, and hearing therapists). Summaries, data tables, and reference lists follow each of the 10 chapters dealing with a separate occupational category. (SW)

[^0]
4

6
i
\downarrow

FIFTH REPORT TO THE PRESIDENT \&
 CONGRESS

ON THE STATUS OF HEALTH PERSONNEL

IN THE UNITED STATES

March 1986

US DEPARTMENT OF HEALTH \& HUMAN SERVICES
Publc Health Service Health Resources and Services Administration Bureau of Health Professions

DHHS Publication No HRS.P.OD-86.1

This report is available through the U.S. Department of Commerce, National Technical Information Service (NTIS), 5285 Port Royal Road, Springfleld, VA 22161

PREFACE

The Health Professions Educational Assistance Act of 1963, the Health Manpower Act of 1968, the Nu:se Training Act of 1964, the Nllied Health Professions Personnel Training Act of 1966 and their successors provided for the establishment of continuation of programs to slipport the education and training of qualified personnel to meet the Nation's health care needs. Under the provisions of several of these laws as amended, the Secretary of Health and Human Services was directed to assemble and submit to the President and Congress (or solely to the Congress) on a continuing basis reports on the status of health personnel in the United States. The report which follows is a continuation of the series of reports that respond to those directives.

Prior to the last report, separate reports were submitted to the Congress on health professions personnel (physicians, dentists, pharmacists, optometrists, podiatrists, and veterinarians), nursing personnel, public health personnel, and allied health personnel. However, the present. report, like the prior one, synthesizes and combines the information on all of these health personnel into one document.

This report presents information on the number and characteristics of the above personnel, on the students preparing to enter these fields, and on the institutions in which they are enrolled. In addition, the report describes "he important developments and issues currently affecting these health personnel and the possible impact of these trends on health care delivery. It also identifies the data collection and analytical activities that are currently ongoing and the areas in which further information or analyses are needed. In two parts of the report--those on nursing and public health--recommendations about proyram activities are included.

The report was prepared in the Health Resources and Services Administration's Bureau of Health Professions, Thomas D. Hatch, Director, by the Bureau's Divisions of Medicine, Dr. Daniel Masica, Director; Asssciated and Dental Health Professions, David B. Hoover, Director; and Nursing, Jo Eleanor Elliott, Director. It was planned, compiled, and coordinated in the Bureau's Office of Data Analysis and Management, Howard V. Stambler, Director.

CONTENTS

Page

Preface iil
List of Tables xii
List of Figures $\mathbf{x x v}$
Chapter 1
Introduction. 1-1
Chapter 2
Summary and Highlights 2-1
Developments in Supply 2-1
Developments in Education 2-3
Future Supply and Requirements 2-4
Taoles 2-6
Chapter 3: Medicine
Introduction 3-1
Developmerts in Physician Supply 3-1
Allopathic Physicians: Current Supply Specialization and Activity Status 3-1
Characteristics of Foreign Medical Graduates (FMGs) 3-4
Women MDs 3-7
Minority MDs 3-7
Physician Supply and Characteristics of Practice and Delivery 3-8
Costs and Cost Containment 3-10
Allopathic Physicians: Geographic Distribution. 3-12
Osteopathic Physicians: Current Supply, Specialization, Activity Status and Geographic Distribution 3-19
Status of Physician Labor in Selected Countries Abroad 3-20
Developments in Education 3-20
Resources for Undergraduate Aliopathic Medical Education 3-21
Indebtedness as a Factor in Career Plans 3-25
Allopathic Medical Schools: Acceptance, Enrollment and Socioeconomic Background of Women 3-26
Allopathic Medical Schools: Acceptance, Enrollment, Selection and Retention, and Socioeconomic Background of Underrepresented Minorities 3-27
Undergraduate Osteopathic Medical Education 3-30
Graduate Allopathic Medical Education (GME) 3-32

CONTENTS (Continued)

Page
Gradjate Osteopathic. Medical Education 3-35
FMGs in Graduate Medical Education 3-35
International Educational Exchange 3-38
Financing Medicii Education 3-38
Develcpments in Competency Assurance 3-40
General Professional Education of Physicians 3-40
Undergraciuate Primary Care Education 3-40
Graduate Primary Care Education 3-41
Evaluation of the Impact of Federal Initiatives in
Primary Care Education 3-42
Graduate Training in Health Promotion and Disease Prevention 3-42
Professional Training in Support of National Health Initiatives 3-42
Med_cal Credentialing 3-44
A Look at the Future 3-46
Physician Supply Forecasts: Assumptions 3-16
Physician Supply Forecasts: Method 3-49
Physician Supply Forecasts: Results 3-50
Physician Requirements Forecasts: Method 3-53
Physician Requirements Forecasts: Matchiry Requirements with Supply 3-54
Supply/Demand Forecasting Model 3-56
Summary and Conclusions 3-53
References 3-63
Tables 3-72
Chapter 4: Pnysician Assistants
Introduction 4-1
Developments in Physician Assistant Practice 4-2
National Certification 4-2
Legal Aspects of Physician Assistant Practice 4-2
Number and Characteristics of PAs 4-3
Geographic Distribution 4-5
Health Manpower Shortage Areas 4-6
Size of Community 4-7
Setting 4-8
Medical Specialty 4-10
Salaries 4-12
Educational Developments: PA Programs 4-13
Accreditation 4-13
Number and General Description 4-13
Financial Characteristics 4-14
Curriculum Type and Progran Content 4-15
Student Enrollment 4-16
Applicant and Student Characteristics. 4-17
Student Educational Expenses 4-18
Recent PA Graduates 4-19

CONTFNTS (Continued)

Page
A Look at the Future 4-19
Supply Projections 4-19
Requirements 4-20
Health Care Financing Issues 4-20
Projected Physician Oversupply 4-21
The Aging of the U.S. Population 4-21
The Growing Number of Women in the Profession. 4-23
Summary 4-23
References 4-27
Tables 4-31
Chapter 5: Dentistry
Developments in Supply 5-1
Characteristics of Dental Practice 「,
Dental Applicants, Students, and Graduates 5-4
Educational Institutions and Programs 5-6
Dental Auxiliaries 5-9
Dentist Supply Forecasts 5-10
Economic Outlook for the Dental Sector, 1985-2000 5-12
Forecast Assumptions 5-12
Forecast Results 5-13
Uncertainties Underlying the Forecast 5-15
Summary 5-16
Tables 5-19
References 5-38
Chapter 6: Optometry
Developments in Supply 6-1
Income of Optometrists 6-2
Optometric Services by Setting 6-3
Competency Assurance 6-3
Educational Developments 6-4
Applicants 6-4
Enrollments and Graduates. 6-4
School Location 6-5
Survey of Recent Optometry Graduates 6-5
Educational Costs 6-6
Training in Geriatric Optometiy 6-7
Projections of Future Supply 6-8
Future Supply/Requirements 6-10
Summary 6-11
Tables 6-13
References $\epsilon-16$

Chapter 7: Podiatric Medioine

Podiatric Medicine 7-1
Developments in the Practice of Podiatric Medicine 7-1
Number and Characteristics of Podiatrists 7-1
Geographic Distribution. 7-3
Practice Characteristics. 7-5
Educational Developments 7-9
Undergraduate Students 7-9
The Colleges of Podiatric Medicine 7-12
Curriculum 7-13
Educational Expense and Financial Aid 7-14
Residency Training 7-15
Assurance of Competence. 7-16
A Look at the Future 1-16
Requirements 7-18
Summary 7-18
References. 7-20
Tables 7-21
Chapter 8: Pharmacy
Developments in Supply 8-1
Competency issurance 8-3
Pharmacy Practice 8-3
Role of Pharmacists in Individual Preventive Health Care 8-4
Pharmacy Attention to Special Population Grcups 8-4
Educational Trends and Developments 8-5
Enrollments 8-5
Graduates 8-6
Projections of Future Supply 8-6
Payment for Pharmacist Clinical Services. 8-9
Future Trends in Pharmacy 8-9
Future Supply/Requirements 8-10
Expanding Pharmacy Clinical Roles. 8-10
Summary 8-11
Tables 8-21
References 8-17
Chapter 9: Veterinary Medicine
Developments in Supply 9-1
Student Trends and Developments 9-4
Institutional Trends and Developments 9-5
Projections of Future Supply 9-7
Future Supply/Requirements 9-9
Industrial Employment of Veterinarians 9-9

CONTENTS (Continued)

Page
Summary 9-10
Tables 9-11
References 9-17
Chapter 10: Nursing
Overview of Bienniai Nursing Report 10-1
Developments in the Registered and Licensed Practical/ Vocational Nurse Supply 10-4
New Additions to the Nurse Population 10-4
Additions to the Nurse Population from Immigration of
Foreign Nurses 10-10
Characteristics of the Licensed Practical/Vocational
Nu:se Population 10-11
Characteristics of the Registered Nurse Fopulation 10-13
Geographic Distribution of Nurses 10-14
Educational Preparation of Registered Nurses 10-17
The Nursing Wori Force 10-25
Summary of Current Developments in Practice Settings 10-25
Selected Areas of Practice 10-36
Rates of Compensation 10-49
Look to the Fucure for Nursing Personnel 10-50
Future Supply of Nurses 10-50
Requirements for Nursing Personnel $10 \cdot 55$
The Historical Trend-Based Model 10-56
The Criteria-Based Model 10-58
National Requirements from *wo Perspectives 10-63
Comparative Analysis of Supply and Requirements 10-65
Summary and Conclusions 10-68
Recommendations 10-68
References 10-70
Tables 10-78
Chapter 11: Public Health
Introduction 11-1
Developments in the Supply of Public Health Personnel 11-2
Recent Studies. 11-3
Staffs of State Health Agencies 11-3
Biostatistics 11-5
Public Health Nutrition 11-5
Epidemiology 11-7
National Public Health Vacancy Reporting System. 11-7
Employee Compensation in Local Health Departments 11-8
Health Administration 11-8
Data Availability 11-9
Conclusions 11-9

CONTENTS (Continued)

Page
Developments in the Education of Public Health Personnel 11-9
Schools of Public Health. 11-10
Health Services Administration. 11-12
Occupational Safety and Health 11-13
Recent Studies of Public Health Education. 11-14
Federal Support for Education in Public Health 1115
Recommendations. 11-17
Summary 11-21
Tables 11-23
References 11-32
Chapter 12: Allied Health
Introduction 12-1
Clinical Laboratory 12-5
Students and Institutions. 12-6
Supply and Requirements 12-6
Licensure and Credentialing 12-7
Issuas 12-7
Dietetics 12-8
Students and Institutions 12-8
Supply and Requirements 12-9
Credentialing and Licensure 12-10
Issues. 12-10
Medical Records 12-10
Students and Institutions 12-11
Supply and Requirements 12-11
Licensure and Credentialing +2-12
Issues 12-12
Occupational Therapy 12-12
Students and Institutions. 12-13
Supply and Requirements 12-13
Certification and Licensure 12-14
Issues 12-14
Physical Therapists 12-15
Students and Instit」tions 12-15
Supply and Requirements 12-16
Licensure and Credentialing 12-16
Issues. 12-17
Radiologic Technology 12-17
Students and Institutions 12-18
Supply and Requirements 12-18
Licensure and Credentialing 12-19
Issues. 12-19
Respiratory Therapy 12-20
Students and Institutions 12-20
Supply and Requirements 12-20
Licensure and Credentialing 12-21
Issues 12-21

CONTENTS (Continued)

Paye

Speech-Language-Hearing 12-22
Students and Institutions. 12-22
Supply and Reqairements 12-22
Certification and Licensure. 12-23 12-23
Issues 12-23
Trends in the Allied Health Profession 12-23
Conclusions 12-24
Summary 12-27
Tables 12-28
References. 12-31

IIST OF TABLES

able		Page
	Chapter 2: Summary and Highlights	
2-1	Esti،ated Active Supply of Selected Health Personnel and Practitioner-to-Population Ratios, 1970, 1975,	
	1980 and 1984........	$2 \cdot 6$
2-2	Estimated Active Supply of Al:1ed Health Personnel: Selected Years, 1970-1984.	7
2-3	Active Supply of Female Practitioners in Selected Health Occupations, Estimated 1984 and Projected 2000	2-8
2-4	Total Number of Students Enrolled in Schools for Selected Health Occupations: Selected Academic Years 1970-1971 through 1983-1984.	2-9
2-5	First Year Enrollments in Schools for Selected Health Occupations: Selected Academic Years 1970-1971 i.hrough	
	1983-1984	2-10
2-6	Actual and irojected Annual Graduates from Selected Health Professions Schools/Programs: Academic Years 1983-1984	
	through 1999-2000	2-11
2-7	Minority and Female Total Enrollments in Health Professions Schools, Academic Years 1971-1972, 1974-1975	
	and 1983-1984	2-12
2-8	Active Supply of Selected Health Personnel, Estimated	
	1984 and Projected 1990-2000.	2-13
2-9	Supply and Reçuirements for Selected Health Occupations,	
	1984 Supply and Projections to 1990 and 2000............	2-14
	Chapter 3: Medicıne	
3-1	The Supply of Physicians (MDs) in the U.S., 1963-1982.	3-72
3-2	Number and Percent Distribution of Professionally nctive	
	MDs in Primary Care, and Rate per 100,000 Population,	
	1970-1982.	3-73
3-3	Number of Active P.lysicians (MDs) and Physician-to-	
	Population Ratios, by General and Specialty Practice:	
	Selected Years, December 31, 1970-1982.	3-74

```
3-4 Number of Federal and Nen-Federal Physicians (MDs only)
        in the United States and Possessions by Detailed
        Specialty, December 31, 1981 and 19823-75
```

3-5 Major Professional Activity of Federal and Non-Federal Physicians, (MDs): Selected Years, 1970-1982 3-77
3-f Initial Licensure ol -nysicians (MDs) Each Year in the U.S.. 1950-1983 3-78
3-7 Federal and Non-Federal Physicians (MDs) by Specialty and Gender, 1975 and 1982 3-79
3-8 Federal and Non-Federal Women Physicians (MDs) by Activity, 1970 and 1982 3-80
3-9 National Healch Care Expenditures by Purpose 1976, 1981-1983 Actual, 1984-1985 Fstimate, Average Annual Rate of Increase, 1976-1981 and Yearly Percent Change 1981-1982 to 1984-1985 3-81
3-10 Consumer Price Indexes, 1976, 1981 and 1983 3-82
3-11 Distribution of the Population and Location of MDs by Census Division, 1982 3-83
3-12 Number of Non-Federal Physicians and Physicians per 100,000 Civilian Population, Ey States 3-84
3-13 Distribution of Number of Graduate Residents by Community Size. 3-85
3-14 Total vumber of Osteopathic Physicians (DOs: 1975-1984 3-86
3-15 Osteopati:ic Physicians (DOs) with Board Certification 1980, 1982 and 1984 3-87
3-16 Distribution of Osteopathic Physicians (DOs) by Professional Activity, 1982 and 1984 ?-88
3-17 Distribution of Total Osteopathic Physicians (DOs) by State, 1982 and 1984 3-89
3-18 Distribution of Total Osteopathic Physicians (DOs) by Age, 1982 and 1984 3-90
3-19 Supply of DOs by State, 1981 and 1984, and Percent Change, 1981-1984 3-91
3-20 Numbers of Physicians and Rate per 10,000 for Selected Industrial Countries. 3-92
3-21 Number and Acceptance Ratio for Applicants to נ.S. Medical Schools, by Gender: Selected Academic Years, 1961-1962 through 1984-1985 3-93
3-22 Number and Proportion of Students Repeating the Respective Academic Year for Underrepresented Minorities and All Other Minorities, 1973-1983 3-94
3-23A First-Year U.S. Medical Schzol Enrollment, by Gender: 1978-1979 through 1984-1985 3-95
3-24 Average Tuition, Fees, and Other Expenses for First-Year Medical Students, 1984-1985 3-96
3-25 Medical Student Financial Assistance from Federal Programs and for All Sources, 1981, 1982 and 1983. 3-97
3-26 Acceptance Number and Percentage of All Applicants to Medical School, by Underrepresented Minority Status, 1974-1975 through 1984-1985 3-98
3-27 First-Year U.S. Medical School Enrollment by Racial/Ethnic Group and Citizenship, 1978-1979 through 1984-1985 3-99
3-28 Total U.S. Medical School Enroliment by Racial/Ethnic Group and Citızenship 1978-1979 through 1984-1985 3-100
3-29 Applicants to U.S. Schools of Osteopathic Medicine, by Gender, 1976-1977 through 1983-1984 3-101
3-30 Applicants to U.S. Schools of Osteopathic Medicine, by Racial/Ethnic Category, 1976-1977 through 1983-1984 3-101
3-31 Eirst-Year and Total Enrollment and Graduates in U.S. Schools of Osteopathic Medicine, by Gender, Entering Year 1968 through 1982 3-102
3-32 First-Year Enrollment and Total Errollment in U.S. Schools of Osteopathic Medicine, by Racial/Ethnic Category, Entering Years 1976 through 1982 3-103
3-33 Interns, Residents, and Other Trainees in Accredited Hospital Graduate Medical Education Programs, by Source of Undergraduate Medical Education, 1950-1951 to 1984-1985 3-104
3-34 Number of Residents on Duty as of September 1, 1984, Rank-Ordered by State. 3-105
3-35 Number of Residents, Rank-Ordered by Specialty, 1984 3-106
3-36 Number an Fercentage of Residents in AOA-Approved Osteopathic Programs. 3-107
3-37 Approximate Number of FMGs in Residency and Percent FMGs of All Residents, September l, 1984 3-108
3-38 Sources of Revenues for Undergraduate Medical Efucatior 1975-1976, 1980-1981, and 1982-1983 3-109
3-39 Costs of Graduate Medical Educatir:n, 1978-1979 and Sources of Federal Support for Graduate Medical Education, 1981 3-110
?-40 Number of Trainees in Family Medicine Program Components Supported by the Predoctorai Training Grant Program 1978-1983 3-111
3-41 First-Year Enrollments and Graduates of Allopathic and Osteopathic Medical Schools: 1979-1980 through 1999-2000 3-112
3-42 Supply of Active Physicians (MD and DO) by Country of Medical Education, Estimated for Base Year 1981, and Projected Basic Series, 1985-2000 3-113
3-43 Supply of Active Physicians (MD and DO) by Country of Medical Education, Estimated for Base Year 1981, and Projected Low Series, 1985-2000 3-114
3-44 Supply of Active Physicians (MD and DO) by Country of Medical Education, Estimated for Base Year 1981, and Projected High Series, 1985-2000 3-115
3-45 Supply of Physicians (MD and DU) by Gender; Estimated 1970 and 1981; Pro,ected Using the Basic Methodology, 1990 and 2000 3-116
3-46 Number of Active Physicians (MDs) by Specialty and Percent Change, Estimated 1981 and Projected 1990 and 2000 3-117
3-47 Number of Active Physicians MDs) by Geographic Region, civision, and State and Percent Change Estimated 1981 and Projected 1990 and 2000 3-118

- -48 Katio of Active Physicians (MDs) Per 100,000 Population by Geographic Region, Division, Region, and State and Percent Change Estimated 1981 and Projected 1990 and 2000 3-119

Chapier 4: Physician Assistants

1-1	Personal Background and Professional Characteristics of PAs Responding to the 1976, 1978, and 1981 Physician 	4-31
4-2	Medical Specialty for Civilian PAs by Gender, 1981............	4-32
4-3	Gender, Race, and Age of PAs Responding to 1976, 1978, 1981 Graduate and Scudent National Surveys, by Year of Graduation.	4-32
4-4	Number of PAs per 100,000 Population by Geographic Region and State for Estimated U.S. Population, 1985.....................	4-33
4-5	Patient Care PAs Responding to the 1981 and 1984 National Surveys by Major Practice Setting............................	4-35
4-6	Comparison of Patient Characteristics and Visits Between Minority and White Patient Care, PAs Responding to 1981 Survey................................	4-36
4-7	Patients by Principal Type of Health Insirance Coverage for Minority dra Whire PAs Responding to 1981 Survey. \qquad	4-36
4-8	```Comparison of Distribution of Practice Setting and Medical Specialty Between Minority and White PAs Responding to 1981 Survey..```	4-37
4-9	Salaries for PAs by Primary Specialty, 1980.....................	4-38
4-10	Health Resources and Services Administration 	4-39
4-11	PA Revenue Generated, by Gender and Specialty, 1980	4-40

Chapter 5: Dentistry

5-1 Total and Active Dentists and Dentist-to- Population
Ratios: Selectec Years, December 31, 1950-1984 5-19
5-2 Primary Type of Dental Employment of Active Dentists, by Sex: December 31, 1984 5-20
5-3 Number of Active Civilian Dentists and Dentist-to- Population Ratios, by Region, Division, and State: December, 31, 1970, 1980, and 1984 5-21
Table Page
5-4 Number of Active Dentists and Dentist-to-Population Ratios, by General and Specialty Practice: December 31, 1970, 1980, and 1984 5-22
5-5 Number of Dental School Applicants in Relation to Number of First-Year Dental Students: Academic Years 1960-1961 through 1984-1985 5-23
5-6 Number of Dental Schools, Students, and Graduates: Selected Academic Years 1950-1951 through 1984-1985 5-24
5-7 First-Year Enrollment in Schools of Dentistry in the United States, by Racial/Ethnic Category: Academic Years 1971-1972 Through 1984-1985 5-25
5-8 First-Year Enrollment of Schools of Dentistry in the United States, by Sex: Academic Years 1968-1969 through 1984-1985 5-26
5-9 Average Annual Cost to Public and Private Dental Schools per Dental Student: Academic Years 1967-1968 through 1983-1984 5-27
5-10 Graduates of Dental General Practice Residencies and Dental Specialty Programs: Selected Years, 1973-1983 5-28
5-11 Percent of Independent Dentists Who Employ Auxiliaries: Selected Years l955-1983 5-29
5-12 Estimated Number of Active Dental Hygienists and Number per 100 Active Dentist.: Selected Years 1950-1984 5-30
5-13 Estimated Number of Active Dental Assistants and Number per 100 Active Dertists: Selected Years 1950-1984 5-31
5-14 Estimated Number of Active Dental Laboratory Technicians and Number per 100 Active Dentists: Selected Years 1950-1984 5-32
5-15 Number of First-Year Dental Students and Number of Dental Graduates, by Sex: Projected for Academic Years 1984-1985 through 1999-2000 5-33
5-16 Annual Additions and Losses to the Supply ofActive Dentists and Dentist-to-Population Ratios:Estimated 1984, and Projected 1985 through 20005-34
5-17 Number of Active Dentists, by Sex: Estimated 1984, and Projected for Selected Years, 1985-2000 5-35
5-18 Number of Active Dentists and Dentist-to-Population Ratıos: Estimated 1984 and Projected for Selected Years, 1985-2000 5-36
j-19 Forecast of Economic Activity in the Dental Section 198う-2000 5-37
Chapter 6: Optometry
6-1 Number of Active Optometrists and Optometrist-to- Population Ratios: Selected Years, Estimated 1970-1984, and Projected 1985-2000 6-13
6-2 Number of Active Optometrists and Cptrometrist-to- Population Ratios, by Region, Di:1sion, and State: December 31, 1970, 1980, and 1984 6-14
6-3 Number of Active Optometrists, by Sex: Estimated 1984, and Projected for Selected Years, 1985-2000. 6-15
Chapter 7: Podiatric Medicine
$7 \cdot 1$ Age Distribution of Podiatrists, November 1983 7-21
7-2 Racial Ethnic Distribution of Podiatrists, Based on 1980 Census Data and the 1983 Survey of Podiatrists 7-21
7-3 Population Size of Podiatrists' Community of Practice, November 1983 7-22
7-4 Census Division of Primary Practice, by Location of College of Podiatric Medicine Attended, November 1983 7-22
7-5 Principal Form of Employment by Age of Podiatrist, November 1983 7-23
7-6 Podiatrists' Type of Employment, November, 1983 7-23
7-7 Use Frequency of Practice Settings, November 1983 7-24
7-8 Number of Weekly Patient Visits to Podiatrists, November 1983 7-24
7-9 Patient Age Distribution for Podiatrists, November 1983 7-25
7-10 Female Patient Distribution for Podiatrists, November 1983 ?-25

7-11	Third-Party Reimbursement Distribution for Podiatrists, November 1983	7-26
7-12	Prepodiatric Education for Podiatric Students, Academic	
	Year 1984-1985	7-26
7-13	Gender and Ethnic/Minority Composition of Podiatric	
	Medicine Students, Academic Year 1984-1985	7-27
7-14	Residency Status of Podiatrists, November 1983................	7-27
7-15	Board Eligibility and Certification Status of Podiatrists,	
	November 1983.	7-28

Chapter 8: Pharmacy

8-1	Number of Active Pharmacists and Pharmacist-to-
	Population Ratios: Selected Years, Estimated 1970-1984,
and Projected 1985-2000... 8-12	

9-2 Number of Active Pharmacists and Pharmacist-toPopulation Ratios, by Region, Division, and State: December 31, 1970, 1980, and 1984.

8-3 Third-Last-Year Enrollment in Schools of Pharmacy in the Unites States, by Sex: Academic Years 1969-1970 through 1984-1985 8-14

8-4 Number of Third-Last-Year Pharmacy Students and Number
of Pharmacy Graduates, by Sex: Projected for
Academic Years, 1985-1986 through 1999-2000. 8-15
8-5 Number of Active Pharmacists, by Sex: Estimated 1984, and Projected for Selected Years, 1985-2000. 8-16
Chapter 9: Veterinary Medicine
9-1 Number of Active Veterinsians and Veterinarian-to- Population Ratios: Selected Years, Estimated 1970-1984, and Projected 1985-2000 9-11
9-2 Number and Pcicent Distribution of Active Veterinarians, by Type of Employment, and by Sex: December 31, 2984 9-12
9-3 Number of Active Veterinarians and Veterinarian-to- Population Ratios, by Region, Division, and State: December 31, 1970, 1980, and 1984 9-13
9-4 Number of Schools of Veterinary Medicine, Students, and Graduates: Academic Years 1960-1961 through 1984-1985 9-14
9-5 First-Year Enrollment in Schools of VeterinaryMedicine in the United States, by Sex: AcademicYears 1968-1969 through 1984-19859-15
Number of Active Veterinarians, by Sex: Actual 1984,and Projected for Selected Years, 1985-20009-16
Chapter 10: Nursing
10-1 Educational Programs Preparing Registered Nurses in the United States, 1970-1971 to 1983-1984 10-78
10-2 Practical Nursing Educational Programs and Students in the United States, 1970-1971 to 1983-1984 10-79
10-3 Admissions to and Graduations from Nursing Educational Programs Preparing Regist?red Nurses, by Type of Program and Geographic Area, 1982-1983 10-80
10-4 Admissions to and Graduations from Practical Nursing Educational Programs by Geographic Area, 1982-1983 10-81
10-5 Nurses Admitted to the United States, by Immigration Status, Selected Fiscal Years, 1974-1984 10-82
10-6 Professional Nurses Admitted as Immigrants, by Country of Last Permanent Residence, Selected Fiscal Years, 1974-1984 10-83
10-7 Licensed Practical/Vocational Nurse Population in Each State and Area, by Activity Status: November 1983 10-84
10-8 Registered Nurse Population in Each State and Area, by Activity Status, November 1980 10-85
10-9 Estimated Supply of Registered Nurses by Educational Preparation and Geographic Area, December 31, 1983 10-86
10-10 Distrioution of the Registered Nurse Supply, by Principal Employment Setting and Nursing-Related Educational Preparation, Novenber 1980 10-87
10-11 Field of Employment and Type of Position of Employed Licensed Practical/Vocational Nurses: November 1983 10-88
Table Page
10-12 Employment and Vacancy Rates of Nursing personnel in U.S. Registered Hospitals and in Community Hospitals by Type of Personnel, 1981, 1982 and 1983 10-89
10-13 Total and Full-Time-Equivalent Employment and Jacancy Rates of Nursing Personnel in Commurity Hospitals, by Geographic Area. 1983 10-90
10-14 Number of Full-Time-Equivalent Reqistered Nurses, Licensed Practical/Vocational Nurses, and Nursing Aides Per 100 Residents in Nursing Homes, by Geographic Area, 1982 10-91
10-15 Average Annual Earnings of Registered Nurses Employed Full Time in Their Principal Nursing Position, by Field of Employment and Type of Position: November 1980 10-9210-16 Average Annual Earnings of Licensed Practical/Vocational Nurses Employed Full Time i: TheirPrincipal Nursing Position, by Field of Employmentand Type of Position: November 198310-93
10-17 Projected Number of Graduates From Practical Nursing Educational Programs, Academic Years 1983-1984 through 1999-2000 10-94
10-18 Projections of National Supply of Licensed Practical/ Vocational Nurses, 1983-2000 10-95
10-19 Projected Supply of Licensed Practical/Vocational Nurses by Geographic Area, December 31, 1990 and 2000 10-96
10-20 Projected Number of Graduates From Basic Nursing Programs Preparing Rejistered Nurses, by Type of Program, Academic Years 1983-1984 through 1999-2000 10-97
10-21 Projections of National Supply of Registered Nurses, 198u-2000. 10-98
10-22 Projected Supply of Registered Nurses by Educational Preparation and Geographic Area, December 31, 1990 and 2000 10-99
10-23 Projected Requirements for Full-Time-Equivalent Registered Nurses and Licenseá Practical/Vocational Nurses from the Historical Trend-Based Model for 1980-2000 $10-100$
10-24 Projected Requirements of Full-Time-Equivalent Registered Nurses and Licensed Practical/Vocational Nurses from Hıstorical Trend-Based Model by Area of Practice as of クecember 31, 1980-2000 10-101
10-25 Historical 'rrend-Based Model Projections for Full-Time- Equivalent Registered Nurse and Licensed Practical/ Vocational Nurse Requirements for 1990 and 2000 by Geographic Area. 10-102
10-26 Criteria for Nurse Staffing and RN Eaucational Preparation in the Criteria-Based Model, 1990 10-10310-27 Criteria for Nurse Staffing and RN EducationalPreparation in the Criteria-Based Model 2000.$10-111$
10-28 Projected Requirements for Full-Time-EquivalentNursing Personnel According to Criteria-Based Model,by Field of Employment, 1990 and 2000.10-119
10-29 Projected Requirements for Full-Time-Equivalent Registered Iurses According to Criteria Established as Lower Bound in Criteria-Based Model by Geographic Area and Educational Preparation, 1990 and 2000 10-120
10-30 Projected Requirements for Licensed Practical/ Vocational Nurses and Nursing Aides According to Criteria-Based Model by Geographic Area, 1990 and 2000 10-121
10-31 Projected Requirements for Full-Time-Equivalent Registered Nurses According to Criteria Established as Upper Bound in Criteria-Based Model by Geographic Area and Educational Preparation 1990 and 2000 10-122
Chapter 11: Public Health
11-1 Full-Time-Equivalent Staffs of State Health Agencies, by Occupation and Program Area: December 31, 1982. 11-24
11-2 Trends in Staffing of State Health Agencies, by Program Area, 1977 to 1982 11-25
11-3 Trends in Staffing of State Health Agencies, by Occupation: 1977 to 1982 11-26
11-4 Median Salaries for Various Health Professions 11-27
11-5 Actual Appropriations for Public Health and Health Administration Training, by Type of Support, Fiscal Years 1957 to 1984 11-28
11-6 Grant Support for Graduate Education in Health Services Administration Under P.L. 94-484, by Type of Support, Number of Grants and Funds Awarded, Fiscal Years 1978 to 1984 11-29
11-7 Public Health and Healtr Administration Traineeship Grants: Funds Awarded, Number of Students Supported, and Average Amount of sward per Student, Fiscal Year 1984 11-30
11-8 Students Receiving Public Health Traineeships, by Area of Specialization, Fiscal Years 1978 to 1984 11-31
Chapter 12: Allied Health
12-1 Estimated Number of Allied Health Personnel Employed in the United States: Selected Years, 1970-1984 12-28
12-2 Number of Active Occupational Therapists, by Sex: Estimated 1980-1984, and Projected 1985-1990 12-29
12-3 Number of Active Ph'sical Therapists, by Sex: Estimated 1980-1984, and Projected 1985-1990 12-30
Figure Page
Chapter 10: Nursing
19-1 Graduations from Basic Nursing Educational Programs Preparing for Licensure, United States, Academic Years, 1970-1971 through 1982-1983 10-9
10-2 Nurse Population Ratios by Population Size of Counties in Which They are Employed, 1980. 10-16
10-3 Fall Enrollments and Graduations of Registered Nurses in Master Degree Programs in the United States During Selected Academic Years, 1970-1971 through 1982-1983.......... 10-21
10-4 Projections of Supply of Full-Time-Equivalent Reglstered and Licensed Practical/Vocational Nurses, Histo.ival Trend Based Requirements and 1990 and 2000 ©riteria- Based Requirements. 10-66
Chapter 11: Public Health
11-1 The Public Health Work Force, 1984 11-23

Chapter 1

Introduction

This report responds to a number of legislative authorities and represents a continuation in a series of congressionally-mandated reports on health personnel. Its purpose is to provide information on health personnel status, developments, problems and issues, with special emphasis on health personnel, supply, requirements and distribution. It is the fifth of a series of reports required by Section $708(\mathrm{~d})(1)$ of the Public Health Service Act as amended by P.L. 94-484 and further amended by P.L. 95-623, and presents information on personnel in the professions of medicine (allopathic and osteopathic), dentistry, optometry, pharmacy, podiatry and veterinary medicine.

This report also provides the fifth in a series of reports on nursing supply, distribution, and requirements in response to section 951 of P.L. 94-63 as amended by P.L. 95-623. It is the fourth in a series of mandated reports on public health personnel, prepared in response to Section 793(c) (later renumbered Section 794(c)) of the Public Health Service Act as amended by P.L. 94-484 and P.L. 95-623.

Allied health occupations are also included in this report in order to provide complete coverage of the major health fields. However, there is no specific current mandure for a report on these occupations.

The most recent previous report on health personnel was submitted to the Congress in May 1984. That report was the first to cover all the above health personnel in a single report (which comprised two volumes), replacing the previous approach of separate reports on specific groups of health personnel.

The present report continues the combined format of the last report except that it presents $2 i l$ information in one volume rather than two. It presents discussions of the current status of and recent developments among health personnel, as well as of problems and issues, and provides projections of future supply and requirements in the above-mentioned fields. The information presented is based on the analyses of available data as of the mid-1980s and the expert judgments and assessments by the Bureau of Health Professions of the developments and anticipated changes in these disciplines. In addition, the chapters on nursing and public health also include recommendations on program activities, as required by the legislation.

As was the case with the previous combined report, this report deals with many different occupations with widely differing education and training requirements and with non-comparable and widely differing data bases, analytical frameworks and congressional mandates. l.oreover, variations in the information presented reflect the inherent variations in the context and focus of the many disciplines covered and in the issues and concerns surrounding them.

Developments in Supply

The numbers of health personnel in all fields have continued to increase through the mid-1980s, although at a soinewhat lower rate than during the 1970s. This decelerated growth in the supply of health care providers largely reflects the tapering off of growth (and, in some cases actual declines) in the numbers of persons enrolling in and graduating from health professions schools/programs. However, ciespite the slowdown over the past few years, the supplies of health personnel now stand at levels higher than they have ever been and the growth in the numbers of health personnel continues to outpace the growth in the population.

Since the beginning of the 1980s, increases in the numbers of physicians, dentists, podiatrists, pharmacists, optometrists, veterinarians, and registered nurses have ranged from 5 percent (for optometrists) to 18 percent (for veterinarians) (Table 2-1). Similarly, the growth in the large and diverse group of allied health occupations has averaged about 13 percent since 1980 (Table 2-2). By way of comparison, the resident population of the U.S. grew by unly 4 percent from 1980 to 1984 . As a result, the ratios of the number of practitioners to population have continued to increase $=\mathrm{s}$ well.

Demographic Characteristics - While the workforce in nursing and in many of the allied health occupations has historically been and continues to oe primarily female, there have been significant increases in the numbers and percentages of females in professions which have traditionally been male-dominated. In several of these occupations: the rate of growth in the number of female practitioners has been substantially greacer than the overall growth rate for the profession. For example, the number of female dentists has doubled and the number of female physicians (allopathic) has increased by more than 20 percent since as recently as 1980. By way of comparison, increases in the tctal number of dentists and physicians were about 9 percent.

Both the number and percent of female practitioners in these professions are expected to continue to grow to the end of this century. By the year 2000, female practitioners are expected to constitute significant proportions of pharmacists (40 percent), veterinarians (36 percent), optometrists (23 percert), physicians (21 percent) and dentists (16 percent) (Table 2-3).

Similarly, the physician assistant worl orce appears to be moving from one which was predominately male to one made up largely of females. In the period from 1978 to 1984 , the percentage of female practitioners increased from 31 percent to 41 percent of the supply. More than 60 percent of the PA student population are now femaies.

Practitioners from racial/ethnic minority groups continue to make up a relatively small percentage of the health care workforce. Furthermore, recent crends in the number of minority students training for careers in the health fields indicate that there will be little change in their proportionate representation among practitioners in coming years.

Geographic Distribution - The geographic distribution of health care providers (especially as it relates to the population) continues to be an area of national interest. The increase in practitioners in all occupations has resulted in increases in the practitioner-to-population ratios in every State. However, wide variations in State ratios continue to exist for most occupations and the distribution of practitioners by State has changed little. Projections of the State supplies of r istered nurses and physicians indicate that although the numbers and ratios of practitioners to the population are expected to continue to increase by 1990 and beyond, State differences in the ratios are expected to remain.

For most disciplines other than medicine, there has been little documentation of the effects of the increasing supplies of practitioners on location patterns. Some evidence exists that if.icates that the increased supply of physicians has improved the geographic distribution of physicians in that a larger proportion of the younger physicians are currently locating outside of the most highly populated areas. However, the total numier of newly trained physicians establishing practice in rural areas is still comparatively small. The increasing number of physicians relative to the fopulation has contributed to a decrease in the number of areas designated by the Federal Government as Primary Care Health Manpower Shortage Areas and in the number of primary care physicians needed in those areas. Nevertheless, about 14 million persons, or 6 percent of the U.S. resident population, remain underserved in the Nation's shortage areas. Although continued increases in physician supply may improve access for some population groups and for some areas, population and economic factors may remain unfavorable for the establishment of health care practices in many rural and urban poverty areas, and thus many areas and population groups will continue to remain short of adequate medical care.

Service Delivery Patterns - The health care delivery system and the surrounding national environment have undergone significant changes in the past few years. These changes have involved shifts in the settings where services are delivered as well as changes in the mechanisms for financing health care and have largely evolved out of widespread efforts to gain better control over rising health care costs. Additionally, the competition engendered by the increasing supplies of practitioners in some fields has been cited as a factor contributing to increasing numbers of practitioners providing their services through non-traditional settings. For example, the past few years have seen rapid growth in delivery settings such as health maintenance organizations (HMOs), ambulatory surgery centers, and freestanding emergency and diagnostic centers. In the area of health care financing, a major recent change has been the implementation of the Medicare prospective payment reimbursement system. Although it is too soon to assess fully the impact of this new system on health care personnel, ther ϵ is some tentative evidence that

Abstract

it may be having some effects already, with declines in both hospital admissions and patient days, and shifts in some services from in-hospital to outpatient. The effects of changes in the reimbursement system on those health care providers such as nurses and allied health personnel, who are largely employed by hospitals, remain uncertain and it is likely that it will take several more years before an adequate judgement of its effects on health care personnel will be possible.

Developments in Education

With more than 386,000 persons enrolled in schools/programs of medicine, dentistry, podiatric medicine, optometry, pharmacy, veterinary medicine, registered nursing, and public health in academic year 1983-1984, the numbers of persons training for careers in the health occupations continue to be at or near their highest ievels. However, within most disciplines, the number of total enrollments either leveled off or declined in recent years (Table 2-4). Although comparable training data for the allied health occupations during the 1980 s are sparse, available data indicate a downward trend in total enrollments overall but continued high levels for some occupations.

First year enrollments for most disciplines also show a leveling off or decline in the number of students enrolled. Among the professions shown in Table 2-5, only osteopathic medicine and registered nursing have shown any significant growth since academic year 1980-1981 in the number of newly admitted students. Moreover, (as illustrated in Table 2-6), declines are anticipated in the number of graduates over the next decade in most disciplines.

Demographic Characteristics of Students - Recent trends in the gender and racial/ethnic composition of the student bodies in health professions schools largely mirror the trends in the composition of practitioners, which were discussed earlier. In essence, in recent years women are continuing to make up increasingly large percentages of the student population of those health professions that have been traditionally male dominated. In academic year 1983-2984, the percentage women made up of all students enrolled in schools of medicine, dentistry, podiatric nedicine, pharmacy, optometry and veterinary medicine ranged from 19 percent in podiatric medicine to 52 percent in pharmacy (Table 2-7). Furthermore, they continue to constitute the majority of students in nursing programs, schools of public health, and many allied health programs. At the same time, shanges in the racial/ethnic composition of students have not been as substantial as the gender changes and have been occurring at different paces for the individual racial/ethnic minority groups. For example, increases in the number and percentages of Black students enrolled have generally been less than those for most other minority groups, especially Asians.

Costs of Education - Rising school expenses and increased student indebtedness and their possible effects on the numbers and socioeconomic background of persons seeking careers in the health professions, as well
as on the career choices of graduates from these schools, have become majcr topics of interest in the past few years. The average indebtedness of 1984 graduates from schools of medicine, dentistry, podiatry, and veterinary medicine were all in excess of $\$ 20,500$ and may have reached as high as $\$ 44,000$ for podiatric medicine, in which most schools are privately owned. Information on the effects of indebtedness on career choice is largely unavailable, and whise available (as in medicine), is not conclusive. Recent information on the family income of students accepted into medical schools indicates that a larger percentage than in previous years were from the highest income category.

Graduate Education/Specialization - The recent increase in both the numbers and percentages of persons obtaining advanced training in several if the health fields has continued. In redicine and podiatric medicine the availability of residency positions in relation to the number of applicants is being examined very closely. The number of applicants to the National Resident Matching Program in 1985 exceeded the number of available entry level posicions by more than 7,000. Furthermore, although more than 90 percent of U.S. medical school graduates who applied to this program continued to secure positions, the percentages of foreign medical graduates (both U.S. citizens and aliens) securing positions through this system has continued to decline. In podiatric medicine new programs and new positions have been created in the last few years, and resiciency positions now accommodate about two-thirds of the graduates.

The financing of graduate medical education also continues to be an important topic of discussion. Much of the discussion centers around the high-cost teaching hospitals where faculty and facilities are jointly used for undergraduate and graduate training and service delivery. The percent of medical school revenues generated from faculty patient care activities rose substantially in recent years as the percent of revenues from Federal sources declined.

In nursing, the focus on advanced training centers around the need to develop a cadre of qualified personnel from which nursing obtains its leaders and teachers and those with advanced ciinical skills. The number of programs preparing teachers, administrators of nursing service, and clinical specialists more than doubled between the years of 19701971 and 1983-1984. Although total enrollments in these programs have increased fourfold, the percentage of full-time enrollments has decreased from 74 percent to 36 percent. Furthermore, the number of graduates in 1983 declined from the previous year.

Future Supply and Requirements

While many disciplines are expected to experience declines in the number of new additions to the practitioner pool over the course of the next several years (see Table 2-6), the supplies of health personnel are projected to continue to increase through the year 2000. The increases in supply are projected to range from 20 percent (dentistry) to 105 percent (osteopathic medicine), resulting in continued increases in practitioner-to-population ratios (Table 2-8). The numbers of MDs are
projected to increase in nearly all specialties, although the growth rate will vary by specialty group. The largest incrasses are projectec fo: those medical specialties other than primary care-on average a 74 percent increase between 1981 and 2000. The primary care specialties as a group are projected to increase by 53 percent by 2000. The smallest increase is projected for the surgicai specialties, with an average increase of 34 percent by 2000 .

Population growth, the aging of the population and other factors are expected to increase the demand for the services of health persounel in the future. As was observed in the last report, it is expected that in most of the health fields, supply and requirements in 1990 and 2000 will be in rough balance. However, the aggregate supply of physicians is expected to exceed requirements. On the other hand, persons who are trained ac lavels qualifying them for practice in some specialized areas, particularly in the fields of medicine, nursing, and public health may be in short supply.

Table 2-1 - Estimated Active Supply of Selected Health Personnel and Practitioner-to-Population Ratios, 1970, 1975, 1980 and 1984

Health Occupation	Estimated Active Supply				Percent Change		
					$\begin{aligned} & 1970- \\ & 1984 \\ & \hline \end{aligned}$	$\begin{aligned} & 1975- \\ & 1984 \\ & \hline \end{aligned}$	$\begin{aligned} & 1980- \\ & 1984 \\ & \hline \end{aligned}$
	1970	1975	1980	1984			
Physicians	326,200	384,500	457,500	501,2001/	53.6	30.4	9.6
Allopathic (MD)	314,200	370,400	440,400	481,5001/	53.2	30.0	9.3
Osteopathic (DO)	12,000	14,000	17,140	19,700 ${ }^{\text {/ }}$	64.2	39.7	14.9
Podiatrists	7,100	7,300	8,900	9,7001/	36.6	32.9	9.0
Dentists	102,220	112,020	126,240	137,950	35.0	23.1	9.3
Optometrists	18,400	19,900	22,400	23,600	28.3	18.6	5.4
Pharmacists	113,700	122,800	143,800	157,000	38.1	27.9	9.2
Veterinarians	25,900	31,100	36,000	42,600	64.5	37.0	18.3
Registered Nurses	750,000	961,000	1,272,900	1,453,000	93.8	51.3	14.2
Practitioners Per 100,000 Population							
Physicians	156.0	174.4	197.0	210.71/	35.1	20.8	7.0
Allopathic (D)	150.0	167.9	189.5	$202.21 /$	34.8	20.4	6.7
Osceopathic (DO)	6.0	6.5	7.5	$8.5 \frac{1 /}{}$	41.7	30.8	13.3
Podiatrists	3.5	3.4	4.0	$4.21 /$	20.0	23.5	5.0
Dentists	49.5	51.6	55.2	58.0	17.2	12.4	5.1
Optometrists	8.9	9.2	9.8	9.9	11.2	7.6	1,0
Pharmacists	54.4	56.6	63.0	66.0	21.3	16.6	4.8
Veterinarians	12.5	14.3	15.8	18.0	44.0	25.9	13.9
Registered Nurses	366	449	560	613	67.5	36.5	9.5

1/ 1983 Data

SOURCE: For sources of data see the appopriate table within the individual chapters for the respective occupations.

$$
\therefore \quad 32
$$

Table 2-2 - Estimated Active Supply of Allied Health Personnel:
Selected Years, 1970-19841/

Health Occupation	1970	1975	1980	1984	Percent Change			
					$\begin{aligned} & 1970- \\ & 1984 \\ & \hline \end{aligned}$	$\begin{aligned} & 1970- \\ & 1975 \\ & \hline \end{aligned}$	$\begin{aligned} & 1975- \\ & 1980 \end{aligned}$	$\begin{aligned} & 1980- \\ & 1984 \\ & \hline \end{aligned}$
Allied Health Personnel	670,000	881,000	1,091,000	1,235,000	こ4.3	31.4	23.8	13.2
Dental Hygienists	15,000	27,000	38,000	46,000	206.7	80.0	40.7	21.0
Dental Assistants	112,000	134,000	156,000	168,000	50.0	19.6	16.4	7.7
Dental Lab,ratory Technicians	31,000	42,000	53,000	59,000	90.3	35.5	26. 2	11.3
Dietitians	17,000	23,000	32,000	38,000	123.5	35.3	39.1	18.8
Dietetic Technicians Medical Record	2,000	3,000	4,000	6,000	200.0	50.0	33.3	50.0
Medical Record Technicians	42,000	53,000	64,000	72,000	71.4	26.2	20.8	12.5
Medical Laboratory Workers:	135,000	191,000	249,000	278,000	105.9	41.5	30.4	11.6
Medical Technologists	$(57,000)$	$(93,000)$	$(138,000)$	$(162,000)$	184.2	63.2	48.4	17.4
Cytotechnologists	$(3,000)$	$(6,000)$	$(7,000)$	$(8,000)$	166.7	100.0	16.7	14.3
Medical Laboratory Technicians Other Laboratory	$(1,000)$	$(8,000)$	$(13,000)$	$(15,000)$	1400.0	700.0	62.5	14.3 15.4
Technicians	$(74,000)$	$(84,000)$	$(91,000)$	$(93,000)$	25.7	13.5	8.3	2.2
Occupational Therapists	17,000	21,000	25,000	30,000	76.5	23.5	19.0	20.0
Physical Therapists	15,000	20,000	31,000	37,000	146.7	33.3	55.0	19.4
Radiologic Service Workers Respiratory Therapy	87,000	97,000	116,000	134,000	54.0	11.5	19.6	15.5
Workers Speech Pathologists and	30,000	43,000	56,000	62,000	106.7	43.3	30.2	10.7
Audiologists Other Allied Health	22,000	32,000	42,000	52,000	136.4	45.5	31.3	23.8
Personnel ${ }^{\text {/ }}$	135,000	183,000	212,000	238,000	76.3	35.6	15.8	12.3

1/ All numbers are founded to the nearest thousand. Dut to revisions and independent estimates, sone numbers may differ from those that appear elsewhere.
2/ Includes such categories as dietetic assistant, genetic assiatant, operating roon technician, ophthalmic medical assistant, optometric assistant and technician, orthoptic and prosthetic technologiat, phanmacy assistant, occupational and physical therapy assistants, physician assistant, podiatric assistant, vocational rehabilitation counselor, other rehabilitation services, and other acial and mental health services.

SOURCE: Derived from Table 12-1 of this report.

33

Table 2-3 - Active Supply of Female Pra=titioners in Selected Health Occupations, Estimated 1"84 and Projected 2000

	1984		2000	
	Nubber	Percent of Total Practitioners	Number	Percent of Total Practitioners
Physicians (MDs \& DOs)	55,300	12.01/	143,500	20.6
Podiatrists	350	3.6	*	*
Dentists	6,980	5.1	25,500	15.8
Optometrists	1,800	7.5	6,800	22.9
Pharmacists	37,400	23.8	76,100	40.4
Veterinarians	6,500	15.3	22,500	35.9

1/ 1981 Data

* Unavailable

SOURCE: For sources of data see the respective tables on the number of practitioners by gender in the appropriate chapters of this report.

Table 2-4 - Total Number of Studenta Enrolled in Schools for Selected Health Occupations: Selected Academic Years 1970-1971 through 1983-19841/

Health Occupation	Total Number of Students				Percent Change			
	$\begin{aligned} & 1970- \\ & 1971 \\ & \hline \hline \end{aligned}$	$\begin{aligned} & 1975- \\ & 19 / 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1980- \\ & 1981 \\ & \hline \end{aligned}$	$\begin{aligned} & 1983- \\ & 1984 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { 1970-1971 } \\ \text { to } \\ 1983-1984 \\ \hline \end{gathered}$	$\begin{gathered} 1970-1971 \\ \text { to } \\ 1979-1976 \\ \hline \end{gathered}$	$\begin{gathered} 1975-1976 \\ \text { to } \\ 1983-1984 \end{gathered}$	$\begin{gathered} 1980-1981 \\ \text { to } \\ 1983-1984 \end{gathered}$
Medicine	42,389	59,261	70,129	72,570 ${ }^{2 /}$	71.2	39.8	22.5	3.5
Allopathic (MD)	40,238	55,818	65,189	66,748 ${ }^{2 /}$	65.9	38.7	19.6	2.4
Oateopathic (DO)	2,15.	3,443	4,940	5,8222/	470.7	60.0	69.1	17.9
Podiatric Medicica	1,147	2,085	2,5:1	2,556	122.8	81.8	22.6	-0.8
Dentistry	16,553	20,767	22,842	21,428	29.5	25.5	3.2	-6.2
Optometry	2,831	3,888	4,5243/	4,539	60.3	37.3	16.7	0.3
Pharascy	15,626	24,416	22,093	18,831	20.5	56.3	-22.9	-14.8
Veterinary Medicine	5,006	6,274	8,156	8,672	73.2	25.3	-38.2	-14.8 6.3
Nuraing (RN only)4/	162,924	248,171	230,966	250,553	53.8	52.3	1.0	8.5
Public Health	*	6,461	8,486	7,2832/	*	*	12.7	-14.2

1/ The academic year 1983-1984 ia ahown tecauae comparable data for most occupations are avsilable for thst year. 1984-1985 data are given for allopathic medicine, podiatry, dentistry, pharmacy and veterinary medicine in the appropriate individual chaptera for thoae occupations.
2/ 1982-1983 Data
3/ 1979-1980 Data
4/ Trenda in total nursing enrollmenta may incorporate changes in program lengtha during the periods indicated therefore percent changea do not neceaarily aolely reflect growth or dimiaution of the atudent body.

SOURCE: Por aourcea of daia aee the reapective tables on the number of achools/prugrams, students, and graduates in the appropriate chaptera of thia report.

Table 2-5 - First Year Enrollments in Schools for Selected Health Occupations: Selected Academic Years 1970-1971 through 1983-1984 ${ }^{\text {// }}$

	First-Year Students				Percent Change			
	$\begin{aligned} & 1970- \\ & 1971 \\ & \hline \end{aligned}$	$\begin{aligned} & 1975- \\ & 1976 \\ & \hline \end{aligned}$	$\begin{aligned} & 1980- \\ & 1981 \\ & \hline \end{aligned}$	$\begin{aligned} & 1983- \\ & 1984 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { 1970-1971 } \\ t 0 \\ 1983-1984 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 1970-1971 } \\ t 0 \\ 1979-1976 \\ \hline \end{gathered}$	$\begin{gathered} 1975-1976 \\ t 0 \\ 1983-1984 \\ \hline \end{gathered}$	$\begin{gathered} 1980-1981 \\ t 0 \\ 1983-1984 \\ \hline \end{gathered}$
Medicine	11,971	16,333	18,682	18,936 ${ }^{2 /}$	58.2	36.4	15.9	1.4
Allopathic (MD)	11,348	15,295	17,186	17,254 $\frac{2}{1 /}$	52.0	34.8	12.8	0.4
Oateopathic (DO)	623	1,038	1,496	1,682 ${ }^{\text {/ }}$	170.0	65.6	62.0	12.4
Podiatric Medicine	351	641	695	689	9.3	82.6	7.5	-0.9
Dentiatry	4,565	5,703	6,030	5,274	15.5	26.2	-8.5	-12.5
Optometry	884	1,057	1,2093/	1,187	34.3	19.6	12.3	-1.8
Pharmacy	5,864	8,710	7,551	6,715	14.5	48.5	-22.9	-11.1
Veterinary Medicine	1,430	1,712	2,239	2,284	59.7	19.7	33.4	2.0
Nuraing (RN only)	78,524	112,174	110,201	120,5793/	53.63/	42.9	7.53/	9.43/

1/ The academic year 1983-1984 is used because comparable date for most occupations are available for that year. 1984-1985 data are given for allopathic medicine, podiatrys dentistry, pharmacy, and vaterinary medicine in the appropriate individual chapters for those occupations.
2/ 1979-1980 iata
3/ 1982-1983 Data
SOURCE: For sourcez of data see the respective tables on the number of schools/programs, students and gaduates in the appropriate chapters of this report.

Table 2-6 - Actual and Projected Annual Graduates from Selected Health Professions Schools/Programs: Academic Years 1983-1984 through 1999-2000

Academic Year	$\begin{aligned} & \text { Medicine } \\ & (M+D 0) \\ & \hline \end{aligned}$	Dentistry	Pharmacy	Nursing (RN only)
1983-1984	17,800	5,300	6,000	82,200
1984-1985	18,500	5,400		82,700
1985-1986	18,500	5,100	5,600	78,700
1986-1987	18,400	4,900	5,800	78,800
1987-1988	18,300	4,700	5,800	77,800
1988-1889	18,100	4,500	5,800	76,50C
1989-1990	17,900	, 400	5,800	75,300
1990-1991	17,800	4,300	5,800	73,900
1991-1992	17,600	4,200	5,800	72,500
1992-1993	17,500	4,100	5,700	71.300
1993-1994	17,500	4,100	5,600	70,400
1994-1995	17,500	4,100	5,500	69,400
1995-1996	17,500	4,100	5,300	63,700
1996-1997	17,500	4,100	5,100	68,000
1997-1998	17,500	4,100	5,100	67,300
1998-1999	17,500	4,100	5,100	66,900
1999-2000	17,500	4,100	5,100	66,400

SOURCE: For sources of data see the appropriate table within the individual chapters for the respective occupations.

Table 2-7 - Minority and Feasle Total Enrollenta in Health Profeaniona Schoola, Acadenic Yeare 1971-1972, 1974-1975 and 1983-1984

1/ Data are for 1982-1983
/2/ Data are for 1975-1976
3) Excludaa Puerto Rican Schoola
4) Thasa ara atudanta in tha final thrae yara of pharnacy education axcluding any atudanta in pra-pharaacy yeara

5/ Data ara for 1973-1974
6/ Data ara bead on thoae atudanta in achoola rappoading to quastiona on raca/athaicity and gender
7/ Date are for 1980-1981
产/ Parcantagae ara beaed only oa the cotal counta of atudante idantified by raca/athnicity or gandar
Sovaces: Health Reaources and Sarvicas Adminiptration, buranu of gaelth Profanaiona. Minorician and wonen in the Bealth Fialde 19a4 Edition and Minoritiea and Wanen in tha Health Fialde, 1978. Alao unpubliahad information fram health profanifons achoole atacciations.

Table 2-8 - Active Supply of Selected Health Pe: sonnel, Estmated 1984 and Projected 1990-2000

Health Occupation	A' cive Supply				Percent Change		
					1984-	1984-	1984-
	1984	. 999	1995	2000	1990	3075	2000
Physicians	501,2001/	587,700	645,500	696,600	17.3	28.8	39.0
Allopathic (MD)	481,5001/	559,500	611,100	656,100	16.2	26.9	36.3
Osteopathic (DO)	19,700 $1 /$	28,200	34,400	40,400	43.1	74.6	105.1
Podiatrists	9,7001/	12,700	15,000	17,100	30.9	54.6	76.3
Dentists	137,950	150,800	156,800	161,200	9.3	13.7	16.9
Optomet rists	23,600	25,500	27,500	29,700	8.1	16.5	25.8
Pharmac ists	157,000	170,800	181,200	188,200	8.8	15.4	19.9
Veterinarians	42,600	50,400	56,800	62,700	18.3	33.3	47.2
Registered Nurses	1,453,900	1,739,100	1,932,100	2,079,400	19.6	32.9	43.0
Practitioners Per 100,000 Population							
Phy sicians	$202.4 \frac{1 /}{1 /}$	235.4	248.7	259.9	16.3	22.9	28.4
Allopathic (MD)	$194.6 \frac{1 / 1}{1 /}$	224.1	235.5	244.9	15.2	21.0	25.8
Osteopathic (DO)	$7.8 \frac{1 / 1}{1 / 1}$	11.3	13.3	15.3	44.9	70.5	96.2
Podiatrists	$4.21 /$	5.1	5.8	6.4	21.4	38.1	52.4
Dentists	58.0	60.1	60.2	60.0	3.6	3.8	3.4
Optometrists	9.9	10.2	10.6	11.1	3.0	7.1	12.1
Pharmacists	66.0	68.1	69.6	70.0	3.2	5.5	6.1
Veterinarians	18.0	20.1	21.9	23.3	11.7	21.7	29.4
Registered Nurses	613	695	743	775	13.4	21.2	26.4

1/ 1983 Data

SOURCE: For sources of data see the appropriate table within the individual chapters for the respective occupations

Table 2-9 - Supply and Requirements for Selected Healch Occupations 1984 Supply and Projections to 1990 and 2000

1/ 1983 Data
2/ Full-time equivalents
——Not Applicable
SCORCE: For source of data see the individual chapters for the respective occupations.

Chapter 3

MEDICINE

Intruduction

This chapter presents the recent developments in physician supply, educatior. and competency assurance. It also includes forecasts of physician supply and requirements. The primary focus of the chapter $1 s$ to provide the most current information since the publication of the previous report (USDHHS, May 1984), and then place the recent developments in context with historical trends.

Developments in Physician Supply

The environment for the delivery of health services has changed appreciably. Since 1970, the number of physicians has grown faster than the population, shifting focus from $\begin{gathered}\text { fequacy of supply to balances in distribution. }\end{gathered}$ Concomitantly, health care costs have escalated, drawing attention to the physician's contribution to those costs. The following section explores these notable rhanges through discussions of current supply levels, both for allopathic (MD) and osteopathic (DC) physicians; changes in specialty, activity and geographic distributions; participation of forsign medical graduates; and the contributions ot women and minorities. It reviews changing characteristics of the practice setting, includins the content of visits; financing, quality and utilization of services; productivity; and access to care. Finally, this section examines the impact of an expanded supply of physicians in the U.S. and other countries.

Allopathic Physicians: Current Supply, Specialization and Activity Status

Supply. The supply of allopathic physicians continued to grow between 1980 and 1983 at about 3 percent per year, a slightly slower pace than the average 4 percent per year observed in the $1970^{\prime} s$. Preliminary data from the American Medical Association (AMA) showed that as of December 31, 1983, there were 519,546 allopathic physicians in the U.S. representing an ll.1-percent increase since 1980 and outpacing population growth by more than threefold. The pool of active Mns, however, grew by approximately 9.3 percent. As of 1983, an estimated 481,454 MDs were active, for a ratio of 202 active physicians per 100,000 population.

Supply of	Allopathıc Physicians: Total, Active and Ratio per 100,000 Population, 1970, 1980 and 1983			
	1970	1980	1983	Percent Change 1980-1983
Total MDs				
Number	334,028	467,679	519,546	11.1
Ratio	148	195	218	
Estimated Active ${ }^{\text {a/ }}$				
Number	314,196	440,357	481,454	9.3
Ratio	150	179	202	
Population ${ }^{\text {/ }}$	208,066	231,666	238,160	2.8
(in 100,000s)				

a/ Includes AMA-defined professionally active MDs plus about 90 percent of MDs not classified or with unknown addresses reclassıfied as active. b/ Includes U.S. resident population, armed forces overseas, ard civilian population of the U.S. possessions, as of July 1.

SOURCES: Amerıcan Medica! Association. National Physician Trends trom 1970-82, November 1984 and unpublished AMA data.

Young physicians continue to represent a substantial and slowly growing proportion of all physicians. As of 1982,42 percent of all MDs were under the age of 40 , and more than 40 percent of all MDs had graduated since 1970. In 1970, less than 40 perent of MDs were under aye 40 (AMA, Nov. 1984b). This younger pool altered other distributions such as activity status, specialty, gender, productivity, income and board certification. The number of board-certıfied physicians grew by 135 percent since 1970 , from one-third of all physicians to 51 percent in 1980 and to 55 percent in 1982.

Specialization. Since 1980, little change occurred numerically in the ranking of the specialties, and only siight changes have been observed since 1970. As of 1983, internal medicine headed the list, followed by general/family practice, general surgery, pediatrics, psychiatry, obstetrics/gynecology, anesthesiology, orthopedic surgery and pathology.

Most Popular 1983 Specialties:
Numb.r of MDs and Rank, 1970, 1980 and 1983

	1970		1380		1983		Percent Change1980-1983
Specialty	Number	Rank	Number	Rank	Number	Rank	
Internal Medicine	41,872	2	71,531	1	82,462	1	15.3
```General/Family Practice```	57,948	1	60,049	2	64,154	2	6.8
General Surgery	29,761	3	34,034	3	36,323	3	6.7
Pediatrics	17,941	6	28,342	4	32,831	4	15.8
Psychiatry	21,146	4	27,481	5	30,763	5	11.9
Cbstetrics/ Gynecology	18,876	5	26,305	6	29,307	6	11.4
Anesthesiology	10,860	7	15,958	7	20,003	7	25.3
Orthopedic Surgery	9,620	9	13,996	8	16,193	8	15.7
Pathology	10,483	8	13,642	9	14,294	9	4.8

SOURCES: American Medical Association. Physician Chararteristics and Distribution in the U.S., 1983 and previous editions and unpublished AMA data.

Of particular note was the continuing decline in the percentage of general/family practitioners among all MDs, from 12.8 percent in 1980 to 12.3 percent in 1983. This decline, coupled with the moderated growth in internal medicine and pediatrics, has produced a relatively constant rate of growth in the primary care specialtie3, not only since 1980, but throughout the $1970^{\prime} \mathrm{s}$. This relatively moderate rate of growth is exacerbated when all relevant subspecialties such as hematology and oncology are subtracted from the pediatrics and internal medicine categories. Excluding the subspecialties, the percentage of primary care MDs decreased from 34.5 percent in 1980 to 30.6 percent in 1983--a figure representing 0.5 percent fewer primary care MDs than the previous year (subspecialty data are available only for recent years).

Specialty Int	ly of MDs   Medici	eneral/Fam d Pediatric	actice,   2 and 19	
	1982		1983	
	nercent of    Number All MDs		Number	$\begin{gathered} \text { Percent of } \\ \text { All MDs } \\ \hline \end{gathered}$
General/				
Family Practice	62,339	12.4	64,154	12.3
General Pediatrics	29,687	5.9	30,654	5.9
Pediatricsa/	$(31,415)$	(6.3)	$(32,831)$	(6.3)
General Internal				
Medicine	64,151	12.8	64,250	12.4
Internal Medicineb/	(79,980)	(15.9)	(82,462)	(15.9)
Total Primary Care	156,177	31.1	159,058	30.6

a/ Includes certain subspecialties; see Table $3 \times 4$ for listing; excludes pediatric allergy and pediatric cardiology.
b/
Include certain subspecialties, see Table 3-4 for listing, excludes allergy, cardiovascular diseases, gastroenterology and pulmonary diseases.

SOURCES: Amelican Medical Associatıon. Physician Characteristics and Distributions 17 the U.S., 1983 edition and unpublished AMA data.

Although available data do not include a separation of all subspecialties from total internal medicine and pediatrics, it appears that younger MDs increasingly may de favoring the primary care specialties. As of 1982, 41 percent of all physicians under the age of 40 were in internal medicine, pediatrics and general/samily practice, compared with 34.6 percent for MDs of all ages (AMA, Nov. 1984N). On the other hand, younger MDs, as expected, were disproportionately found in the early years of training. Whether these younger MDs will choose subspecialty training at a rate different from that of older physicians remains to be seen.

Activity Status. Few short- cr long-term changes were noted in the activity distribution. Patient care MDs have represented approximately 80 percent of the total throughout the decades of the $1970^{\prime} \mathrm{s}$ and $1980^{\prime} \mathrm{s}$, and non-patient care MDs have ranged from 7 to 10 percent of the total.

Whereas the number of young MDs grew by 51.6 percent from 1972 to 1982 , particularly large gains were registered in the office-based practice category, which grew by 123.5 percent, and in research, which grew by 120.3 percent (AMA, Nov. 1984b).

## Characteristics of Foreign Medical Graduates (FMGs)

Supply. Preliminary unpublished AMA data indicated that 112,000 FMGs were in the U.S. in 1983, representing 21.6 percent of all MDs. This percentage has changed little over the last several years.

Although the percentage of all FMGs in patient care activities dropped between 1970 and 1980 , by 1983 it rose again, nearly to its 1970 level. About 60,000 FMGs were involved in office-based practice in 1983, representing 19.9 percent of all MDs in that activity; more than 26 percent of all hospital-based physicians were FMGs. FMGs continued to be more than twice as likely to be hospital-based as were U.S. (USMGs) or Canadian medical graduates (CMGs). overall, FMG patient care activity and specialty distributions were similar to those of USMGs.

Specialization. Internal medicine continued to be the most popular specialty and showed the largest growth in percentage of FMGs. General/family practice, the second most popular, exh1bited declines between 1970 and 1980 but leveled and then increased by 1982. Also pediatrics, general surgery, and pathology showed declines between 1970 and 1980 but grew slightly between 1980 and 1982. FMG representation in obstetrics/gynecology remained constant from 1970 to 1980 , then grew in 1982, as did anesthesiology. The misst notable increase was in pediatrics; ranled fifth in 1980 but third in 1982.

FMGs in Select Specialties: Percentage and Rank by Size, 1970, 1980, and 1982

	Percent of Total FMGs			Rank		
Specialty	1970	1980	1982	1970	1980	1982
Internal Medicine	11.1	13.4	15.3	2	1	1
General/Family Practice	11.8	9.4	9.9	1	2	2
Pediatrics	6.2	6.7	7.6	5	5	3
Psychiatry	8.8	7.0	7.4	4	3	4
General Surgery	9.2	6.9	7.3	3	4	5
Anesthesiology	5.8	6.0	6.5	6	6	6
Obstetrics/Gynecology	5.4	5.4	5.8	8	7	7
Pathology	5.5	4.0	4.2	7	8	8

NOTE: Total FMGs in 1970, 1980, and 1982 were 57,217, 97,726, and 107,284
respectively.

SOURCE: American Medical Associ玉tion. Physician Characteristics and Distribution in the U.S., 1983 edition, November 1984a.

FMGs continued to account for about one-third of all mDs in anesthesiology and therapeutic radiology, and nearly one-half of those in physical medicine and rehabilitation.

Geographic Distribution. Although the percentage of FMGs in States changed from 1975 to 1983, for most States the percentage remained between 5 and 15 percent. New York, New Jersey, Illinois, Delaware and West Virginia continue to lead all States.

FMGs as a Percent of All MDs in Select States a/and Rank, 1975 and 1983

State	1975		1983	
	$\begin{aligned} & \text { Percent } \\ & \text { of All MDs } \end{aligned}$	Rank	$\begin{aligned} & \text { Percent } \\ & \text { of All MDs } \end{aligned}$	Rank
New York	39.5	1	37.9	2
New Jersey	36.7	2	42.6	1
Illinois	34.2	3	34.8	3
Delaware	33.0	4	33.8	4
West Virginia	32.0	5	32.3	5

a/ Six States ranked highest in 1975.

SOURCES: American Medical Association. Physician Distribution and Medical Licensure in the U.S., 1975, Novemoer 1976 and unpublished AMA data.

The trend in the number of FMGs granted initial licenses to practice in a given State is also an indicator of change in, and degree of FMG participation in patient care in that state. In 1977, when FMGs represented about 32 percent of all new licentiates, 50 percent or more of the new licentiates in Delaware, Maine, New Jersey and New York were FMGs. In 1983, when the overall FMG percentage dropped to about 23 percent (Table 3-6), Florida, Maine, Maryland and New Jersey still granted more than 50 percent of new Licenses to FMGs (AMA, 1985a).
U.S. Citizen Foreign Medical Graduates (USFMGs). Significant differences have been noted in type of practice, location and specialty selection by citizenship and country of medical education (USDHHS, May 1984). These differences continued in 1981 (latest year for USFMG data), when professionally active USFMGs represented 12.0 percent of all FMGs in that category, up slightly from 11.2 percent in 1979.

As of l981, USFMGs composed 2.5 percent of all professionally active MDs, about the same percent as in 1979. In 1981, as in 1979 , more than 93 percent of all USFMGs were in patient care activities compared to the 80 percent figure for all FMGs. A slightly greater percentage of USFMGS however, was in office-based practice ( 62 percent) in 1981, and a slightly smaller percentage was in hospital-based practice ( 32 percent). Contributing to the drop in the percentage in hospital-based practice was a percentage drop in CSFMGs on hospital staffs (from 12.9 to 9.8 percent), with the resident percentage holding at 22 percent.

The specialty distribution of USFMGs has changed significantly since 1979. As of 1981 , they were distributed more evenly across the specialties, increasing their representation in ophthalmology, psychiatry, and pathology, while decreasing their representation in general surgery, interial medicine, and orthopedic surgery. Internal medicine still ranked first numerically, but the percentage in general/family practice rose from 10.4 to 15.6 percent to $r$ ank
second ahead of general surgery. Of note was the increase in psychiatry from 5.1 to 8.2 percent.

## Women MDs

Since 1970, the growth in supply of female MDs wril outpaced total MD growth. Between 1970 and 1983, the pool of female MDs grew by 173.3 percent, compared to a total MD growth of 55.5 percent. However, the annual rate of growth since 1975 has tapered sligtitly.

Women in Allopathic Medicine: Total and Comparison to Total of Men, 1970, 1982 and 1983

	1970		1982		1983		Annual   Percent Change   (Not Compounded)	
Gender	Number	Percent	Number	Percent	Number	Percent	$\begin{aligned} & 1970- \\ & 1982 \\ & \hline \end{aligned}$	$\begin{aligned} & 1982- \\ & 1983 \end{aligned}$
Total MDs	334,028	100.0	501,958	100.0	519,403	100.0	4.2	3.5
Women	25,401	7.6	64,247	11.6	69,421	13.4	12.7	8.1
Men	309,627	92.4	437,711	88.4	449,982	86.4	3.4	2.8
SCURCE:   1983." A	rican Me ican Med	ical As ical New	sociation   s, Septem	$\begin{aligned} & \text { "Phys } \\ & \text { ber } 21, \end{aligned}$	$\begin{aligned} & \text { i=ian SuI } \\ & 1984 . \end{aligned}$	$1 y: \quad U p$	$8 \text { Per }$	$t \text { in }$

During this period of significant female MD growth, their specialty and activity preferences increasingly mirrored the preferences of male MDs. For example, both showed a preference for internal medicine. As of 1982, the five major specialties practiced by women were internal medicine, pediatrics, psychiatry, general/famıly practice, and obstetrics/gynecology. In 1975, pediatrics headed the liot (Table 3-7). The growth of women in internal medicine was paralleled by their growth in patient care activities at an annual rate averaging 15 percent. Smaller gains were found in non-patifnt care activities, although generally these areas had higher than average percentages of women in 1982 (Table 3-8).

## Minority MDs

The most recent data, from 1980, estimated that approximately 11 percent of all MDs were minorities. Female MDs represent a $\begin{aligned} & \text { ignificantly greater }\end{aligned}$ percentage of mınority MDs than nonminority MDs. As of the early part of the decade, white women were estimated to represent about 11.3 percent of white MDs, but minority women represented 30.4 percent of minority MDs (USDHHS, May 1984).

Little information is available for minority specialty or practice distributions, although one study showed that black physicians substantially served black populations, with 87 percent of their private patients being black (Koba Associates, 1979). The National Medical Association, in a BHPr-sponsored study to validate the data on its masterfile, found that a significantly greater percent of black physicians practice in the primary care
specialties (including or excluding obstetrics/gynecology) than do all physicians (NMA, 1985).

## Physician Supply and Characteristics of Practice and Delivery

The rapid growth in the number of physicians has stimulated discussion of the degree to which competition has resulted from increased supply. This discussion has focused on changes in MD productivity, and fees and income, as well as changes in demand for, and access to services, quality/content of care and cost and expenditures. Comparable data for DOs are not available.

Productivity. If compeition in health care delivery has accompanied the increased supply of MDs, standard measures of productivity would be expected to reflect a decrease. According to the most recent published data, between 1982 and 1983, the total number of office and hospital MD visits dropped for the first time, and by 2.2 percent. From 1975 to 1982 , the number increased from 1 to 1.5 billion. Yet, during those same periods, total visits per MD declined by only 0.8 percent annually from 1975 to 1982 , but declined by a significant 5.2 percent between 1982 and 1983 (AMA, Feb. 1984).

Although these findings could be interpreted as lending support to the presence of competition, the relationship between physician supply and workload has never been firmly established (Manard and Lewin, 1983). Productivity differences were evident by gender for both time pericds, with women working fewer hours and seeing percent fewer patients per week. This variation suggests that, as the number of women MDs grows, the ratio of visits per physician can be expected to decline. Other research found a decline in visits in one health maintenance organization (HMO) where the ratio of physicians per enrollees remained constant (Luft and Trauner, 1981). Yet another study found a greater decline in productivity between 1959 and 1964, when the supply grew at a slower rate than at present (Wilson and Begun, 1977). Finally, one study found that, although 39 percent of visits were physician-initiated, only a small proportion of these visits could be xplained by supply--a doubling in the physiciain/population ratio would result in an increase of only 1 percent of physician-initiated visits (Willensky, 1982). Thus, evidence of the impact of supply on competition found in changes in productivity is equivocal.

Fees and Income. An examination of the changing fee and income structures of MDS does reveal the existence of competition stimulated by the increase in supply. One longitudinal study found that fees increased 2.9 percent per year from 1965 to 1980, but MD visits increased only 0.7 percent (Cromwell, et al., 1983). However, this trend may be reversing for some specialties. Competition from supply growth may affect prices in specialties that are not heavily dependent upon third party reimbursement, such as general/family practice and psychiatry (Manard and Lewin, 1983) (see following section on Costs and Cost Containment).

Similar results were found for income. The real income of general/family practitioners continued to decline, as did that for physiciane in the Northeast, where supply was large. The greatest increase in income was found among surgeons, with an increase of 10 percent to $\$ 138,900$ between 1982 and 1983. General/family practitioners earneć $\$ 68,500$ in 1983 (AMA, Aug. 1984).

In addition to the roles that reimbursement and supply have had in determining incomes, setting and gender differences also contributed. Self-employed physicians earned more, as did male physicians. In 1983, they earned an average of $\$ 102,000$, whereas women physicians averaged $\$ 65,200$. When adjustments were made for productivity, the difference between genders deciined from 56 to 24 percent. Age and specialty also were important factors in the observed gender differences. Women between the ages of 41 and 55 earned the least relative to men. A 31 percent income differential was found between male and female medical specialists, compared with only a l9-percent differential between male and female general/family practitioners (AMA, Mar. 1984).

Demand. Differing results suggest that intervening variables or other causal factors may be important in relating supply to demand. As stated previously, one study found that physician-initiated visits represented 39 percent of all visits, but a doubling in the number of MDs was needed to increase these visits by 1 percent (Willensky, 1982). Another study concluded that a doubling in the ratic of surgeons would increase the surgery rate by 10 percent (Manard and Lewin, 1983). These findings were contradicted by another study suggesting that high risk surgeries were more prevalent in areas that had sigh rates of surgical procedures, noting a definite impact of supply on demand (incos, 1984).

One intervening factor may be the presence of a threstold effect of supply, an effect that may be greater in nonmetropolitan areas (Manard and Lewin, 1983). On the other hand, insurance coverage was instrumental in inducing demand. In opposition to what was hypothesized for income, fees and productivity, perhaps supply mav have a positive effect on demand for only those specialties th. $t$ are heavily reimbursed.

Access. With a growth in supply, access would be expected to improve. However, Medicare and Medicaid have also improved access at the same time supply was increasing. Between 1964 and 1974 , the ratio of physician visits for the highest and lowest income groups fell from 1.19 to 0.84 (Sorkin, 1984). By 1982, 90 percent of the population had a usual source of care, 80 percent saw an MD within a given year, and the poor averaged more visits per year ( 5.9 compared to 4.7 for the average Amerıcan). Nevertheless, signs of inequity remained. A national survey showed that 24 percent of the poor still perceived that they had access problems, as did 6.2 percent of the elderly, 15 percent of blacks and 11.5 percent of Hispanics (Robert Wood Johnson, 1983).

Quality and Content of Care. Determining the association between supply and quality of care is hampered by problems inherent in the measurement of quality, especially for morbidity (as opposed to mortality) indicators. One study estimated that a 10 -percent increase in supply would decrease mortality by 1 percent (Manard and Lewin, 1983).

Virtually no quantifiable relationship exists between supply and morbidity, although one recent study noted the reduction in complications of surgery in more experienced hospitals (i.e., those hospitals that perform more surgery) (Flood, et al., 1984). As the supply of surgeons grows rapidly, rates of surgical procedures per physician can be expected to decline, especially in metropolitan areas. These declining rates mean that some physicians will likely have less experience, which, in turn, may produce a decline in gilality.

Content of care or the attributes of visits were more quantifiable than quality. Variation in content, however, was attributable more to MD training and experience than to factors that would be affected by increases in supply such as time spent with patients or the presence ot auxiliary personnel devotec tc patrent care (Cromwell, et al., 1983). Tne mportance of content of care was noted in one study which snowed that continuity of care was assoclated with fewer emergency admissions and shorter hospital stays (Wasson et al., 1984).

Cost and Expenditures. Cost differences for the same services were found Detween internal medicine and general/fanily practice, with services from internaı medicine costing more. One study found that this cost differential may amount to $\$ 38.83$ per visit. However, visit cost may not be a complete measure, because the duration of care (i.e., number of visits per condition) was greater for general/famıly practice, and this factor reduced the difference to insıgnıfıcance (Bennett, et al., 1983). The relationshıp between supply and the rise in expenditures indicated that the rate of increased spending was less than the proportional increase in supply. If any relationship existed, increased expenditures were driven by a greater use of services corresponding to plentiful supplies of physicians. Overall, insurance coverage was a more important determinant of expenditures than supply (Manard and Lewin, 1983).

## Costs and Cost Containment

Growth in nationa!. health care expenditures has moderated. Expenditures rose to $\$ 355.4$ billion in 1983 , representing a decrease in the avo: $1 g e$ annual rate from 13.6 percent between 1976 tu 1981 to 10.3 percent between 1982 to 1933 . Expenditures are estimated to increase 8 percent from 1983 to 1984, and 10 percent from 1984 to 1985 to $\$ 422.6$ billion. Pnysician services accounted for approximately 20 percent of the total, a proportion expected to hold through 1985 (Table 3-9). Fees for physician services increased at a lower average annual rate from 1981 to 1983 ( 3.8 percent) than did the CPI (4.6 percent) (Table 3-10).

The health care delivery strategies of the 1980's give high priority to cost containment. In addition to long-term approaches such as lifestyle changes, current short-run strategies have already produced the declining rates of growth in costs. Among the strategies that likely have affected or will directly aftect physicians are new dellvery organızations and physician cost containment education.

New Delivery Organizations. Alternative delivery systems emerged in the 1970's and 1980's, predominantly the Health Maintenance Organizations (HMOs) with a number of structural variations, and che Preferred Provider Organizations (PPOs), which offer services under a negotiated arrangement between províder and purcnaser. (The PPO has neither a capitation nor a prepaid feature.) HMOs have recently been classified according to sponsorship, that is, whether they are free-standing, hospital-sponsored, estatlished by a corporation for employee health care, or sponsored by an insurance carrier.

One variant of an HMO is the Individual Practıce Association (IPA), often referred to as an IPA/HMO. The IPA developed in response to competition from "closed panel" HMOs, in an effort to preserve fee-for-service practice. IPA
physicians usually continue to practice in therr own offices and are reimbursed by the IPA on a fee-for-service basis. (Financial risk to the physicians will depend in part on what percentage of their patient population is recelving care through the IPA plan.) Additionally, IPAs may engage in marketing therr services to insurance companies or corporáte entities.

PPOs, relative newcomers in the field, provide services to a specified group of patients on a negotiated fee schedule. Participating physicians (and/or hospitals) are usually reimbursed on a discounted fee-for-service basis which typically approximates $80-85$ percent of the "usual and customary" fee. Competitive Medical Plans (CMPs), also newcomers, are prepaid plans fiscally similar to HMOs.

Competition from such as urgent-care centers, doc-in-the-box and worksite clinics provides another so ve of pressure on and challenges the traditional roles of hospitals and phys:ci: $:$ To compete, hospitals are establishing HMOs and reviewing their res'... utilization. Credentialing systems and tneir interrelationships with accreditation bodies also are being pressured (National Commission, 1983).

Competition amony purchasers has spurred dusinesses to negotiate mass purchases of services and larger industries to organize their own internal health promotion and prımary care services. For many businesses, insurance companies are currently serving only as fiscal agents. Some insurance companies, however, are buying and planniny to operate their own hospital chains (Freedman, 1985).

Potential Impact on Primary Care Services. The models of health care delivery discussed above, with particular emphasis on cost containment, assign primary care pnysicians the key role of "gatekeeper." However, insurance systems historically have not emphasized reimbursement for primary care services. Preventive medicine and counseling services, c ¥ong other primary care services, are not paid under most plans, and those that are reimbursed are paid at a low level. This discrepancy is widening as the primary care physician competes with other practitioners who are able to use first-contact care as a loss leader; tne famıly physician has no offsetting high-profit services (Geyman, 1981).

Preventive Health Care Str aieqies. Health promotion and prevention of disease are thought to be signjficant means of containing costs. However, in addition to the difficulty of incorporating these services into ongoing patient care and the lack of assurance that training programs sufficiently address these areas, a dearth of cost-effectiveness evidence is frequently cited as a reason to proceed with caution. Nevertheless, certain health history questions, physical examination procedures, clinical tests and health education services have been demonstrated to contain costs (Institute of Medicine, 1978).

HCFA recognızed that insurers, including Medıcare, restricted coverage to services that treat, rather than prevent, illness. In an effort to test the efficacy and economy of coverage for preventive services, HCFA, in a recent study, is providing reimbursement for initiatives in preventive services that are not usually covered Dy Medicare (Freedman, 1985).

As part of the Rand Health Insurance Study, a smaller preventive medical care study nas been designed to determine the effect of preventive care upon
various categories of expenditures and outcomes. In 1984, the Robert Wood Johnson Foundation awarded a total of $\$ 15$ million to five cities to assist $1 n$ providing services, including preventive, in ambulatory clinics in underserved areas. HCFA provided Medicare and Medicaid waivers to allow cost-based reimbursement of all services as an incentive to use these municipal clinics. Final results will be available in 1985.

Physicıan Cost Contaınment Education. Lowerıng total hospıtal costs through physician education alone has been demonstrated to be more difficult and less promising than generally believed. Although several studies have suggested that cost containment educational interventions may have some benefit, one study demonstrated that they also have a cost. Even though cost contairunent education for physicians may be effectıve in settings where financial ard organizational incentives are present, the study confirmed substantial overuse of certain hospital services. Wıthout other cost-containing incentives, reductions of "little ticket" services may not be substantial enough to warrant the effort, especially if the impact is only temporary (Schroeder, et al., 1984).

Family Practice and Cost Contalnment. There is conflicting evidence whether or not family practitioners are able to care for numerous common illnesses for lower costs than are typical tor internists or other specialists. One study found no cost difference when case mix was controlled (Eisenberg and Nicklin, 1981); another found no substantive difference in total patient charges when total patient encounters were considered (Bennett, et al, 1983).

Others found that "family practitioners were observed as providing more well care across all visits than were internists," but they were less likely to perform diagnostic tests and ordered as many tests per patient as did internists (USDHHS, May 1984). Variations in practice of residency trained, board-certified famıly practitioners and internists in southwestern Pennsylvania corroborated earlier findings that famıly practitioners tended to rely less on $x$ rays andor lab tests but more on drug therapy than internists. Famıly practitioners treated a younger group of patients and had a hıgher incidence of acute problems and traumd than internists. Internists, $n$ the other hand, treated a larger proportion of chronically ill patients. lue patient charges of family practitioners were about one-nalf those of internists, reflecting, in part, less time spent per patient by family practitioners (Morenstein, 1984).

## Allopatnic Physicians: Geographic Distribution

Recent Changes. The distribution of allopathic physicians and population across census divisions in 1982 evidenced little change from the distributions reported earlier (USDHHS, May 1984). The distributiuns of total physicians and population were essentially simılar ('Table 3-1l). Between 1981 and 1982, the total population expanded 0.97 percent, whereas the total number of MDs increased 3.85 percent. The distribution of primary care MDs conformed slightly more to the population distribution than did the distribution of total physicians. The most notable difterence was the sligntly greater proportion of primary care physicians in the East North Central Division.

No trend or change was discernible $1 n$ the aggregate proportions of non-Federal patient care physicians in metropolitan and nonmetropolican areas frum 1970 to 1982.

Irends in the Distribution of Non-Federal patrent Care Physicians by Metropolitan Area Status

Year	Metropolitan		Nonmetropolitan	
	Number	Percent	Number	Percent
1970	217,646	85.4	37,341	12.6
1975	249,2.8	86.6	38,619	13.4
1980	312,687	86.4	49,228	13.6
1982	340,340	86.5	52,945	13.5

SOURCE: American Medical Association. Physician Characteristics and Distribution in the U.S., 1983 edition. Chicago, 1984.

The percentage of patient care physicians in metropolitan areas remained constant ard substantially in excess of the respective percentages of population. In . onmetropolitan areas, the percentage of these physicians also remained relatively stable, but below that of population. However, the gap between the percentage of physicians and the percentage of population narrowed. This latter phenomenon cannot be attriouted to a faster positive rate of growth cf physicians than population, but rather to a growing phys ':ilan supply and a decilning population.

Evidence exists that the ncreased supply of physir ans affected the geoyraphic distribution of young physicians. A larger proportion of young physicians were located inside less populat... counties than were all prysicians (USDHHS, May 1984). A contınua':ion of this trend would ultimately lower the overall percentage of physicians .a metropolitan counties. In keeping with historlcal 亡rends, more general/famıly practitioners located in less populated countres than the more specialized internists and pediatricians, yet only 31 percent of counties with fewer than 10,000 population gained any physicians, and then, predominantly only one (Langwell and Nelsun, 1984).

```
Distribution of Young a/ MDs by Specialty
 and Year of Graduation, 1983
```

Percent Locating in--

	Countres	Countres	Countres
Physician	With Less Tnan	With $10,000-$	With More Than
Category	10,000 Population	25,000 Population	25,000 Population

## Specialty

General Practice	$\ldots .7$	44.0	44.3
Family Practice	19.3	44.7	36.0
Internal Medıcine	6.3	33.3	60.4
Pediatrics	3.3	31.4	62.3

Year

1974	$1 C .2$	43.4	46.4
1975	11.9	38.8	49.3
1976	9.7	38.4	51.9
1977	9.5	39.0	51.5
1978	10.2	42.7	47.1

a/ Under age 35.
SOURCE: Mathematica Pollcy Research, Inc. "Comparatıve Evaludtion of National Health Service Corps Alumni Retained in Health Manpower Shortage Areas." Table IV.3, p. 73. November 19, 1984.

High concentrations of physicians were found in states with large populations. The District of Columbia led all of the States with a ratio of 573 physicians per 100,000 population in 1982 . The four highest states had ratios ranginy from 306 to 280; the comparable national ratio was 206, with the lowest ratios ranging down to 120 (Mississippi). Changes in the State ratios between 1980 and 1982 ranged from increases as high as 11.2 percent for Delaware to a slight decline for the District of Columbia (Table 3-12).

Famıly Practitioners. Since 1969, Federal funds have promoted a rapid e:spansion in the number of family prictitioners. One study concluded that

Family practitioners appear to locate in the more rural areas in much greater numbers than any other medical specialty, including general practitioners, heretofore the major provider of medical care in rural areas. They are also locating in nonmetropolitan urban areas to a much greater degree. Since the blas of more recent graduates would be for family practitioners to be found in the location of their residency programs .- most of which are in metropolitan areas -those differences are notable. (USDHHS, Dec. 1980)

A considerably larger percentage of the 1977 to 1979 family practitioner residen=y graduates established practices in small urban and rural towns than did other residency gradudtes. This trend may persist as reflected in a recent survey of graduates of famıly prc tice residency programs and their expected practice location cholces (Table 3-13). Of interest is comparing the population growth in areas that will experience an increased number of residency graduates if intentions materialize. The rural areas will experience a greater relative increase in these family practitioners than urban areas.

Comparison of Difterential Change Between Population and Graduates of Famıly Practice Residency Progransa/ by Area

Yearly Growth Rates (Percent)

	Residency		
Character of Area	Population	Graduates	
$1970-1980$	$1980-1984$		


Uroan	1.1	3.2	2.1
In urban areas	1.6	4.7	3.1
Outside of urban areas	-1.0	2.3	3.3
Rural	1.0	8.9	7.8

[^1]SOURCES: Americar. . cademy of Family Practice and Bureau of the Census.

Famıly practitioners appeared to be locating in both physician-short non-metropolitan and whole-county-shortage areas more than other specialists. However, the total number of graduates establishing practice in rural areas was comparatively small.

Although studies documented the increased dispersion of physicians (especially internists and general surgeons) to underserved towns (USDHHS, May 1984), the presence of a hierarchical structure also prevailed (Lawlor and Reid, 1981). Pediatricians, specialists ranked fairly high in the hierarchical structure, were generally not found in communities that lacked lower-order specialists, such as obstetrician/gynecologists or surgical specialists. Although recent data indicate that the supply of pediatricians is increasing at a faster pace than the supply of general/family practitioners, pediatricians are unlikely to migrate to rural areas in sufficlent numbers to meet the children's needs in small communities (Budetti, et al., 1982).

General/tamily practitioners had an income advantage in rural areas. Nationally, the average net income of general/family practices was the lowest of the sperialties and, contrary to the overall gain of 6.8 percent in
physician average net income, declined 4.7 percent between 1982 and 1983 (AMA, Aug. 1984). Nevertheless, general/family practitioners in rural areas had a net income advantage over their urban counterparts. Despite higher office expenses in rural areas, the number of patient visits per week was greater in these communitres. However, the highest income earners in rural areas were general surgeons. Thus, an income advantage did exist for general/family practitioners and for general surgeons practicing in rural commenicies that could attract recent graduating MDs in these specialties (White, 1984).

Impact of Physician Supply. Tnat physicians have responded to an increase in their supply by increasingly locating in less densely populated areas was establisned by several recent studies (USDHHS, May 1984). A positive correlation exists between the physician:population ratio and the movement of physicians. A.lthough important, this factor is only one determinant in physician location and diffusion. Population growth and various economic factors are also important. The factors that affect physician diffusion remain unfavoraole in many rural and urban poverty areas, which may not provide feasidle sites for private practıce.

[^2]Another study identified a substantial reduction in distance to a physician for virtually all specialty categories for people living outside of population centers of at least 25,000, which amounted to about one-quarter of the total population in 1980. It found that 98 percent of the population was within 25 driving miles of a general/family practitioner, and four-fıfths was within 20 straight-line miles of an internist, pediatrician, surgeon, and obstetrician/gynecologist. Even with the least accessible specialties, "almost three-fourths of the rural population needed to travel no more that 50 miles to reach such physicians, and no more than 5 percent needed to travel more than 100 miles." Although market forces may be efficacious over the next decade, "these forces could not be expected to increase notably the number of physicians in very sparsely settled areas" (Williams, et al., 1983).

Several recent studic lend support to the hypothesis that the diffusion process would not ameliorate physician shortages in sparsely settled areas or in rural poverty areas. Ar official in California, which ranked sixth in physicıan:population ratio, voiced concern that the "surplus of physicians may not help reduce the number of rural and urban areas in the State that are medically underserved" (Auditor General, California, 1983). Shortages were also noted in Southern States, specifically in rural and inuer city areas and in essential specialties sucn as general/family practice, psychiatry and geriatrics (Southern Regional Education Board, 1985).

Others studies concluded that "the hypotnesis that physician-saturated Standard Metropolitan Statistical Areas (S,ISAs) will provide a spillover of physicians into less populated areas has thus far mustered only weak evidence in its support" (Fruen and Cantwell, 1982). These authors found that between 1976 and 1978, non-Federal physicians moved into counties with populations of less than 25,000 slower than into counties of all other population sizes. In

$$
3-16
$$

a study of Nebraska counties, the physician:population ratio decreased only in counties with populations greater than 25,000 (Hynes and Givner, 1983).

The economic viability and population growth of areas are also important factors in physician diffusion. Citing several relevant studies, one study concluded that "... underserved areas with poor prospects for economic or population growth will not attract physicians" (Manard and Lewin, 1983).

Additionally, urdan poverty areas appear to be experiencing a reduction in physician accessibility. A study of trends in the supply and distribution of physicians in 10 selected cities found inat between 1963 and 1980, the relative increase in the number of all physicians in non-poverty areas outpaced the increase of tnose in prverty areas. The physician:popalation ratio for all MDs remained higher in the poverty areas than in the non-poverty areas Dut was related to the higher ratio of hospital-based physicians in poverty areas. The ratio for office-based physicians in poverty areas was lear than that for non-poverty areas, declining by 6.5 percent contrasted to an 1. -rease of 14.9 percent for non-poverty areas (Kindig, et al., 1984).

Area Health Education Centers (AHECS). Since their inception in 1972. AHECs have focused on altering the training of health professionals by requiring clinical training in community settings as a means of addressing problems of access to health care. In 1984, BHPr supported six new aHEC programs. Between 1977 and 1983, 12 new programs were supported. Currently, AHECs in 17 States are receiving some form of Federal funding.

In addition to their objective of improving access to care, AHECs have continued to influence the training of health professionals in accordance with national goals. For example, in order to foster tealth promotion and disease prevention, the State of Maine, in conjunction with Tufts University, trained personnet in problems of substance abuse and family violence. California estaplished a statewide network on nutrition assessment and counseling. California also coordınated with various voluntary agencies to adapt the information for Spanish-speaking populations.

In geriatrics, the University of Maryland, Baltimore Geriatric Project, initiated with Federal funds but now State-supported, sensitizes professionals to the needs of the elderiy. In massachusetts, dental students are providing treatment and oral health instruction and examinations in nursing homes and outreach centers.

In Massachusetts and New Jersey, the AHECs have also invested in computers to familiarize inner-city high school students with science and technology. These pilot investments have stimulated schools to support such activities.

AHECs have secured local financial support for their continuing efforts. For example, nurse practitioners and medical students in Colorado will continue to rotate to sites serving low-income Mexican-American families; in Connecticut, existing social services agencies have undertaken the recruicment and training of urban blacks and Hispanics into health professions; in North Dakota, telecommunications systems have been established and will be accessible to multidisciplinary health teams working in sparsely settled rural areas; and in Missouri, despite pudgetary restrictions, remote site training continues as part of the clinical experiences of all medical students.

The North Carolina Legislature annually earmarks more than $\$ 20$ million for AHEC activities; the South Carolina Legislature makes a similar annual commitmer.t. The State of Kansas decined approved Federal funds 1111982 because of the availability of State support. Colorado, I'iinois, and West Virginia are also receiving state support. In FY 1983, Masiachusetts, New Jersey and South Dakota reported a 50 -percent non-Federal fund matching; Maryland, Ohio, and pennsylvania reported a 40 -percent matching.

The Statewide Education Activities for Rural Colorado Health (SEARCH)/AHEC Program of the University of Colorado Health Sciences Center recently attempted to document the effectiveness of its continuing education and studer, preceptorship programs. Among its results were: (1) that a much larger percentage of preceptors were serving the medically indigent than were nonpreceptors, and a greater percentage reported tnat they did so at no charge; (2) the preceptor group was much more productive; and (3) the SEARCH students who recerved cinical training at community sites did better on Part II of the National Board of Medical Examiners exam than others.

National Health Service Corps (NHSC). The NHSC delivers primary care physician services by famıly physicians, internists, pediatricians, obstetrician/gynecologists, psychiatrists and emergency physicians to more than 2 million undirserved persons in more than 1,600 locations. Since the inception of the program, 13,490 persons have been awarded health professions scholarships. At the end of FY 1983, 3169 awardees had completed their obligation, and 2,865 were actively in service, equally distributed among urban and rural areas.

A total of 1,303 practitioners, the largest number ever placed at one time since the beginning of the scholarship program, began their service obligations in FY 1984. Of the total placed, 1,131 were physicians. Most of the practitioners ( 1,094 ) were assigned to the NHSC where they will serve as Federal employees or private practitioners in 49 States, Puerto Rico, the Virgin Islands, and the Trust Territory of the Pacific Islands. In addition, 209 practitioners were assigned to the Indian Health Service and the Bureau of Prisons. At the end of FY 1983, total private placements (Private Practice Option and Private Practice Assignment) numbered 1,413 of the 2,865 NHSC professionals serving in shortage areas. The NHSC is also helping organized systems of health care recruit needed providers.

In addition, the NHSC is developing a career cadre of committed individuals, who are board-certified in their specialties, to care for targeted populations for the next decade. This career cadre will staff sites which, for reasons of extreme poverty, lack of amenities, geographic isolation, or other conditions, will remain hard to serve without the assistance.

The FY 1984 appropriation for NHSC field activity was $\$ 91$ million, with an additional $\$ 6.3$ million for the scholarship fund. The number of NHSC scholarships has been reduced substantially in recent years, and a limited number of new awards are expected to be made in FY 1985. With the increase in number of health professionals throughout the country and their concomitant choice to practice in smaller communities, the need for large numbers of federally funded NHSC professionals will decrease. Nevertheless, there will remain pockets of health manpower shortages that the private sector will not adequately address.

Primary Care Health Manpower Shortage Areas (HMSAS). Tne number of designated primary care HMSAs dropped 16 percent and the number of primary care physicians needed in these areas dropped 24 percent between December 1983 and September 1984. The estimated population remaining underserved in designated primary care HMSAs amounted to 14.1 million, about 6.1 percent of the entire U.S. resident population.

Adcitional evidence points to an increase in tne number of physicians praiticing in underserved areas. The practice profile of graduates of tederalıy tunded proyrams for general internal medicine residencies at Boston City Hospital (Noble, ly85) and for residency training programs in general pediatrics in several difterent hospitals (shelov, et al., 1984) found that these graduates established practice more frequently in medical specialties of their training and located more often in high-need urban and in rural areas than graduates of other specialties. Young physicians with NHSC experience were mucn more likely to locate in rural, lower populated, poorer, medically needy counties (Langwell, et al., 1984).

Nevertheless, trie contribution of Federal programs aimed at alleviating geographic maldistribution should be seen in a larger context.

In the Nation as a whole, nearly 66,000 MDs graduated between 1974 and 1978. By 1983, less than 3,000 were practicing in a primary care specialty in a non-metropolitan county containing 50,000 or less pupulation. Ihus, in spite of the geographıc diffusion ot the expanded supply of physicians only about 4 percent of recent graduates were practicing in the 2,111 rural counties. (USDHHS, Mar. 1985)

## Osteopathic Pnysicıans: Current Supply, Specialization, Activity Status and Geographic Distridution.

Supply and Specialization. The total number of osteopathic physicians (DOs) increased from 19,686 in 1981 to 22,746 in 1984, at the same average annual rate as observed between 1975 and 1980 (Table 3-14). Approximately 90 percent were in primary care specialties (AOA, 1985). Just under 25 percent (5,613) of all DOs were board certitied, and about 60 percent of them in primary care (general practice, internal medicine, pediatrics and obstetrics/gynecology). Those certifled in internal medicine increased from 13.9 percent in 1982 to 14.8 percent in 1984 , and those certified in general practice decreased from 40.7 percent to 38.5 percent. Both of these trends have been observed since 1980. A new board of Public Health and Preventive Medicine was first listed in 1984, certifying less than 1 percent of DOs (Table 3-15).

Activity Status. The percentage of DOs engaged in office-based patient care declined slightly (from 60.7 percent in 1982 to 57.3 percent in 1984), and the percentage in training increased somewhat (from 16.6 percent in 1982 to
18.1 percent in 1984). The non-patient care category inrseased from 12.0 percent in 1982 to 13.7 percent in 1984 . The remaining categories showed little or no change (T:ole 3-16).

Geographıc Distribution. Changes in the geographic dıstribution of DOs sınce 1982 were minimal. DOs continued to be concentrated in a few States, the top five remaining Mıchıgan, Pennsylvanıa, Ohio, Missourı and Florida, and practiced in rural communities (Table 3-17). However, some changes in the
growth rates in States may reflect a change in location patterns of recent graduates (Table 3-18). Although the 3-year change in the number of all DOs was 15.5 percent, 1.1 out of the 16 States with the greatest uumber of DOs had changes greater than that average. On the other hand, Michigan, which continued to rank first, continued its downward trend in growth with a 7.4-percent change from 1981 to 1984 (Table 3-19). The geographic distribution of DOs, when comoined with that of MDs, does produce an overall physician cistribution that is more evenly distributed when compared with population.

Women and Minority DOs. As of February 1985, women DOs numbered 1,866, or 8 percent of the practicing pool, a 53 percent increase and a 2-percentage point increase over the 1983 figure of 1,219 (AOA, 1985). Additional information on specialty and geographic distributions of these physicians, and data on mincrity practicing DOs, are not available. In order to assess the adequacy of available data on DOs, the American Osteopathic Association conducted a BHPr-supported study of available data dases. They concluded that more detailed practice characteristics information and undergraduate data be collected from annual randon surveys (AOA, 1985).

## Status of Physician Labor in Selected Countries Abroad

Some Westerr. European and other developed countries, $\dot{1}$ / such as the U.S., are concerned about the 1 n jact of an expanding national supply of physicians (Table 3-20). Rising costs, coupled with the perception that phypicians are contributors, led some developed countries to implement policies intended to modify supply and specialty distribucions. These policies limit entry to medical school and/or the number of specialty training positions. However, some less-developed nations showed a relative 30 -year decrease resulting in a physician: population ratio almost $1 / 20$ that of $d \in v e l o p e d$ nations (Kindig, 1984).

The Belgium Government restricted specialty training slots, which resulted in less than 50 percent of its graduates seeking that training. West Germany limited entry to schools by a national "numerous clause." The Swedish Parliament rediced medical school positions, and France passed legislation reducing second-year enrollments (AMA, 19840; Schroeder, 1984). In the U.S., "A few specialties, notably neurosurgery, have voluntarily restricted the number of resident positions of fered nationally to limit numbers of practitioners, but they remain the exception" (Schroeder, 1984).

## Developments in Education

The expanded physician supply and escalating health care costs changed the undergraduate and graduate medi-al education environments. This section emph__zes alterations in the resources employed ir. undergraduate and graduate settings in allopathic and osteopathic schools. It discusses students, with emphasis on the participation of women and underrepresented mınorities; and sources of educational support and student assistance, with a look at indedtedness as a factor in career selections. A review of other resources includes faculty, fiscal sources, positions and programs. This section also

1/ Members of the Organization for Economic Cooperation and Development, a grouping used in the World Bank's annual World Development Reports.
includes a description of FMGs in graduate medical education, a discussion of international educational exchange and an exposition on the financing of education.

## Resources for Undergraduate Allopathic Medical Education

Institutions. As of July 1984, the number of U.S. allopathic schools remained at 127: 124 fully accredited to award the MD degree; the Universit:' of Minnesota, Duluth, fully accredited to provide the first 2 years of undergraduate medical education; the Morehouse School of Medicine, Atlanta, GA, provisionally accreditel and currently transforming from a 2- to 4 -jear program, graduating its first class in 1985 in cooperation with Emory University, Atlanta; Mercer University, Macon, GA, a 4-year program that received initial accreditation in June 1982 and is scheduled to graduate its first class in 1986. Only che Bayamon School of Medricine, Bayamon, PR, is in the planning stages (Crowley, et al., 1984).

The decline in development of new schools has been linked to an impending oversupply of physicians. As a partial consequence, a decline in the number ot scnools has been predicted by one researcher, so that by the year 2000, the number may fall below 120 (Johnson, 1983).

Of the 127 medical schools, 30 are privately owned, and the remainder pre public. The ownership of the school has been linked to the propensity for its graduates to ootain postgraduate training within the same State (Igras, et al., 1983). Others noted that retention varied by State. Furthermore, although overall within-State retention is greater for graduates of public schools, support of residency positions rather than places at the undergraduate level may be more effective at improving retention because State retention is not strongly related to the latter (Manard and Lewin, 1983).

Four schools are "nistorically black" institutions. Their viability affects overall representation of underrepresented minorities, because these schools graduate approximately one-fourth of all such students. With the possible excertion of Howard University (Washington, $D C$ ), all are in financial straits. As sources for financing medical education continue to shift to patient revenues, their financial problems are expected to increase (Hanft, et al., 1983). Thus, the plight of these institutions is especially noteworthy.

Faculty. The number of full-time faculty continued to increase, reaching 56,564 as of 1983-84, approximately 1,000 more than the year before. The full-time faculty:student ratio continued to increase in 1983-84 to 0.84 , up from 0.77 in 1979-80 and 0.83 a year Garlier (Crowley, et al., 1984). 2 / According to the most recent published information (1981), women comprised 16 percent of faculties. Although 54 percent of men hold full professorships, only 28 percent of women do; whereas two-thirds of all faculty have MD degrees, only 45 percent of women do (Higgins and Jolly, 1982). Because the numerical difference between, anders has been declining recently, and because female physicians are younger than their male counterparts, the faculty gender numerical difference may begin to diminısh.

[^3]As of 1981 , only 2.7 percent of taculty were underrepresented minority members (AAMC, Mar. 1985). Twenty-five percent of these members were women, attesting to the greater relative representation of minority women than minority men among medical school faculty. Minority faculty representation at minority schools has been declining. In 1975, olacks repiesented one-third of Howard University and Meharry Medical College (Nashville, IN) faculty, but in 1981 tne percentage had declined to one-fourth (Higgins and Jolly, 1982). Despite these declines, based on medical students' responses to career survey questionnares, the representation of women and minorities is expected to increase by the year 2000, with the percentage of women faculty antucunated to grow from 16 percent tc 25 percent (Johnson, 1983).

Applicants; Acceptance Rates, and Admission Crıteria. Student applicants may be responding to the perceived impending surplus of physicians as reflected in the continued decine in the applicant pool that first dropped significantly in 1978-79 to 36,636 from over 40,000 the previous year (Table 3-21). Rising tuitions also may have contributed to this decine. Although a slight increase was registered in 1984-85, the 1985-86 applicant pool showed a 9-percent decline from the previous year (AAMC, Mar. 1985).

Despite the decline in the number of applicants, the applicant:acceptance ratio remained relatively constant at $2: 1$ during this period (Table 3-21) However, the number of applicants may decline even more. Coupling these declines with forecasts of first-year positions, some predict a decrease in the applicant:acceptance ratio to $1.5: 1$. Others predict a maintenance of the 2:1 ratio as applicants with marginal chances of acceptance may begin to apply upon perceiving a dearth in applicants (Johnson, 1983).

It is anticipated that as the applicant pool declines and tuition increases, financial ability may become the overriding ceterminant of acceptance fruen, 1983; Johnson, 1983). Consequently, the average ability of students, as judged by grade point averages (GPAs) and Medical College Admissions Test (МСАТ) scores, may decrease. However, the scores on these measures have not decreased with the declining applicant pool experienced to date. Furthermore, although both measures are good predictors of first-year grades and NBME exam, Part I scores (Jones and Thomae-Forgues, 1984), as well as on-time graduation and academic withdrawals (Jones and Vanyur, 1984), they may not be as good predictors of clinical ability (Cuca, et al., 1976).

Also, there is little or no relationship between MCAT scores and graduation likelihood, except for extremely low scores (below 500). Time of graduation for students with "A" or "B" GPAs did not markedly differ (Johnson, 1983). Thus, the predicted slight decrease in academic ability should not markedly affect the overall quality of students. However, according to one observer, the declining applicant pool may cause withdrawals for academic reasons to double from 24 to 50 percent of all withdrawals, although overall withdrawal rates are not expected to shift markedly (Johnson, 1983). Withdrawals remained slight as of 1982-83, with 2.2 percent withdrawi g permanently.

As of $1982-83,3.3$ percent repeated the first year and 1.1 percent repeated subsequent years. By 1983-84, 3.5 percent repeated the tirst year and 1.1 percent repeated subsequent years (Crowley, et al., 1984). Nevertheless, overall first-year and subsequent-year repeater rates have climbed, primarily because of the combination of higher rates for minorities and the increase in their number, although increases were obserfoy for all ('rable 3-22).

Medical Scnool Repeaters, 1973-74 and 1982-83

Year	Pent Repeaters Percent Repeaters   First-Year


1973-74 Total	2.1	0.9
Underrepresented Minority a/	11.3	5.2
All Otner Students	1.1	0.6
1982-83 Total	3.3	1.1
Underrepresented Minority a/	13.4	5.0
All Other Stuaents	2.1	0.7

[^4]SOURCE: Association of American Medical Colleyes. Unpublished data.


#### Abstract

Enrollments. The first decline in enrollment in 37 years occurred in 1984-85. Enrollment a year earlier peaked at 67,327 but then declined to 67,016, responding to the impact of declining first-year enrollment rends since 1982-83 (AAMC, Oct. 1984). Firsi-year enrollment in 1984-85 of 16,997 was approximately 1.6 percent lower than the 17,268 peak experienced 3 years earlier (TabLe 3-23).

The drop in student enrollment, like the drop in applications and places and the rise in tuition and indebtedness, may have an impact on career choices. Although evidence to date is inconclusive, increases in indebtedness might influence students to choose the more lucrative specialties in the future. on the other hand, more students may be willing to enter prifary care specialties or practice in inner-city or rural underserved areas, unless a shortage of primary care residency slots alters their decision. The average socioeconomic background of students also may shift increasingly upward. (See section on Indebtedness as a Factor in Career Plans for more detail.)

Graduates. In the 1983-84 school year, nearly 16,400 students graduated from allopathic medical schools, an increase of about 3 percent from the previous Year (Table 3-4l). Nearly all students successfully complete their course of study. Tnus, the numbers of graduates in the next few years are anticipated to reflect the stable and s!.ightly declining trend that has been cbserved recently in the numbers of first-year enrollees.

Economic, Educational, and Hometown Background of Students. Although the average family income of medical students has always exceeded the national average (DY 76 percent in the $1950^{\prime} s$ and 57 percent ir the 1970 's), it has declined in recent years. Yet, this trend may be reversing. In 1974, approximately one-third of all applicants each came from famılies earning less than $\$ 15,000 ; \$ 15,000-\$ 25,000$, and more than $\$ 25,000$, respectively (Boerner, 1977). Acceptance rates varied slightiy by family income, with a low of 31 percent for the lowest income category and a high of 37 percent for the more than $\$ 25,000$ income category. By 1981 , however, 18.4 percent of


applicants came from families earning less than $\$ 15,000$; 30 percent, from families earning between $\$ 15,000$ and $\$ 30,000$; and almost 46 percent, from famılies earning more than $\$ 30,000$ (income categuries were expanded to account for inflation). Acceptance rates continued to vary directly with parental income, but at a more significant level: 15 percent of all acceptees came from the lowest income category and 51 percent from the highest income category (Boerner and Thomae-Forgues, 1983).

The hometown background of students has not changed appreciably over the past decade. About 60 percent of graduates in 1980 came from towns of more than 50,000 people; 71 percent of these graduates decided to practice in communities of similar size, although only 52 percent originally had so planned. Approximately 87 percent of all physicians are currently practicing in towns of that size (Jonnson, 1983).

Educational Expenses, Educational Support and Student Assistance. Between 1973 and 1982, average tuition increased 351 percent for public and 370 peicent for private medical school students. Both public and private schools consecutively raised tuition over the last 2 years. In the fall of 1984, the average tuition for State residents attending public schools was $\$ 3,516$, up 30.9 percent from $\$ 2,686$ in 1982. For non-State residents attending public schools, average tuition increased from \$5,923 to \$7,863, about 33 percenc. In comparison, the average tuition increase in private schools detween 1982 and 1984 was not as great, at about 18 percent, from $\$ 10,701$ to $\$ 12,596$ (Table 3-24).

Witn tuition and otner expenses, the estimated 1984-85 first-year expenses for State residents was $\$ 10,866$ compared to $\$ 15,213$ for non-State residents in public schools. The average tirst-year expenses in private schools were $\$ 21,024$ (Table 3-24). The net change for all first-year expenses over the last 3 years was 12.7 percent for residents attending public schools in their home State, 18.1 percent for nonresidents of public schools, and 15.2 percent for private school students (AAMC, Feb. 1985).

The school reliance upon revenue from tuition and fees historically has been limitea. However, between 1980-81 and 1981-82, tuition revenue increased from 2.8 percent to 3.2 percent of total revenues in public schools (and held at 3.2 percent in 1982-83) and from 8.7 to 9.2 percent in private schools between 1980-81 and 1982-83. Uverall, tuition and fees accounted for 5.4 percent in 1980-81, 5.7 percent in 1981-82 and 5.9 percent in 1982-83 (AMA, Sep. 1984).

Although the costs of medical education have continually increased over time, financial assistance to students declined by about 6 percent in 1982-83, then rose by more than 10 percent in 1983-84, but fewer students received financial aid in both years. Students obtained $\$ 486$ million in financial assistance, an increase of $\$ 46$ million or 10.5 percent over the 1982-83 amount. Awards increased to 68.8 percent of enrolled students from 67 percent the year before, but from 78 percent in 1981-82 (Table 3-25).

In 1983-84, changes were noted in the sources and amounts of available finansial aid. While total scholarship funds continued to drop, dy $\$ 12.6$ million or 15.3 percent from the $1982-83$ amount, $\$ 50.1$ million more was awarded in loan funds, a 17.7-percent increase from 1982-83. The principal causes of the increase in the amount of ald dvallable in 1983-84 were a 5.9 -percent ( $\$ 12.6$ million) increase in the Guaranteed Student Loan (GSL)

Program and a $\$ 28.4$ million increase in allotments for Health Education Assistance Loans (HEAL). HEAL loans have a relatively high rate of interest and irıcreased 56.3 percent in $1983-84$ and 50 percent in 1982-83 compared to more than 100 percent in 1981-82. This decline in the rate of increase indicates that students may have chosen other financing options (Table 3-25).

The NHSC scholarships continued to decrease, registering a 61.3-percent decline in 1983-84, the product of an ongoing phase-c. ${ }^{+}$of the scholarship program which began in FY 1983 by eliminating new scholarship awards.

## Indebtedness as a Factor in Career Plans

Two alternative hypotneses have been given to explain the relationship between Indebtedness of students and their future career decisions: (1) high indebtedness will motivate students to choose one of the higher-paying specialties and practice in large metropolitan areas; (2) high indebtedness mıght tend to motrvate many to select a specialty requiring minimum residency training, such as one of the primary care specialties. An aAMC study of 1974-75 graduates found that students with the largest amount of debt and those planning to practice in an underserved area tended to be women, minority group members, married with children, from small towns or rural areas, and from lower income families. This study soncluded that career choice was more closely related to a student's general background than to the degree of anticipated indebtedness (Mantovani et al., 1976).

Mean Debt ot U.S. Senior Medical Students for All, Public, and Private Schools, 1982-1984

19821983 Percent Change

	1982	1983	1984	Percent Change 1982-1984
Ail Schools	\$21.051	\$23,047	\$26,496	25.9
Public Schools	18,994	20,249	22,655	19.3
Priv ${ }^{\text {te }}$ Scnools	24,214	26,535	29,522	21.9
SOURCE: Associa of Student Progr	f Amer 1 Februar	Colle	lished	a. Division

An increase in mean debt frum feaerally subsidized loan proyrams (1.e.. GSL, NDSL and HPSL) had no effect on the probability of becoming a primary care physician for whites, but increased this probability for nonwhites. Regardless of race, though, the higher the level of HEAL debt, the lower the probavility of selecting a primary care specialty (Bazzoli, 1984). An AAMC study of 1978 through 1982 graduates reported that there was a slight tendency for more heavily indebted seniors to select higher-paying specialties. However, the findings suggested that gender, marital status and attendance at a private schoul were signiticantly more powerful predictors of a primary caro or non-primary care specialty choice than indebtedness.

This study also found that indebted studonts witn a preference for practice in smaller towns had the lowest mean debt, whereas those with higher debts opted for large cities or the suburds, and that scholarship reciprents tended to have larger debts than nonrecipients despite their scholarships.

$$
3-25 \quad 67
$$

Among underrepresented minorities, mean debt levels were nigher than those of both other minorities and nonminoritits between 1979 and 1981. However, in 1982 the mean deot level for underrepresented minorities dropped below that of nonminorities and approximated that of other minorities whose debt levels had continued to rise. This phenomenon was par mally explained by the fact that 1982 graduates were the first students to ieceive EFN scholarships and tnat NHSC scholarship awards peaked during tne 1978-79 and 1979-80 academic years (Jolly, et al., 1984).

A BHPr-supported study oy the AAMC of the 1983 graduating class showed that mean debt levels of indebted underrepresented minorities in private schools were lower than those of both other minorities and nonminorit es. However, for publ'c school students, other minorities had the lowest debt level. In both puanac and private schools, scholarship recipients continued to have higher mean debts and, among them, underrepresented minorities had the lowest mean debt. Among students who did not receive a scholarship, other minorities had the lowest mean debt.

This study also found that mean debt was $\$ 8,000$ lower among under represented minorities and $\$ 4,000$ lower among nonminority students attending private schools who preterred to practice in towns with populations of 10,000 or fewer residents. No substantial differences were noted between debt level and nractice site preference for public school students.

Finally, the study revealed that a higher proportion of scholarship recipients were in debt compared to nonrecipients, 87 versus 80 percent. But, the dollar amounts of federal scholarships (about 30 percent. of all scholarships awarded) were substantially greater than State and other types, leaving Federal scholarship recipients less in debt. If Federal scholarship recipicnts uere not included in the caszulation of mean debt, the actual amount would be much higher than the mean of $\$ 23,647$ obtained for all indebted seniors.

Allopatnic Medical Echools: Acceptance, Enrollment and Socioeconomic

## Background of Women

Applicants. Representation of women continues to grow. Although the total number of applicants to medical school began to derline in 1982, the number of women declined less than the number of men, so that the percentage of women applicants increased from 32 percent in 1981-82 to 35 percent in 1984-85. However, female applicants declined by 8.0 percent in 1985 and males by 9.7 percent. Females still represented about 35 percent of the pool (AAMC, Mar. 1985).

Slight genser differences existed in the percentage of accepted applicants. Approximately 46 percent of women applicants and 49 percent of men were accepted each year. There were also slight ditferences in the academic ability of female and male students. As of 1976 , women averaged 17 points higher on the verbal component ot MCATs, but 4 to 32 points lower on the other subtests. These results represented a continuation of a two-decade trend which was also reflected in 1977-82 new MCAT scores (Johnson, 1983). Between 1977 and 1982, women scored equal to or higher than men on the reading skills component of the MCAT and as much as 1.5 points lower in the 15 -point science scale. For 10 years before 1982, undergraduate GPAs of women accepted had been equal to or slightly higher than those of accepted men. Attrition rates between the sexes have also been similar.

Enrollment. The number of new women enrollees stabilized or slightly increased in the lan's, whereas that of men slightly decreased each $\quad$ car. As a result, women have made gains in new enrollment representation, increasing from 31.7 percent in 1982-83 to 33.6 percent in 1984-85 (Table 3-23).

The success observed for women appilcants and first-year enrollees is also evidenced in total enrollment data. In 1984-85, the percentage of women medical students approached one-tr. - d of the total (32 percent), an increase from 29.4 percent 2 years earlier (Table 3-23,.

Socioeconomic Background. Based on data available for first-year students in 1981, it appeared that the background of women applicants and accepted applicants was similar to that of men. The largest percentage of applicants and accepted students came from families with incomes of $\$ 30,000$ or more. Both the male and female percentages of accepted applicants exceeded those respective percentages of all applicants only for those from ramillies in the highest income category (Boerner, et al., 1983). Thus, it appeared that the trend toward increasing average parental income of medical students was similar - ir the genders.

Allopathic Medical Schools: Acceptance, Enrollment, Selection and Retention, and Socloeconomi二 Background of Underrepresented Minorities

Applicants. Although gains have been observed for women, the underrepresented minorities have not faired as well, except: that underrepresented minority applicants rose from 9.6 percent of all applicants in $1981-82$ to 10 percent in 1984-85 (Table 3-26). This representation declined by 7.8 percent in 1985 (AAMC, Mar. 1985.).

Despite the above, underrepresented minorities continued to have lower acceptance rates than the national average, holding at approximately 40 to 43 percent for the past 10 years, whereas the percentage among all applicants grew from 35 percent to 48 percent over that same period (Table 3-26). Represent nation was particularly low for blacks, as measured by ne numerical requirement of a fourfold increase in the entering class size to reach black physician:black population parity by the year 2000 if present acceptance rates continue (McDonald, 1982).

Selection and Retention. Minority students continued to have substantially lower GAs and MCAT scores than the average student, although the gap has recently decreased. Average science scores of blacks rose . 6 points retween 1972 and 1982 compared to a 30 -point increase for whites, and biology scores on the new MCAT rose 0.5 points for blacks and 0.4 points for whites (Johnson, 1983).

The GAs of under represented minority students remained lower, but increased faster over time.

# Mean GPA of White Americans and Underrepresented Minorities, 

 1973 and 1982 Enterıng Classes| Group | 1972 | 1982 | Percent Change 1972-1982 |
| :---: | :---: | :---: | :---: |
| White Americans | 3.43 | 3.55 | 4.4 |
| Under represented Minorities | 2.86 | 3.08 | 7.7 |
| Black Amer icans | 2.79 | 3.04 | 9.0 |
| Native Americans | 3.16 | 3.16 | 0.0 |
| Mexican Americans | 3.03 | 3.18 | 5.0 |
| Mainland Puerto Ricans | 3.07 | 3.16 | 2.9 |

SOURCE: , inson, D.G. Physicians in the Making: Personal Academic and Socioeconomic Characteristics of Medical Students from 1980 to 2000. San Francisco, 1983.

Attrition and repeater rates differed between underrepresented minorities and o,hers. Underrepresented minorities experienced higher attrition rates, and these rates varied by gender. Although only about 2 percent of all students withdrew, regardless of gender, 7 percent of underrepresented minority women, and 11 percent of urderrepresented mınority men, witharew (Jonnson, 1983).

Furthermore, underrepresented minorities showed an increase in first-year repeater rates. In 1973-74, 12.1 percent of blacks repeated the first year, compared to 1.1 percent of not underrepresented minorities. This percentage for blacks grew to 17.3 percent oy $1980-81$, but decreased to nearly 16 Jercent in 1982-83 (AAMC, Feb. l985). A study of the 1977 entering class revealed that the graduation rate for underrepresented minorities was lower than that for whites ( 93 versus 98 percent), and their percent taking five or more dears to graduate was much greater ( 16 versus 3 percent) (MacDougall, 1984).

Because poorer academic background may be partially responsible for the difference in academic success detween underrepresented minorifies and utners, many schools have installd retention activities. AAMC recently evaluated one federally funded program, the Health Career Opportunities Program (HCOP), (MacDougall, 1984). Results indicate that totally HCOP-funded schools experienced slightly lower witndrawal rates and less of an increase in repeater rates. Totally HCOP-funded schools did not txhibit a declining trend in graduation rates compared to periodicaily HCOP-funded and other schools. The differences not only may be attributable to degree of HCOP funding, but also to institutional commitments.

Enroliment. Representation of underrepresented minorities among first-iear enrollments stabilized at slightly less than 10 percent since 1981-82 because, although tneir application rates increased, thoir acceptance rates tell delow those of others (Table 3-27). Underrepresented minorities also stabilized at about 8.5 percent of alf enrollees (Table 3-28).

In some measures of enrollment activity, minority women appeared to do better than non-minority women. Approximately 40 percent of minority students were women, whereas less than one-third of non-minority students were women.

Sucioeconomic Background. Data on the parental income of first-year students by underrepresented minority status are available for 1981.

Parental Income of All Medical School Applicants and Accepted Applicants by Underrepresented Minority Status, 1981 (Excludes those witnout Income Data) a/						
Applicants	Number	Percent	Number	Percent	Number	Percent
All	$\begin{gathered} 4,594 \\ (1,883) \end{gathered}$	$\begin{gathered} 18.4 \\ (15.3) \end{gathered}$	$\begin{gathered} 8,968 \\ (4,192) \end{gathered}$	$\begin{gathered} 35.9 \\ (34.0) \end{gathered}$	$\begin{aligned} & 1 i, 405 \\ & (6,254) \end{aligned}$	$\begin{gathered} 39.0 \\ (50.7) \end{gathered}$
Whites	$\begin{gathered} 2,680 \\ (1,150) \end{gathered}$	$\begin{gathered} 23.2 \\ (11.4) \end{gathered}$	$\begin{gathered} 7,180 \\ (3,409) \end{gathered}$	$\begin{gathered} 26.7 \\ (33.8) \end{gathered}$	$\begin{gathered} 9,880 \\ (5,540) \end{gathered}$	$\begin{gathered} 50.1 \\ (54.9) \end{gathered}$
Underrepresented Minorities	$\begin{aligned} & 1,102 \\ & (440) \end{aligned}$	$\begin{gathered} 43.3 \\ (38.1) \end{gathered}$	$\begin{gathered} 871 \\ (409) \end{gathered}$	$\begin{gathered} 34.2 \\ (35.4) \end{gathered}$	$\begin{gathered} 574 \\ (306) \end{gathered}$	$\begin{gathered} 22.5 \\ (26.5) \end{gathered}$
Blacks	$\begin{gathered} 826 \\ (305) \end{gathered}$	$\begin{gathered} 43.9 \\ (37.7) \end{gathered}$	$\begin{gathered} 642 \\ (282) \end{gathered}$	$\begin{gathered} 34.1 \\ (34.8) \end{gathered}$	$\begin{gathered} 415 \\ (223) \end{gathered}$	$\begin{gathered} 22.0 \\ (27.5) \end{gathered}$
Americans Indians or Alask an Natives	$26$   (7)	$\begin{gathered} 24.3 \\ (\mathrm{i} 7.0) \end{gathered}$	$\begin{gathered} 37 \\ (17) \end{gathered}$	$\begin{gathered} 34.6 \\ (41.5) \end{gathered}$	$\begin{gathered} 44 \\ (17) \end{gathered}$	$\begin{gathered} 41.1 \\ (41.5) \end{gathered}$
Mexican-Amer icans	161   (86)	$\begin{gathered} 40.9 \\ (44.1) \end{gathered}$	$\begin{aligned} & 143 \\ & (84) \end{aligned}$	$\begin{gathered} 36.3 \\ (43.1) \end{gathered}$	$\begin{gathered} 90 \\ (50) \end{gathered}$	$\begin{gathered} 22.8 \\ (12.8) \end{gathered}$
Puerto Rican Mainland	$\begin{gathered} 89 \\ (42) \end{gathered}$	$\begin{gathered} 54.6 \\ (50.0) \end{gathered}$	$\begin{gathered} 49 \\ (26) \end{gathered}$	$\begin{gathered} 30.1 \\ (31.0) \end{gathered}$	$\begin{gathered} 25 \\ (16) \end{gathered}$	$\begin{gathered} 15.3 \\ (19.0) \end{gathered}$

a/ Numbers in parentheses are the acceptance numbers and rates.
SOURCE: Boerner, R. and Thomae-Furgues, M. "Datagram: Farental Income of 198.1 First-Year Medical Schoul Applicants and Accepted Students." Journal of Medical Education 58:829-831, October 1983.

The largest percentages ot applicants and accepted applicarts among underrepresented minority students came from the lowest parental income categury, and the lowest percentayes came from the highest incore category. The exception is the American Indian category, in which the largest percentage t app!icants came from the highest parental income group. These data lend support to the expectation that the increasing cost of medical education may adversely affect representation or underrepresented minorities.

Applicants. Only 13 of the 15 schools of osteopathic medicine reported to the Aner ican Association of Colleges of Osteopathic Medıcine Applicatıon Service (AACOMAS) in 1983-84. For the 1983 entering class, AACOMAS processed 15,171 applications from 4,051 applicants for a ratıo of 3:7. Applicatıons and applicants both rose 3 percent from 1982. However, the number of applicants has risen only slightly since the mid 1970 's. The ratio of applicants to first-year seats ( 1,333 ) in the AACOMAS reporting schools declined sligntly from 3.6 to 3.0 in 1983.

For the first tıme, the number of female applicants rose above 1,000 , representing 27 percent of all applicants, up from 24.6 percent in the previous year and 14.5 percent in 1976-77 (Table 3-29). Similarly, minority applicants rose to 530 or 13 percent of all applicants, up from ll.l percent in the previous year and 4.5 percent in 1976-77. Underrepresented manority applicants increased from 294 ( 7.5 percent.) to 359 ( 8.9 percent), up from 106 or 2.9 percent in 1976-77. A1l ethnic grodps shared in the increase; the greatest numerical increase, however, was registered among black Americans (Table 3-30).

Enrollmel: :- In 1982, total enrollment in all 15 osteopathic schouls continued to climb io 5,822, an almost l0-percent increase over the previous yedr, the greatest rase since 1974. First-year enrollees numbered 1,682 , 6 percent higner than the previous year (Table 3-3l).

The number of women enrolled in the freshman class in 1982 rose to 428, for the first time representing more than 25 percent of that class. The 1,317 women enrolled 1 , all classes represented 22.6 percent of the student body.

Aithough minority representation in the freshmen class leveled off at 6.6 percent over the 2 -year period ending 1981 , it rose to 7.6 percent in 1982. First-year enrollment of underrepresented minorities (i.e., blacks, Hispanıcs and Amerıcan Indians/Alaskan Natives) grew as a percentage of all freshmen, but not as substantially as the growth in enrollment of Asian-American/Pacıfıc Islanders. Of underrepresented minorities, black Americans continued to represent a plurality at 2.3 percent, despite a sıgnificant growth in the number of Hispanics (Table 3-32).

Attrition. Although withdrawals from osteopathic schools have been small, the percentage has increased steadily. In 1982-83, 2.1 percent of the studer's withdrew or sere dismissed, with the major reason cited as poor academic standing. This percentage was up from l.3 in 1979-80 and 1.7 in 1981-82.

Graduates. More physicians by far graduated in 1983 than in any previous year. The 1,317 . graduates represented a 30 percent increase over the previous year. Because student attrition remained only 2 percent of enrollment (although attrition increased during the past 3 years), the resultant number of graduates for the next few years is expected to increase significantly, reflecting the enrollment increases. However, the schools expect tnei. freshman classes to stabilize at a total of 1,700 . The 261 women graduating in June 1983 accounted for nearly 20 percent of that class (Table 3-31).

Educational Backyround of Accepted Applicants. The educational background of students has remarned relatively constant. The mean GPA dropped only slightly from 3.26 to 3.23 , ana the MCAT average range for the scrence portion sidened slightly.

Educational Expenses. Students' educational expenses continued upward in both private and public osteopathic schools in September 1982. The total expense in private colleges rose by 12 percent from the previous year to a level of $\$ 18,700$. In contrast, expenses for $1 n-S t a t e$ residents $1 n$ public schools averaged $\$ 9,200$, down from $\$ 9,900$, and about half as much as in the private schools. More than half of all students were enrolled in their own State.

Fourteen colleges reported tnat their 5,428 students received nearly 1,600 scholarships, down 6.5 percent from the previous year. Of this number, the Armed Forces provided 44 percent of the scholarships, up from 42 percent, the NYSC provided 16 percent, down from 23 percent; and the States provided 15 percent, up from 10 percent. One-fourth of the scnolarsnips, as in the previous year, were contributed by csteopathic associations and other organizatiors. Currently, the Association of Amerıcan Colleges of Osteopathic Medircine is conducting a BHPr-supported study to determine the impact of indebtedness on the career chorces of osteopathic physicians.

Faculty. During the 1982-83 school year, there were 2,911 faculty members amony the clinical science staft of the 14 reporting colleges, constituting 90 percent of the total. An additional 322 members were engaged in the basic scrences. Of the total faculty of 3,233, a slightly higher figure than in th. previous year, 36 percent were working on a part-time basis and 38 percent were volunteers. Of the full-time faculty members, 66 percent were engaged in the clinical sc ences, down from 88 percent in the previous year, and 34 percent worked in the basic sciences, up from 12 percent. Women constituted 7 percent of the science faculty. Just under 4 percent of the faculty for whom etnnic background was reported were minority members.

Revenues. Hospitals and clinics contributed 22 percent of all revenues for the total of all colleges, considerably down from last year's 38 percent. State appropriations amounted to 32 percent of all revenues, up from 25 percert. Tuition and fees rose from 20 percent, providing 29 percent of the school revenues. Other sources, accounting for 7.8 percent of all reported revenues, were from private gifts, nedical practice plans, parent school appropriations, sales and service of educational activity, and endowment income.

Reports from 13 colleges indicated that they received $\$ 9.6$ million in grants and contracts in 1982-83, 14 percent more than they received in 1981-82, but conslderably lower than amounts reported for tne 2 previous years. Of the revenue received in 1982-83, 56 percent continued to come from the federal Government; 30 percent from State Governments, up from 21 percent, and the remaining 14 percent from foundations, down from 24 percent.

Graduate Allopathic Medical Education (GME)
The tactors that effect GME have important implicatiors for the future profile of medical specialty practice. The discussions and data presented pertaln to residency programs ascredıted by the Accred..tation Cour.っil tor Graduate Medical Education (ACGME).

Institutional Developments: The ACGME. In 1982, the ACGME 1mplemented several substantial changes in the standards for GME. A new document, "Essentials of Accredited Resıdencies in Graduate Medical Education," set forth the general requirements for accreditation of any training program. Flexiole first-year programs (those sponsored by at least two accredited residency programs) were renamed "transitional programs." These programs were structured for experience in several specialties before undertaking further training in a single specialty. Also, residency programs in emergency medicıne were accredited for the first time.

Characteristics of Residents. As of September 1, 1984, there were 74,495 residents on duty in 4,811 accredited programs, representing a 5.6 percent increase over the number of trainees 2 years previously and nearly a 50-percent increase since 1970-71 (Table 3-33). As a result of the growth in the number of USMGs, more physicians, particularly women, continued to pursue specialized traınıng. The proportion of Foreign National FMGs (FNFMGs) continued to decline, whereas the number of USFMGs increased (AMA, 1985b).

In the 1984-85 academ $\perp$ y year, near 1 y 43 percent ( 45 percent in 1982-83) of all residents were in training programs in internal medicine, general/family practice and pediatrics. If onstetrics/gynecoloyy is included, the percentage rises to 49 percent, in contrast to only 26 percent (or 33 percent if obstetrics/gynecology is included) in 1970. Between the mad-1970's and 1984, the percent of growth among the general/family practice and pediatric specialties stopped, whereas the specialty of internal medicine showed silght growth up until 1981, when it also tapered.

Sixty-three and one-halt percent of USMGs matched into internal medicine, general/family practice, pediatrics and obstetrics/gyneculogy programs, with internal medıcine leading at 36.3 percent 'AAMC, Mar. 1985). Among new 1984 residents in their first postgraduate year (PGY-1), 57 percent ( 11,177 of 19.539) were training in general/famıly practice, pediatrics and internal medicine, only a slight increase in percentage since 1982. rowever, this number is not a predictor of future primary care physicians in these specialties. Internal medicine, and to a far lesser desree, pediatrics, are poth primary care and subspecialty training programs.

More than half of recent internal medicine residents entered subspecialty tralning. Althougn this rate was lower than the 80 percent rate in the early 1970's, a continuing increase in the ratio of practicing subspecialty internists to general interniscs nas been pcedicted by one observer (Schleiter and Tarlov, 1983). Internal medicine programs also played an increasingly larger role in the general education of physicians who ultimately specialize in other fields; about 38 percent cf 1981 first-year internal medicine trainees ( 3,000 of 8,000 ) were fulfilling prerequisites for other specialiy programs (Schleiter and Tarlov, 1983).

By 1984-85, more than 25 percent of residents were women. Patterns of specialty choice among female residents, like those ot their male counterparts, changed. Currently, larger proportions of women were specialıing in internal medicine ( 24 perient) and pediatrics ( 15.4 percent), and relatively smaller proportions were in general/family practice
( 9.6 percent) and psychiatry ( 9.0 percent) than observed in the mid-1970's. Although the proportion in psychiatry derıined, it still remained a specialty of preference (AMA, 1985b).

Distribution of Residents by Country of Medical Education, Sex, and Race, 1970, 1976 and 1984

	1970		1976		1984		Pescent Change 1970-1984
	Number	Percent	Number	Percent	Number	Percent	
FMGs	12,943	32.8	14,933	25.8	13,337	17.9	3.0
USMGs/CMGs ${ }^{\text {a/ }}$	26,520	67.2	43,039	74.2	61,158	82.1	130.6
Women	3,929	10.0	8,416	14.7	18,603	25.0	373.5
Black s	742	1.2	2,242	3.9	3,506	4.7	372.5
All Residents	39,463	100.0	57,972	100.0	74,495	100.0	88.8

a/ Unitea States Medical Graduates/Canadìan Medıcal Graduates.
Source: American Medical Association. Directory of Approved Internships and Ṙsidencies, 1971-72. Directory of Accredited Residencies, 1977-1978. 1985/1986 Dırectory of Residency Tralning Programs. Chicago, 1984.


#### Abstract

Information on the ethnic background of residents showed that in 1984, the USMG/CMG black residents representec about 5 percent of all USMG/CMG residents. In contrast, black residents composed slightly more than percent of all residents in 1970. The patterns of specialty choıce among black residents between 1970 and 1984 were cenerally congruent with those of all residents; the percentage trained in general/family practice, internal medicine and pealatrics increased until 1982, and then leveled. During this period, the proportion trained in the surgical specialties decreased and leveled. In 1970, 1974, 1982, and 1984, 50 to 60 percent of all black residents were trained in the four specialties of internal medicine, pediatrıcs, general surgery, and obstetrics/gynecology.

Osteopathic Graduates in ACGME Programs. As of 1984, 1,133 graduates of osteopathic medical schools were in ACGME-accredited residency programs, a slignt increase from the 1982 figure of $1,04 C$. Tnese residents were most frequently found in the specialties of internal medicine, family practice, obstetrics/gynecology, pediatrics, and psychıatry (AMA, 1985b). Data for 1985 trom the National Resident Matching Program (NKMP) reflect continuing increases in the number of osteopathic graduates applying for allopathic trainıng positions, but continuing decreases in the percentage of those who $m a^{+}=n$.


Avdilability of GME POSiticns. The number of accredited programs increased from 4,573 in 1982 to 4,811 in 1984. This increase included recently accredited subspecialty programs in vascular surgery, neonatal-perinatal medicine and nematology. The total number of residency positions also Increased, from $72,{ }^{\circ} 29$ in 1982 to 75,084 in 1984 (AMA, 1984c). The projected number of positions for July 1985 (adjusted to include programs tat did not respond to the Octoder 1984 survey) was 78,882 . About 21,200 of these
positions were for PGY-1 (AMA, 19850). Pruyrams and pusitions have been added for emergency medicine and anesthesiology, wnich requires an additional (clinıcal) year.

The number of USMGs has been projected oy BHPr to increase until 1986 and plateau at about 17,000, and most will enter GME. Historically, the number of offered entry-level positions has exceeded the number of USMGs. However, this margin narrowed quickly in 1984 to about 3,700; the number of entry-level positions offered was 20,411 for about 16,700 USMGs (AMA, 198,4c).

Between 1982 and 1984, the number of projected PGY-1 positions increased. About 3 percent of 1984 projected positions were withdrawn, more than two-thizds before the matching date. Internal medicine, pathology and radiology programs accuunted for 56 percent of all positions withorawn. The primary reasons cited were financial ( 25 percent), the absence of suitable candidates (12 perient), and positions were filled by PGY-2 appilcants (46 percent) (AMA, 1985b; Crowley, 1984).

NRMP data reflect an imbalance between entry-level positions (regardless of whether determined by the AMA $0^{-}$the NRMP) and the number of applicants. In 1985, 28,454 persons appiled for 18,535 positions for the 21,195 PGY-1 positions the AMA determined were dvailable). Applicants for 1985 included approximately 21,511 graduates of Liaison Commıttee on Medical Education (LCME)-accredited schools, 219 USFMGs, 407 U.S. Fifth Pathway graduates and 6,943 FNFMGs.3/ USMGs continued to match at more than 90 percent, but for the fourth year, YMG rates continued to decline. The USFMG matched rate dropped to less than 40 percent from 44 percent the previous year and 68 percent in 1981 , and the FNFMG rate dropped to less than 22 percent from the 45 percent in 1981 (AAMC, Mar. 1985).

Economic Environment. The economic environment of residents has changed; the rapid increases in resident salarıes of the 1970's has moderated. Therr stipends have not kept pace with inflation as moderated by the CPI. Nevertheless, according to a recent study, their most prevalent problems are not financial, but educational. They work long hours, spending more than 75 percent of their time in patient care. The study concluded that these activities demonstrate their dual role--students as well as employees, and emphasize that financial hardships are accepted as the price for attaining educational goals (Hough, 1985).

[^5]Since 1981-82, the numoer of accredited hospitals providing rotating internsnips increased. Mıchigan, Onıo and Pennsylvania continued to train the laryest percentage of interns (45 percent).

Summary of Intern Training, 1981-82 to 1983-84
Number of
AOA-Accredited Number of Number of Hospitals Intern Progralas Interns in Programs

	Hospitals	Intern Prograns	Interns in Programs
$1981-82$	154		
$1982-83$	150	101	1145
$1983-84$	157	107	1218
		109	1313

SOURCE: Amerıcan Usteopathic Assuciation. Yearbook and Directory of Osteopathic Physicıans, 1984-85, 76th edition. Chicago, 1984.

The number of residency positions and residents in AOA-approved osteopathic programs also increased since 1981-82.

	Summary of Residency Trainıng, 1981-82 to 1983-84		
	Number of Accredited Programs	Number of AOAApproved Positions	Number ot Residents
1981-82	456	1547	783
1982-83	479	1600	995
1983-84	475	1688	1040
SOURCE: American Osteopathic Association. Yearbook and Directory of			
Osteopathic Physicians, J984-85, 76th edition. Chicago, 1985.			

The primary care specialties of general/family practice, internal medicine, obstetrics/gynecology, and pediatrics accounted for 43.3 percent of all residents in approved osteopathic training programs in 1983-84 (Table 3-36).

## FMGs in Graduate Medıcal Erfucation

Between September 1983 and 1984, tne percentage of FMG residents continued 1 ts small but steady decline since 1981, even though the absolute number increased slightiy, Despite tnis uverall percentage decline, the number of USFMGs continued to increase substantially, constituting the majority of FMG residents in 1984, up from nearlv 40 percent in 1980 (AMA, 1985b).

FMGs in Residency Programs by Citizenship, 1980-81 to 1984-85

Academic Year	All FMGs		U.S. Citizens		Forelgn Nationals	
		Percent of		Percent of		Percent of
	Number	All Residents	Number	All FMGs	Number	All FMGs
1980-81	12,078	19.8	4,790	39.7	7,288	60.3
1981-82	13,194	19.4	5,838	44.2	7,356	55.8
1982-83	13,123	19.0	6,388	48.7	6,735	51.3
1983-84	13,221	18.4	6,990	52.9	6,231	47.1
1984-85	13,337	17.9	7,314	54.8	6,023	45.2

SOURCES: American Medical Association. Directory of Residency Training Programs, 1980/81, 1981/82, 1982/83, 1983/84, 1984/85. Chicago.

The number of USFMG and FNFMG residents in PGY-1 portend that the percentage of all USFMGs in training will continue to increase at least in the short run. Of the 3,007 PGY-1 FMGs in $1984,60.9$ percent $(1,831)$ were USFMGs and 39.1 percent ( 1,176 ) were FNFMGs (AMA, 1985b). However, this PGY-1 percentage for USFMGs has leveled since 1983, suggesting that their future total representation may also level.

The number of FNFMGs applying for the NRMP increased by 312 p.rcent between 1981 and 1984 to a level of 7.124, and the number of USFMGs applying increased by 169 percent trom 1,241 to 3,342 . These figures reflect both a growiny number of repeat applicants not able to find positions and use of the matching program by FMGs who previously chr - - other patns to locate positions (Stimmel and Graettinger, 1984).

The number of FNFMG applicants grew faster than positions available to them, resulting in their declining match rate. Although USFMGs match at a higher rate than FNFMGs, thelr applicant growth had also outpaced position growth as evidenced in their match rate decilne (Craettinger, 1984). In 1983, an estimated $i 8$ percent of USMGs, 64 percent of USFMGs, and 16 percent of FNFMGs obtained PGY-1 positions outside the match (Crowley, 1984). Although the number of FMG applicants has increased, as has the number of those obtaining positions outside the match, their participation in GME has not increased; however, the USFMG proportion has increased.

The number of exchange or temporary visitor physicians applying for U.S. residency positions continued to be impacted by the entry restrictions found in Public Law 94-484 and its amendments. The Educational commission for Forelgn Medical Graduates (ECFMG), sponsoring the largest number of new-entrant FMGs $(2,900)$ in 1973-74, sponsored only 598 physicians in 1982-83 (ECFMG, 1983).

It the future number of avallable positions does not increase as fast as the number of FMG applicants, some FMGs will not secure residency positions in the U.S.; thus, the pol of physicians with neither residency training nor licenses to practice is also likely to increase (Stimmel and Graettinger, l984). This shortage may be especially acute for FNFMGs,
although recent prellminary data from the Immigration and Naturalization Service indicate that the number of permanent immigrant FNFMGs has declined.

Location of Undergraduate Medical Education of USFMGs. The ECFMG is engaged in a comprehensive longıtudinal study of all FMGs who took the Commission's initial certifying examination from 1969 to 1982. The number of U.S. national candidates rose from 337 in 1969 (less than 3 percent of the total) to 2,846 in 1982 (more than 20 percent of the total)--a greater than sevenfcld increase. During this period, medical schools in 79 different countries provided undergraduate instruction to more than 17,500 candidates. Mexico and the Doninican Republic together tranned more than half, and three Caribbean countries, Domınıca, Grenada and Montserrat--undeveloped as sources of medical education less than 5 years ago--provided instruction for 1,154 candidates (1f 6 percent) (Dubiln, et al., 1984).

Number of U.S. National Candıdates Initiating ECFMG Examination(s) by Leading Countries of Medical Education, 1969-1973, 1978-1982, and 1969-1982						
	1969-		1978-		1969	982
	Average   Per Year	Percent	Average   Per Year	Percent	Total	Percent
Mexico	149	29.9	804	37.4	6,901	39.1
Domınican Repuolıc	4	0.8	524	24.4	2,862	16.2
Grenada	-	-	106	4.9	532	3.1
Montserrat	-	-	89	4.1	446	2.5
Domınica	-	-	35	1.6	176	1.0
74 Other Countries	345	69.3	593	27.6	6,725	38.1
Total	498	100.0	2,151	100.0	17,642	100.0
SOURCE: Dublin, T to the American Ep	D., et al demıologi	"Where   1 Socre	e All th March 27	Student $1984$	Gone? "	esented

Although controversy still exists about the quality of USFMGs' undergraduate education (AAMC, 1981; Stimmel et al., 1981; USGAO 1980), data suggest that Fiftn Pathway proyram graduates do better on licensure examınatirns than other FNFMGs, although their pass rates are still somewhat lower then those of USMGs (Stimmel and Smith, 1978). On the other hand, a followup study of the professional activity of 550 USFMGs 10 years after graduation reported that about 24 percent never qualified for GME or became licensed practitioners (McGuinness and Mason, 1982). Yet, USFMGs who studied in a few Caribbean countries showed high pass rates on ECFMG exams (ECFMG, 1983 and 1984).

Location of FMGs in Residency Training. Although the overall percentage of FMGs in residency programs has declined steadıly, in three States--New Jersey, New York and Illincis--it still exceeded 25 percent, and it exceeded 60 percent in New Jersey. The mid-Atlantic region had the largest number ( 6,185 ), nearly half of all FMGs in residency (46.4 percent) (Table 3-37). Other signiticant concentrations were found in Illinois (25.7 percent) and Mıchıgan (23.9 percent) (AMA, 1985b).

In 1983, 24.1 percent of 424 teacning nospitals reported more tnan 25 percent of their graduate medical students were FMGs (Council of Teaching Hospitals, 1983). These hospitals were located in 19 States and Pu`rtu kico. Two hospitals in New York and one $1 n$ New Jersey reported that 100 percerit of their nouse statf were FMGs. States reporting the laryest number of hospitals training more than 25 percent FMG residents were: New York (31 hospitals); New Jersey (13); Illınoıs (10); Mıchigan (10); Connectıcut (6); Ohio (5); Pennsylvania (5); and Maryland (4). Most of the hospitals were located in heavily urban or near urban areas--particularly the cities of New York, Pittsburgh, Philadelphia, Detroit and Chicago.

## International Educational Exchange

Since World War II, the Exchanye Visitor Program has been one of the major vehicles for international medical educational exchange. The legislative restrictions of 8 years ago affected entry of foreign physicians into GME via this program, particularly those sponsored for GME. In academic year 1981-82, the ECFMG sponsored only 544 physicians as new entrants. Of these, 124 were graduates of LCME-accredited schools and 50 were in the U.S. for teaching or research, leaviny 370 here for residency training. Thus, there has been concern about the declining role of the U.S. in international medical educational exchange (USDHHS, Mar. 1985b).

## Financing Medical Education

The financing of medical education generally mirrors the patterns of resource allocation within institutions. Although the financing of education is an issue in botn allopathic and osteopatnic medicine, available data come predominantly from allopathic education. The teaching of clinical medicine in university-based programs requires the sharing of faculty and facility resources for teaching both undergraduates and graduates. Toint use of faculty resources for the specialty of family medicine dil_ers from that of other specialties in that its clinical training tends to take place in community nospitals and ambulatory care centers more than in academic medical centers. Data are not currently available on the number of shared faculty or the allocation of faculty or facilıty shared time between undergraduate and graduate education in family medicine or any other specialty. However, a DHHS-sponsored study is underway t. provide fundamental GME financjing information (Arthur Young, et al., 1985).

Use of faculty and facility resources reflects the symbiotic relationship between graduate and undergraduate medical education, but it complicates both the fiscal decisionmaking process of medical institutions and the formulation of national policy for the financing of medical education.

Revenues from all sources for allopathic medical schools increased at an average annual rate of 13 percent from 1975-76 to 1982-83 (Table 3-38). A review of these figures in 1972 constant dollars gives a more meaningful assessment of the levels, their changes, and shitts in the relative importance of the resources. Revenues increased from $\$ 2.7$ to $\$ 3.9$ billion; total Federal support remained at $\$ 1$ billion. The research support component rose from $\$ 667$ to $\$ 813$ million over the first 5 years of the period and then fell in the latter years to $\$ 788$ million; Federal support for other activities over the entire period declined from $\$ 322$ to $\$ 198$ million, or 39 percent. At the same time, cevenues generated through medical services rose from $\$ 493$ million to
\$1.3 Dillion ( 153 percent), tuition and fees moreased from $\$ 126$ to $\$ 230$ million ( 82 percent), local and State Government appropriations and funding increased frum $\$ 655$ to $\$ 850 \mathrm{mlll}$ ion ( 30 percent), and revenues from other sources rose from $\$ 595$ million to $\$ 1.2$ billion (l02 percent) (Table 3-38).

As the role of the Federal Government as a source of revenue for medical schools has diminished, as reflected in the above data, clinical faculties have become procurers of funds. Therr delivery of services generates income to assure the competitiveness of their salarıes with those of private sector physicians and supports the functions of tne departments and anstitutions

Also, hospitals are dependent upon patient care revenues for residents' support. These revenues as a percentage of residency stipends and fringe benefits varied by hospital type but revealed a strong dependence on this source: unlversity-owned, 66 percent; major affiliated, 89 percent; limited and unaffiliated, 97 percent; State-owned, 54 percent; municipally owned, 79 percent; church-owned, 95 percent; other, nonprofit, 93 percent.

A limited financial profile of GME, as of 1978-79, showed that house staff stipends and benefits and faculty salaries totaled almost $\$ 2$ billion (Table/3-39). Federal funds accounted for more than 41 percent of that fıgure. Payments from Medıcare and the Federal share of Medicaid, $\$ 600$ mililion in that year, represented most of the Federal support and approximately one-third of support from all sources. Among Federal support sources, it was followed by the Veterans Administration, 8 percent ( $\$ 151.7$ million); the BHPr residency tralning grants, 2 percent (\$42.9 million); and National Institute of Health trainee grants and clinical fellowshıps, 1 percent ( $\$ 11.4$ million).

Data on other sources are not available. A comprehensive data set on the flnancial operation of GME is required to analyze the levels of revenues, their changes, and shifts in financing among the major sources of support. The data on undergraduate medical education (Table 3-38) and on GME
(Table 3-39) underscore this requirement.

The recently implemented Medicare Prospective Payment System includes a passthrough for the direct cost of GME. For indirect costs, a resident-to-bed adjustment was used as a proxy for a number of factors that could increase the patient care costs in teaching hospitals, including the inability of the DRG system to distinguish adequately among pat. ts whose iliness severity differs. The passthrough covers Medicare's share of resident's stipends, and the resident-to-bed adjustment increases hospital payments.

Data from the Council of Teaching Hospitals' (COTH; 1984 survey were analyzed to determine the lmpact of these changes. Tne first year's findings indicate that teaching hospitals under prospective payment have not increased the number of residents in their programs in order to increase payments from Medicare. However, the effects the payment system will have are not clear, and CUTH plans to monitor changes in the numbers and types of residents in Medicare PP/DRG hospitals (COTH, 1985).

Academic health centers supply examples of an institution's modification of its operation, based on its perception of the impact of a reduction in federal Dromedical research support. Centers are reconsidering the role of
biomedical research in education, and the size of faculty and organization of instruction and activities for such education. Teaching hospitals are increasirgly resistant to the support of education and clinical research activities. This inaction is heightening tension among faculty about the relative importance of education, research and patient care (AAHC, 1982).

Specialty Impact of Changes in Financing. The different earning capabilities of the various medical practice plans affects the earning potential of the various specialties. In particular, tne activities of prımary care departments in many teaching hospitals do not generate enough income to cover their costs, and faculty time comaitted to prımary care generates less income than an equivalent amount of time committed to secondary and tertiary or inpatient care. As a result, primary care activities frequently must be subsidized by the institution's share of the income generated by the more lucrative plans or other institutions' funds, or by Government support. Thus, a concern for the future of primary care emerges from the notion that each specialty should be responsible for its "fair share" of the costs. With continued competitive pressure among faculty to generate more income, primary care programs are potentially at risk.

## Developments in Competency Assurance

Provision of quality health care is dependent in large measure not oniy upon the quantity of available services as measured in numbers of practitioners or in distributions as discussed in earlier sections, but also upon the competence of practitioners. This section explores twc areas contributing to the assurance of professional competence. The first area addresses competency assurance developments in the general professional education of physicians, undergraduate and graduate primary care education, and specific curricula developments in support of national health goals. The second area describes the multifaceted developments within the field of medical credentialirg.

## General Professional Education of Physicians

Specifically, "the nature, scope and quality of education help determine the extent to which manpower meets the public's needs" (Institute of Medicine, 1978). In 1984, the AAMC completed an extensive study of the general professional education of physicians. It found a continuing erosion of the physician's general education and expressed concern that the ecosion has not been arrested but is instead accelerating. The panel concluded by affirming that all physicians, regardless of specialty, require a common foundation of knowledge, skills, values, and attitudes and that every physician should be caring, compassionate, and dedicated to patients, as well as committed to work, learning, rationality, scıence, and serving society (AAMC, Nov. 1984). In response to the clinical education recommendation, the BHPr initiated and suppurted an AAMC project to ėesign and conduct a national conference on clinical education in the undergraduate medical curriculum, with the ultimate ofjective of enhancing the assurance of competence. The conference is expected to be held in late 1985.

## Undergraduate Primary Care Education

Federal programs have been operating at the undergraduate and graduate levels to (1) encourage students to select primary care specialties; (2) recruit from and relocate students into health labor shortage areas; (3) strengthen
educational units in primary care; and (4) adapt curricula to attend to the general provision of medical care and emphasize care for the elderly, preventive reasures, nutrition, cost containment, and detection and treatment of alcoholism.

At the undergracuate level, departments of famıly medicine support innovations in primary care. The Federal Government has attempted to improve undergraduate mer ical education in family medicine by suppo:ting the establishment of academic units and developing predoctoral student programs and faculty. Durir. 1 the 4 years of funding Lnder the Establishment of Departments of Family Medicine Program, 59 schools eived $\$ 41.4$ million in support of their individual programs. Funds suppor $r$ d activities to increase curriculum time and promote scholarly activities.

From 1978 to 1983, 91 institutions received predoctoral training funds totaling $\$ 43.2$ million and involving 66,022 trainees in clerkships, pres, ptorships, and assistantships at an zverage cost per trainee of about $\$ 600$ (Table 3-40). Seventy-four schools received FY 1984 funds, and 42 projects ended June 30, 1984.

Between 1978 and 1984, approximately $\$ 19.4$ million were expended in faculty development. Some 10,264 trainees were trained at an avarage cost per trainee of about $\$ 1,890$. More than two-thirds have been involved in workshops and/or seminars, with the remaining in activities such as 3- to 12 -month traineeships and master's degref programs. Curreitly 21 programs are receiving FY 1984 funds.

Despite its intent to recruit and train new faculty, in 982 family medicine had the greatest percentage of budgeted, unfilled positions--9 percent compared to an averaye of 5.3 percent for other departments. A stualy by the University of Minnesota, supported by BHPr, is underway to determine the requisıte competencies for faculty, and the appropriate program duration, presentation style; and recruitment efforts.

Aided by the above-mentroned activities, the number of American Academy of Famıly Practice board-certified family physicians has grown significantly sirce 1975, from only 7,073 to ar. Academy membership oi 54,000 in 1980, of whom 11,000 are students.

## Graduate Primary Care Education

Foderal initiatives in graduate primary care edıcatior have been concentrated in the specialties of family medicine, general internal medicine and general pediatrics in both aliopathic and osteopathic programs. These sponsored activities have been directed toward increasing the numbers ana affecting the geographic distributirn of prımary care practitioners, pıus aidiny in the planning, developme and operation of the programs themselves.

From 1972 through 1984, the Federal Government has awarded nearly $\$ 360.8$ million foi graduate family medicins training activities. During the period, the number of accredited family practice residency programs increased frot 117 to 384 and each year an average of 58.5 percent of all residents were located in these supported programs. In 1984, 146 allopatric and 12
osteopathic programs, with 3,486 residents in training, received $\$ 20.7$ million.

From 1977 through 1984, the Federal Goveınment has awarded $\$ 19.3$ million to general internal medıcıne/general pediatrıcs residency training programs. In 1984, 70 allopathic and 4 osteopathic programs received $\$ 14.5$ million to trai. 1,456 primary care residerts, 724 in general internal mf licine and 732 in general pediatrics. Finally, approximately $\$ 1$ milion is being made available in FY 1985 to assist in meeting the costs of planning, developing and operating programs tor the training of faculty physicians in general internal medicine and/or general pediatrics.

## Evaluaison of the Impact of Federal Initiatives in Primary care Education

While evidence is presented in other sections of the impact of primary care tral...ng on specialty chorces and practice location decisions, more rigorous impact analysis is needed. Several ongoing BHPr-sponsored studies address the ımpact of Federal initiatives in undergradurte family medıcine education, department development and faculty training, in addition to assessments of graduate initıatives in family medicine, general internal medicine/general pediatrics. Finaliy, the BHPr is sponsoring the development of a data base for graduate medical education that should facilitate the above evaluation efforts.

## Graduate Training in Health Promotion anc Disease Prevention

An evaluation of charts in 15 universíy teaching hospitals' general internal medicine group practices revealed thet house staff provided only 30 percent of eligible patients with an influenza vaccination, although more than 60 percent were eligible. Further, about half of women age 45 received contraceptive advice, and 50 percent of eligib o women reported receiving breast examination instructions (Kosecoff, et al., ly85). Even a survey of the attitudes of resicients, faculty and fellows found that less than half thought preventive health services should be provided in the teaching ospital to continuing-care patients (Earp, et al., 1944).

## Professional Training in Support of National Health Inıtıatives

National health care issues of highest priority to the Department include appropriate responses to (1) the disease of alcoholism; (2) the escalating cost of health care; (3) the complex needs of the gesiatric population; (4) the general need for disease prevention and health promotion efforts; and (5) the unmet needs for nutritional care (USDHHS, 1979). These areas have merited special attention, but have long $t$ en neglected in the traditional training of providers (U.S. Senate, 1980); therefore, the 「ederal Government has initiated several curriculum activities which include the initiatives discussed velow.

Alcoholısm. Famıly medicine units have developed and integrated programs on the grevention, recognition, and treatment of alcohol abuse and alcoholism; 29 schools initiated programs that provided training co students who are now practicing. Additionally, the Society of Teachers of Family Medicine (STFM) developed a BHPr-cosponsored Famıly Medicine Curriculum Guide to Substance fobuse (STFM, 1982). To date, all of the 384 allopathic residency programs and the 123 osteopathic postgraduate training programs have used this guide.

Little attention had been given to development of sducational resources that address the unique problems of detection and treatment of teenagers. The

Department of Family Medicine at Ohio State University (OSU) has initiated a BHPr-sponsored study to uevelop tefage alcoholism modules.

Cost Contaınment. Although current emphasis in the Medicare proyram is to reduce the cost of hospital services, less attention has been paid to the potential for physicians to reduce the cost of patient care. A review of numerous cost containment efforts reported that physicians often are unaware of the economic impact of their medical decisions. Further, cost containment education has the potential to result in physicians practicing more efficiently (USGAO, 1983).

Ninety (77 percent) of the medical schcols responding to the Generad Accounting office questionnare said that they were providing cost containment training, and that 9,930 ( 68 percent) of their 19 i i graduates had received the training, compared to about 8,400 in 1979. Of the residency programs responding, 55 percent said they were providiny training. However, 59 percent of the schools teacting cost containment did so using an unstructured progrdm. Moreover, 65 percent of the student respondents to the 1981 AAMC annual questionnarre consider's the amount of cost containment training inadequate.

Southern Illinois University, with BHPr support, is developing and promoting educational modules to modify the behavior of students, family medicine residents, and family practitioners to incorporate cost containment strategies. These modules will consist primarily of opportunities to apply systematic cost containment assessments to their provisison of care.

Faced with poor student performance on the financing questions of a community health cierkship final examınation, one department of famıly medicine designed a simulation game, "Coverage." The game was an effective and enjoyable means of teaching students the intricacies of health insurance and increasel student sensitivity to costs (MacLeod and Smith, 1984).

Gerlatrics. Because of a rapidly growing aged population that tends to need and use medical services disproportionately when compared to the eitire population, the need for appropriately trained health professionals is also growing. Present education in geratric concerns is not adequate. Because most elderly persons seek care from physicians trained in genezal/family practict, internal medicine, and psychiatry, it is essential that residency programs in these specialties incorporate geriatric experiences (USC'IHS, Feb. 1984).

In recent years, the BHPr, National Institute on Aging, Administration on Agıng, National Institute on Mental Health and the Veterans Administration, as well as organizations i.: the private sector, rave sponsored programs designed to improve and expand coverage of geriatrics in medical education programs (USDHHS, Feb. 1984).

Preventive Medicine. Although a balance or oversupply of physicians is anticipated in most specialties, preventive medicine is one of few projected to be in shortage in 1990 (USDHHS, Apr. 1981). Enrollment in preventive medicine residency programs totaled 309 residents in 198j, with a slight increase to 343 in 1982 and 349 in 1983 (AMA, 1984C). However, progress reports from the 20 residency training programs receiving Federal support reflected an increase of about 48 percent in enrollment detween the academic
years 1982-83 ithe year before amplementation of the yrant program) and 1984-85. Data from the applications indicated that 129 residents were enrolled in the 20 programs in 1982-83 compared to 190 in 1984-85. Also, the grantees collectively indicated that a large number of qualıfied applicants were denıed admission because of inadequate fınancial resources.

Other significant activicies designed to address training in preventıve medicine include the University of drızona, Health Sciences Center, BHPr-sponsored effort to develop a model joint famjly medicine-preventive/ community medicine clerkship. A 4-week block clerkship is to be developed and pilot-tested, with guidelines to facilitate implementation on other scheols. A specific recommendation in a private sector report led to development of this model (STFM/ATPM, 1983).

Nutrition. With BHPr support, the Department of Famıly Medicine of OSU is prclucing educational packages, a faculty handbook, and an implementation plan focused on nutritional health promotion and disease prevention. Earlier, OSU produced 16 study packages with focusing on nutritional care of individual health problems; more than 12,000 of these BHPr-supported pieces have been sold.

## Medical Credentialıng

Medıcal credentıalıng is a complex arena of processes and decisions which yield evidence of physicians' competency to prcvide care and determine when and where they may practice, their qualifications for specialization and therr right to continue to hold a medical license. It involves U.S. citizens educated and practıcing in the U.S., foreign national foreign medical graduates, and U.S. citizens who have studied medicine abroad and return as USFMGs, with both latter groups seeking further education and/or to practice in the U.S. Such credentiaiing includes accreditation of approximately 6,000 allopathic and osteopathic undergraduate and residency programs, as well as continuing medical education programs as anotrer area essential to assurance of competency.

Another major aspect of credentialing is licensing, which is the prerogative of each State. The State Medical Board's authority includes taking appropriate disciplinary action, from prodation to revocation of licenses. Credentialing also includes board certification in more than 70 sperialuies and subspecialties recognized by the American Board of Medical Specialties. Multiple private sector organizations are involved, not only in the areas of their own credentialing responsibility, but also in relating to other such groups. Psychometrics and laws are among the myriad additional components of credentıalıng.

The Federal Government does not accredit programs or license or certify physicians. The BHPr is the Federal focal point for medıcal credentialıng activities and supports private sector efforts to assure phjsician competency. Through its cortacts and contracts, the BHPr promotes (l) equity in credentiali.ıg evaluation for all who seek licensuze, including FMGs; (2) single nationwide credentialing standards; (3) state-of-the-art evaluation of competency; and (4) resolution of nationwide credentiaing problems.

National Board of Medical Eraminers (NBME). Physicians earn their U.S. licenses by passing one of the examinations prepared by the 'NBME, a nonprofit
agency which prepares and adminısters examinations possessing sufficient validity and reiliabılity to permit state agencıes to license without further analysis of competency. Under BHPr support, the NBME developed advanced evaluation instruments to assess physician competency to provide unsupervised care. One major accomplishment is the NBME's computer-based examination (CBX), a uniquely unstructured, uncued simulation of practice that allows a physician both to conduct a diagnostic workup and institute treatment over time, while the computer maintains a complete record. NBME is seeking support to implement the $C B X$ in $20-25$ secure examination centers nationwide.

Federation of State Medical Boards (FSMB). The FSMB's membership includes all medical boards of the States, the District of Columbia, Puerto Rico, Guam, the Viryin Islands, and 10 Canadian provinces. The Federation's licensing examination (FLEX), developed by the FSMB and NBME, is used by all states, and by some of the above jurisdictions, as the examination to assess physician competency. Recently the FSMB, with NBME, replzced the single FLEX with a stronger New fLEX Program with two examinations, one to assess competency to provide supervised care as a resident, and another to provide independent care as a practitioner. To facilitate a smooth transition to the New fLEX program, the FSMB established a BHPr-supported task force to complete an in-depth education of State medical poards and cther appropriate entities about the new program.

FSMB has initiated a computer data production and reporting system on medical licensure which includes all disciplinary actions by all licensing jurisdictions and Federal Medicaze/Medicaid sanctions. a BHPr-sponsored fSMB project facilitates enhancement of the system, which among other things, will print rapidly a sequential profile of disciplinary actions on physicians. The project provides for the design of a program to enhance and expand State-acquired information for the use of all medical licensing jurisdictions and appropriate others such as the Office of the Inspector General (íIG), Department ot Health and Human Services (DHHS).

In order tc eliminate fraud and abuse in the Medicare/Medicaid program, the OIG, DHHS, is required to exclude such culpable practitioners from the program. The role of the Federal Government in acquiring and using the necessary State discıplinary data is being delinerated to assure that it does not usurp the States' prerogative to control the practice of its physicians.

Educational Comm_ssion for Foreign Medical Graduates (ECFMG). The ECFMG assesses and then certifies the readiness of FMGs to enter accredited u.s. residency or fellowship programs. To obtain occupational and non-preference visas to enter the J.S. to practice or enter GME, certain FNFMGs are required under public law to pass the NBME Part I and II examinations, or an examination determined to be equivalent by the Secretary, DHHS.

Untıl 1983, the Visa Qualifying Examination (VQE) las determined by the BHPr for the Secretary to be equivalent for the purpose of this requirement. In 1983, the Secretary, DHHS, on the recommendation of the BHPr, determined that the Fcreign Medical Graduate Education in the Medical Sc ... . (FMGEMS) was equivalent to the NBME Part I and Part II examınations. . . MGENS, ciesigned cooperatively by NBME and ECFMG, replaced both the VGE for certain FNFMGs and the ECFMG medicine examination for the remaining FNFMGs and all USFMGs. The new 2-day examination, introduced in July 1984, was designed to contribute to
equity in evaluation because the pass rate on the ECFMG examination was higher than the VQE.

National Board of Examiners for Osteopathic Physicians and Surgeons (NBEOPS). In 18 States the osteopathic medical profession has its own licensing boards, whereas in the remaining States, the medical boards address both allopathic and osteopathic licensing. The NBEOPS and the American Osteopathic Association have conducted BhPr-supported projects to (l) assess credentialing needs, (2) conduct an educational program on criterion-referenced examinations for members of the NBEOPS, and (3) initiate a computer program for examination analysis.

Coope dive Ventures. In recognition of the NBEOPS' foncerns, a number of BHPr-s iimulated interactions between the osteopathic and allopathic credentialing bodies have ensued, including the first joint meeting of the NBME and the NBEOPS, which led to an expansion of the interaction by member of these groups. Currently, the FSMB computer disciplinary data system covers all allopathic and some osteopathic licensees; and discussion is underway between these two disciplines to expand the system to include all osteopathic physicians.

Physicians sanctioned for fraudulent practire are distinct from persons who are not physicians but possess fraudulent credentizls and attempt to practise. It is difficult to estimate the number in the latter group. The FSMB and the BHPr are among the cadre of private and Federal entities meeting under the aegis of the OIG, DHHS, to assess this problem and plan its resolution.

Accreditation Groups. The Liaison Committee on Medical Education, the Accreditation Council for Graduate Medical Education, and the Accreditation Council for Continuing Medical Education play essential roles in assuring that education leads to competency. The BHPr has provided fiscal and staff support to assist these groups in a variety of activities.

## A Look at the Future

This section presents the latest forecasts of allopathic and osteopathic physician supply and requirements for 1990 and 2000. It provides supply estimates for USMGs, USFMGs, and FNFMGs, and for specialties and States. An explanation of the changes in the assumptions and methods from those previously reported, is also presented. The "basic" forecast= incorporated the most likely assumptions thile "high" and "low" estimates provide a range. The section also reviews the fyecision of forecasting. It also presents a discussion of the supply/demand forecasting model and an analyses of the impact of an expanded supply. Finally, this section presents physician requirements estimates and matches aggregate supply with requirements.

## Physician Supply Forecasts: Assumptions

This section highlights changes in the assumptions that produced new forecasts from thoge previously reported (USDHHS . 2984 a ; USDHHS, Mar. 1985c).
U.S. Grained Physicians. From the evidence presenter in earlier sections or enrollments and applicants, and otner inclicators, the most likely fucure trend in U.S. medical schcol first-year enrollments in the near term is downard.

The basic forecasting assumption is that first-year enrollments in allopathic medical schools will decline by 5 percent between 1984 and 1989. This assumption was made previously; however, the actual numbers of enrollments in 1984 provad to be lower than earlier estimates so the new projected numbers of first-year enrollments are somewhat lower (Table 3-41).

From the most likely or basic set of forecasts, some indication of reasonable variation can be made. A "low" alternative series for first-year enrollments in allopathic medical school projects a 10 percent decline between 1984 and 1989. The "high" alternative series uses first year class sizes projected to 1988-89 by the medical schools. After an allowance is made for those students who repeat the firs' year, the school projections are slightly higher than if enrollments were maintained at present levels.

There is no apparent similar downward trend in the first-year class sizes of osteopathic medical schools. However, as previously cited, the schocls expect to stabilize their enroilment at about 1,700 freshmen during the next few years. This forecast of stabilization was used for the basic series of projections for osteopathic physıcian supply.

The "low" alternate series of estimates for osteopathic graduates assumes a one-percent per year decrease in firct-year class size between 1984 and 1989, similar to the decrease observed between 1982 and 1983. The "high" alternate series assumes that at least one-half the increase in first-year class size between 1979 and 1983 wilj continue through 1985, and then stabilize at l,760 new enrollees per year throughout the projection period.

Foreign Trained Physicians. There are four components to the FMG physician supply: permanent immigrants, exchange visitors who temporarily enter the U.S. for training (J-Visa foreign nationals), b-Visa foreign nationals, restricted to physicians of distinguished merit and abilicy, and USFMGs. Projections of new entrant FMGs in all categor les except for h-Jisa foreign nationals are derived from estimates of pass rates on qualifying examinations, and are limited by the number of PGY-1 accredited GME positions historically filled by FMGs. There is no other current seliaole information on the number of FMG new entrants. Therefore, the number of FMGs in their PGY-1 in 1984 was assumed to 'se the total number of FMG new entrants in 1964. Tt.is assumption may have underestimated the actual number of FMG new entrants, particularly for those who may have entered residency training later than the first year of a program or those who may have bypassed resilency traininy altogether. The current basic projections, however, are very close to previous projections of FMGs that used a different approach and $d$ ferent source data (USDHHS, 1981).

As previously cited, 1,831 USFMGs were in their first postgraduate year of residency training in 1984. Future new entrant USFMGs are expected to number about 1-900 annue lly based on the assumption that a similar percentage will pass the FMGEMS as passed the ECFMG qualifying examination. Although the FMGEMS is considered a more difficult examination, it can not be taken until the applicant has completed all basic medical training and is within one year of completing the clinical sciences training. Thus, the average pass rates likeiy will not be lowered by those who may have taken the prior ECFMG eximinaticn for practice, and failed because of inadequate preparation.

The number of F'NFM: immigrants has been declining in recent years. U.S. Immigration and Natiralization Service (INS) data show a decrease of about

65 percent in permanent resident visas between 1972 and 1979, the last year for which verifiable INS data are available. Preliminary 1984 data from the INS support a continued slight decline. Between 1981 and 1984, the total number of FNFMGs in residency training decreased by 18 percent, although the number of FNFMGs in PGY-1 has remained relatively constant at 1,176 in 1983 and 1984 (AMA, 1985b). There are no corresponding data for earlier years.

FNFMGs who enter permanently through occupational, non- and family preference visas are projected to number 676 of the 1,176 each yea: betwe^n 1984 and 2000. This forecast assumes that FNFMGs will pass the FMGEMS a about the sane rate as those who took the VQE . Since 1980, about 20 percent of FNFMG examinees have passed the VQE each year, with little variation. The first FMGEMS results reported that 17.4 percent of FNFMGs wh. 3 took the FMGEMS passed both parts. Although, as discussed below, there is reason to think that FMGEMS test results may deteriorate somewhat from results on the VQE, the basic assumption was made that the pass rate will continue to be close ?o 20 percent.

The number of FMG exchange visitors, as previously stated, has sharply declined in the past decade. More recently, the number of fens entering the U.S. on exchange visitor visas for residency training seems to have stabilized at about 500 per year. There is a much larger number of J-Visa FMGs who enter the country each year for participation in programs of research, consultation and observation. An estimated 2,000 FMGs enter each year for such reasons. There are no data available regarding how many of this latier group eventually become U.S. citizens and licensed physicians, or in other ways may be counted by the AMA as an active physician. The furecasts include only J-visa FMGs who are entering their first post-graduate year of residency training and make no allowance for FMGs who enter U.S. medical practice through other routes.

About 500 J -visa physician exchange visitors are expected to enter the country each year in the projection period (the remaining 500 of the 1,176 ). Exchange visiturs, however, by law are allowed up to 7 years to complete their residency training, then must return to their home country. it is generally held that most exchange visitors indsed do return; however, some do remain in or return to the U.S. In both cases, firm estimates are not available.

H-Visa FMG entries; a category restricted to physicians of distinguished merit and ability, are estimated based on past trends to number 180 new entrants each year, and are assumed to remain at this number throughout the projection period.

Alternative series of estimates were made for FMGs as a function of variations in FMGEMS pass rates and constraints in availability of residency positions. The lower range of estimates assumes that the percentage of FNFMG examinees passing both parts of the FMCEMS will decrease by 10 percent below the average pass rate on the VQF, because the FMGEMS is said to be a more rigorous, difficult examination. The low series average pass rate on the FMGEMS 's assumed to be about 17 percent, which is very close to the actual rate reported on the first FMGEMS. The low series also assumes that a 5 percent decline will occur in the numbers of residency positions available to foreign nationals.

The high alternate series assumes an average pass rate of 30 percent, which apprcaches the pass rate of USFMGs on the ECFMG examination. No expansion in number of available residency positions is assumed to occur.

The low series of estimates for USFMGs project that their FMGEMS pass rate will decline from an average of 34 percent who passed the ECFMG examination between 1981 and 1983, to a 25 percent average pass rate on the FMGEMS. First results for USFMGs taking the Fwcums report a dramatic decline in the pass rate. The high series surposes that USFMGs will be motivated to boost their test scores in reaponse to stiff competition for one of a declining number of residency training vacancies. In the high series, 40 percent of USFMG examinees are assumed to pass both parts of the FMGEMS.

## Physician Supply Forecasts: Method

The supply forecasts are produced by the BHPr physician supply forecasting model. This model in its simplest form, augments the active supply or stock of physicians in we base year (1981) with annual new entrants and subtracts annual losses due to deaths and retirements (i.e., flow)

Since the last report (USDHHS, May 1984), the modei has been refined to enable projections of physicians by medical specialty and geographic location. These methods and procedures are necessarily complex (USDHHS, Mar. 1985).

Physician Supply Forecasts by Specialty. In a brief description, however, the model resasts a distribution of physicians disaggregated by year of gradin . from medical school (or equivalently by their PGY-1), gender, and coun medical education for each year in the projection period. The distr .on of these disaggregated totals into specialty categories depends upon the PGY of the physician.

In the early PGYs, the specialty distribution changes over time largely due to the movements from general specialties to subspecialties. In the later PGYs, there are only minor shifts in the specialty distribution of a given graduating class, stabilizing at various pGys depending on the specialty. When physicians reach the stabilization PGY in a given specialty the percentage in that specialty is assumed to remain constant thereafter. The stabilization period in the model varies from one to ten years. Thus, since the model's base period is 1981, for those physicians who entered GME prior to 1972 there will be no projected changes in th specialty distributions throughout the projection period, and therefore distributed according to their specialty distribution as reported in the 1981 data.

Those physicians who entered GME after 1972 and whose particular stabilization PGY has been exceeded, are distributed according to their specialty distribution in the previous year, the year of their stabilization. For the remaining physicians, the observed 1981 percentage distribution for their given PGY is used to distribute them into specialties. Thus, the specialty percentages projected for PGYs up to and including the stabilization PGY are simply the observed 1981 percentages. Beyond the stabilization PGY the percentages of the stabilization FGY are carried foreward so that the class shows nu change. The metlodology assumes that newly-trained physicians will tend to enter practice in the various spesialties in roughly the same proportion as these groups have in recent years. The projected specialty distribution of the overall supply of physicians changes over time because of
the differences between the specialty distributions of the new entiants and those of the older cohorts that they are replacing.

Physician Projections by State. The forecasts of physicians by year of graduation, gender, country of medical education and year of projection are distributed across States ancor $n g$ to their 1981 distributions for each of the first ten PGYs. For physicians who are in their tenth or later PGY, no further shifts across states are assumed. Projections of physicians by speciuilu by State have not been made.

Separations from Active Supply. The mortality and retirement rates age- and gender-specific and based on the experiences of mDs. The retirement rates were developed from distrioutions of inactive physicians between 1967 and 1974. These rates are currently being updated.

The differences in work patterns of males and females have been decreasing in recent years, and it is likely that the 1967-74 experience does not accurately represent the current workforce participatior of women physicians. While changes in the retirement rates for women affect the projected supply levels, such differences are prodably not large enough to significantly affect the projected total estimates of physicians. Mortality rates are physician-specific and were developed from AMA data lur the years 1969-73. These rates, too, are being updateci.

## Physician Supply Forecasts: Results

In the basic series of estimates, the supply of active physicians (mDs and DOs) is projected to reach 696,600 by 2000 , an increase of 229,600 or 49 percent more than the active supply in 1981 (Table 3-42). In the alternative estimates, the total supply of physicians is projected to range from 675,000 to 722,400 physicians in 2000, a difference of about 7 percent (Tables 3-43 and 3-44). In 1990, the number of active physicians 1 s expected to de 587,700 in the basic series with estimates ranging from 583,000 =0 593,700 in the alternative series.

The supply of allopathic physicians (MDs) is projected to increase from 449,000 in 1981 to $656,100 \mathrm{MDs}$ in 2000, within a range of 635,400 to $681,300$. Osteopathic physicians (DOs) are projected to grow from 18,000 in 1981 to 40,400 DOs by 2000 with estimates ranging from 39,400 to 41,100.

The supply or physicians is expected to expand between 1981 and 2000 at a substantially higher rate than population will grow during this period. The physician:population ratio is projected to ke 260 physicians per 100,000 persons in 2000 (basic series), a 28 percent increase from 1981 (Table 3-42).

The largest portion of the projected growth in physician supply is attributable to increases in graduates from U.S. medical and osteopathic schools (Table 3-41). ?rojected numbers of U.S. trained MDs in the basic se:ies account for about 79 percent of the growth in the overall supply between 1981 anc 2000, with growth in numbers of foreign-trained physicians making up 11 percent of the total and increases in osteopathic physicians accounting for the iemaining 10 percent. These proportions of growth are about the same between 1981 and 1990.

A net gain of about 24: 00 forelgn-trained physicians is expected between 1981 and 2000 according to the basic series, largely based on assumed reduction in numbers of U.S. citizen foreign medical graduates, and foreign national foreign medical graduates entering U.S. practice through ocrupational and family preference and non-preference visa oppartunities.

Considering the restrictive nature of legislation affecting FMGs and the diversity of other influences, the FMG suppiy is projected to increase more slowly than in earlier years and at a substantially slower rate than the supply of U.S.-tralned physicians. Net increases in the number of FMGs are expected to average about 1,300 per year between 1981 and 2000 and the total number of FMGs in U.S. practice 15 forecast to be ahout 113,300 by 1990, and reach 123,200 by 2000 (basic series) (Table 3-42). The estimates range from 110,600 to 139,800 by 2000 (Tables $3-43$ and 3-44). FMGs will co:orise about 18 percent of the total supply in 2000 compared to about 21 percent in 1981.

Although a number of Canadian medical graduates (CMGs) enter the U.S. each year, their additions historlcally have been offset by death, retirement and emigration from the CMG supply. Littie change in the number of Canad:an-trained physicians has oc rred in recent years ana no change from an estimated supply of 7,000 in 1981 is projected , rable 3-42).

Women physicians accounted for only about 12 percent of all physicians in 1981 and have increased their proportion over earlier years, but recent major increases in first-year enrollments of women in schools of allopathic and osteopathic medicine indicace that their numbers will increase substantially in the future. Women are expected to make up almost 17 percent of the 1990 physician supply, and number 98,200 physicians from a base of 55,800 in 1981. By 2000, women are expected to represent 21 percent of the physician supply and approach 144,000 in number (Table 3-45). To the extent that the working llfe patterns and specialty and location choices of women physicians differ from males, the characteristics of physician supply in future years may similarly differ from the present.

A difference of about 7 percent between the alternative estimates demonstrates the relative insensitivity of the total supply to even sharp changes in future U.S. medical school enrollments. Between the mid-1960's and the present time, enrollments in medical schools more than doubled, reflecting the extensive growth in the supply of physicians. Much of the future supply of physicians is already in place or in training. Even assuming substantial decreases in medical school enrollments and future FMG entrants, the supply of physicians will increase by more than 25 percent by 1990. The base of active physicians is now sufticien ly large thac if enrollments were to decline by as much as io percent over the next 5 years the total supply in 1990 would be little affected.

To illustrate, there is only 0.3 percent difterence between the low and high series in the numbers of U.S.-trained physicians for 1990 even though the high series assumes no reduction in enrolıments contrasted with the 10 percent reduction in the low series. By 2000 this difference is about 3 percent, still only modest reduction in the total supply. There is practically no difference in 1990 between the basic and low series, and by $20 c 0$ the difference is still less than 2 percent.

Specialty Projections. Between 1981 and 2000, the numbers of MDi are projected to increase in nearly all specialties (Table 3-46). The largest increases are projected for the secondary medical specialties--those medical specialties other than primary care--37 percent by 1990 , and 74 percent by 2000. The primary care specialties, including obstetrics/gynecology, are projected to increase 28 percer between 1981 and 1990 , and 53 percent by 2000. The smallest increase is projected for the surgical specialties-19 percent between 1981 and 1990 , and 34 percent by 2000 . The "other" specialties, including mainly anesthesıology, radıology, psychiatry, patnology and neurology, are forecast to grow 22 percent between 1981 and 1990, and 42 percent by 2000.

Of the 82,020 MDs reported to be in internal medicine in 1981, about 16,100 are considered subspecialists by AMA in a more detailed classification. When these subspecialists are excluded, the number of primary care MDs, including obstetrician/gynecologists, increases 27 percent between 1981 and 1990 , and 51 percent between 1981 and 2000. Thus, the internal medicine subspecialties are forecast to grow at about the same rate as general internal medicine.

On the other hand, the internal medicine subspecialties of gastroenterology, cardiology and pulmonary diseases, forecast separately, are projected to grow significantly, with gastroenterology displaying the greatest growth of any specialty over the two decades, increasing 56 percent between 1981 and 1990, and 114 percent between 1981 and 2000. These latter chree subspecialties are anticipated to grow substantially in coming years, partly in response to an aging population with an increasing number of sllnesses requiring therr services (USDHHS, Mar. 1985).

Large increases are also projected for diagnostic radiology, which is expected to grow by 54 percent between 1981 and 2000. However, general radiology, whose residency program recently has been converted to diagnostic and therapeutic radiology, is forecast separately. Because these estimates do not account for the proportion of general radiology residents in GME who elected diagnostic or therapeutic radiology before the conversion, the forecasts of the individual radiology specialties must be used with some caution. The total supply of radiologists is expected to grow 24 percent between 1981 and 1990, and 42 percent by 2000.

A few specialties are forecast to decline in number, such as forensic pathology and public health, anticipated to decrease by 40 to 50 percent between 1981 and 2000, while the number of allergists is forecast to change very little throughout the projection period, leclining in number but by less than 1 percent.

State Projections. Th, proiections of MDs iy State are based upon the geographical patterns in 198i. Thus, they do not account for changing conditions that could affect tuture MD location and relocation patterns. Between 1981 and 1990, the Nation is forecast to experience a 25 percent increase in MDs, but there is considerable variation among Regions and Sta, s. MD supply in the Western Region is expected to grow the most--3l percent by 1990, and double that amount by 2000 . The smallest change is anticipated in the Middle Atlantic Region whose supply is foiecast to grow $1^{\prime}$ percent by 1990 and 35 percent between 1981 and 2000 (Table 3-47).

The smallest growth among States 15 expected in Michigan where the supply is forecast to increase 15 percent between 1981 axd 1990, and 10 percent more by 2000, while the greatest increase is expected in Alaska, about 66 percent between 1981 and 1990, and 141 percent between 1.981 and 2000 (Table 3-47).

When growth in population 15 taken into account, these patterns change somewhat. The greatest predicted gain in the physicians:population ratio is anticipated for the Northeast--22 percent between 1981 and 1990 , and nearly as much for the Middle Atlantic Region. Even though the Middle Atlantic States are expected to experience the smallest increase in numbers of MDs, their population is expected to grow at an even slower rate, producing the higher than average ratio (Table 3-48).

Conversely, the Western pegion, which is forecast to experıence the greatest numeric increase in supp $+y$ in the $1980^{\prime} \mathrm{s}$, also is anticipated to experience large increases in population and thereby a relatively small gain in physician: population ratio--10 percent tetween 1981 and 1990. Only the west Scuth Central Region is forecast to realize a smaller increase--9 percent during this period. This latter Region is slightly above the national average in its expected numeric increases in MDs in the 1980's.

The largest and smallest State/area changes are expected in the District of Columbia ( 57 percent), and in Florıda ( -9 percent), between 1981 and 1990 , respectively. Both of these locales are in the South which is forecast tc experience relatively small overail growth. In the Northeast, which shows the highest physician: population ratio growth among Regions, New Hampshire will experience just a 5 percent increase between between 1981 and 1990, while Massachusetts is projected to increase its rate by 32 percent. Massachusetrs, with 279 physicians per 100,000 population in 1981 , is second only to Maryland with a ratio of 313 among States in physician:popusation ratio. Massachusetts is forecast to heve the largest ratio of any state in 2000, with 463 physicians per $1: 10,000$ population. Idaho, with 114 physicians per 100,000 population, had the lowest ratio in 1981. Wyoming, with a declining ratio because the overall population is growing at a much faster rate than its MD supply, wlll probably have the smallest physician:population ratio in 1990 (119) and in 2000 (111).

It should be noted that because relatively small changes in the growth rate of either the numerator of denominator in the physician:population ratio can produce share differences in the ratios after several years, ratio comparisons may be difficult to interpret. Population and physician projections used in this report were independently developed, the former by the Bureau of the Census and the latte: by the Bureau of Health Professions. A projection methodology that explicitiy links the physician projections to population projections would minimize this problem (USDHES, Mar. 1985).

## Physician Requirements Forecasts: Method

Estimates of physician regurrements based on projected service demand were made using the BHPr general requirements model which employs an adjusted utilization approach (USDHHS, Jan. 1982). This approach assumes that recent patterns of service utilization and productivity will continue. Current utilization levels are adjusted by projected changes in population, trends in health insurance benefits and other factors affecting utilization, such as
changes in prices of services and summary determinants not directly measured by conslaner prices.

The previously reported values for these price and nonprice determanants (USDHHS, May 1984) have since been refined and updated. HCFA has completed a major revision of its annual estimates of health insurance benefits paid since 1968 in order to adequately count benefits paid by certain firms and organizations. The net effect of this revision is to substantially increase the role of insurance in the physician services sector during the 1970 's. Thus, some of the BHPr-projected growth in requirements attributable to insurance coverage growth had already occurred, and projections for 1990 and 2000 are now slightly lower.

## Physicians Requirements Forecasts: Matchıng Requirements with Supply

The BHPr model projects requirements for 541,000 physicians in 1990 and for 618,800 physicians in 2000 , or a 19 -percent increase over the period 1985-2000. in both 1990 and 2000, the supply of physicians, according to the basic series of estimates, is projected to be greater than requirements. For 1990, an excess of 46,600 is projected, and increases to 77,800 in 2000. The excesses represent about 8 and 11 percent of the supply in those respective years.

> Comparisor of Supply and Requirements for Physicians (MDs and DOs) : 1981 Supply and Projections to 1990 and 2000 (in thousands)

1981	1990		2000		$\begin{gathered} \text { Percent Increase } \\ 1981=2000 \\ \hline \end{gathered}$	
Supply	Supply	Requirements	Supply	Requirements	Supply	Requirements
467.0	587.7	541.0	696.6	618.8	49	33

SOURCE: Health Resources and Services Administration, Bureau of Health professions. Supply forecasts are from the BHPr Supply Model. basic series of estimates; requirements estimates are from the BHPr General Requirements Model.

A different approach to projecting supply and requirements, undertaken by the Graduate Medical Education National Advisory Committee (GMENAC), was also previously reported, along with more current requirements revisions (USDHHS, May 1984): The revisions as reported produced 1990 supply projections in excess of requirements by 63,000 , and by about 137,000 in 2000. Recently revised supply projections for 1990, basea 'גpon the GMENAC appruach and incorporating latest available data, produced slightly lower supply estimates, further reducing the projected gap between supply and requirements to about 55,00n physicians (Cultice, 1985).

Accordirg to these results, the U.S. .ad about as many physicians in practice in 1985 as was projected to be required in 1990. That is, the estimated physician supply in 1985 of about 473,000 matcnes the xevised
requirements figure for 1990. Thus, according to GMENAC criteria, even though the population will be larger and older in 1990, the supply of physicians will continue to increase as will the surplus.

However, according to a recent analysis conducted to assess the impact of ilternative assumptions ab, ut future physician productivity on the GMENAC supply forecasts, the forecasted gap between supply and requirements in 1990 could shrink by as much as 82 percent or increase by as much as 10 percent (Rudzinski, 1985).

Another projection of physician requirements is provided by the Bureau of Labor Statistics (BLS). Its model projects the employment growth in the U.S. economy over the period 1984-1995, and much greater relative growth in the health care sector. However, the growth rate of employment in the hospital industry is now projected to be much less than previously reported. Consequently, the next set of BLS physician requirements projections will show a significant decrease from the 34 -percent increase in Ehysicians required over the perio ${ }^{-1982-1995 . ~ H o w e v e r, ~ t h e s e ~ n e w ~}$ figures will still be substantially hiyher than the ll-percent growth in physician requirements projected by the BHPr model over the period 1985-1995.

Projecting physician requirements is a difficult undertaking when such substantial ciranges are occurring in the health care industry. Continued expansion is anticipated in the overall U.S. economy throughou the remainder of this century, and the demand for health care seryices is likely to remain strong. However, significant changes are occurring in components of the health care sector. Although some of the short-term effects have already been felt, there is uncertainty as to the industry's ultimate structure when these changes come to fruition.

Some of the consequences of the increased supply of physicians on utilization have already been felt and were discussed earlijer (e.g., reduction in oftice and hospital visits). However, the net long-term impact is difficult to assess. How much of this recent decline is a long-term trend or a one-time adjustment? As additional years of hospital data become available, this issue will be clarified.

The second and related major consideration is the impart of recent organizational developments, especially the rapid growth of HMOs, on the output of physician services. HMOs are characterizer by lower ratios of physician staffing to enrolled population and greater use of primary care physicians and mid-level personnel. Ho'never, the reasons why HMOs appear to be different from the rest of the medical care system are not clearly understood. Consequently, it is difficult to draw conclusions about the impact of the further growth of HMOs and other related organizations on physician requirements.

Historıcal Precision of Supply Forecasting. Valıdating the precision of forecasting requires a standard for comparison. BHPr physician supply forecasting relies upon published AMA data. Because the base from which these estimates are driven is constantly updated from special tabulations provided by the AMA, the estimates can be validated only in the short-run period between updates.

Often aggregate estimates are on target, but their components vary from published figures. For example, 1972 projections of the physician supply for 1975 and 1980 were very close to published figures. However, overestimates of FMGs were balanced by underestimates of DOs and USMGs (BHPr, 1982). Simi'arly, in another short-term validation, aggregate estimates were nearly identical to actual figures, buc mismatching by specialty did occur (USDHHS, 1980a).

The base year estimates currently used in the BHPr model have been updated periodically from 1972 to 1976 to 1978 and finally to 1981. For the last period, aggregate FWG forecasts continually understated AMA published figures. Apparently. FiGGs enter the pipeline by means that are not clearly identified for incorporation into forecasting procedures but find their way into the published counts.

On the other nand, published FMG figures seem to vary from year to year in an unexplainable erratic fashion, clouding the validation process. When the functional torm of existing time series data is identified, interpolating and extrapolating are facilitated (USDHHS, Jan. 1981). For physician supply data, growth is nearly linear, limiting real year-to-year variation. Thus, erratic changes in published figures are a function of data collection limitations. In sum, although component estimates may vary, long-term forecasting at the aggregate level may be more precise.

## Supply/Demand Forecasting Moael

Competition is an important force in the Nation's health care industry, resulting from changes in statutory and regulatory policies and the increased supply of physicians (Hixson, 1984). Structured changes in the reimbursement and payment methods, such as the Medicare PP/DRG and proposed physician payment systems, would be expected to generate lcay-term changes in the payment system, and in particular would affect hospitals. Also, changes in Medicare and Medicaid reimbursement policies sidch as the inclusion of end-stage renal disease or liver transplants and payments for radiology, pathology and anesthesiology services--can produce long-term changes that would affect specific patient and provider groups, as well as costs. Changes in insurance coverage and other third-party reimbursements resulting from alterations in the tax (not healch care) system also would contribute. The net effect has been to foster a more competitive health care market.

Conventionally, the adequacy of physician supply is determined by comparing estimates of supply with requirements and is exf:essed in terms of shortages and surpluses, as just discussed. Alternatively, the BHPr developed, and the University of Michigan modified a time-series multiequation simultaneous model that uses conventional supply and demand analysis, and focuses on the interrelatedness of the principal factors. As an example, the model may emphasize that the impact of the increasing stock of physicians on each particular variable of interest cannot be assessed independent of the impacts on all the other variables. Assumptions are specifically stated; large numbers of simultaneous interactions may be modeled with potential for developing alternative policy scenarios; results are subjected to tests of validity; forecasts are developed on the basis of alternative policies and economic conditions simultaneot zly.

The model is based upon eight equations, each modeling: (1) supply of physician services; (2) supply of hospital services; (3) demand for private hospıtal ınsurance; (4) demand for private physician insurance;
(5) total expenditures for Government-funded hospital services; (6) total expenditurus for Government-funded physician services; (7) demand functions for out-of-pocket or direct expenditures for hospital services; and ( $(8)$ demand functions for out-of-pocket or direct expenditures for physician services.
The equilibrium values were computed for 1953 through 1981, and for the forecasted period, 1982 through 1984. This approach is being used to assess the 1 mpact of an increased supply of physicians, but is not forecasting on a subnational level.

Based upon analogous responses to competitive pressures in other industries, the researchers were able to speculate changes in the manner in which physician services are likely to be delivered:

1. Movement toward greater specialization by some specialties and subspecialties, and greater generalization by others, which would lead to increased economic efficiency.
2. Specialists' differentration of their services by a var rety of promotional activities at both pubiic and professional levels.
3. Changes in practice organization, specifically, growth of single-specialty and large multispecialty organizations, in location, and in service marketing to access new potential patients.
4. Horizontal practice and service integration (e.g., expansion of for-profit hospitals, satellıte operations, group practices) and vertical integration ( $2 . g .$, bids from hospital chains to purchase pharmaceutical chains, and hospitals openıng physicians' oficices, nursing homes, and free-standing psychiatric centers).
5. Growth in the number of free standing facılities, including centers for birthing, diagnosis, occupational health, primary care, surgery, urgent care, and wellness.
6. Increasing difficully of entry into practice (particularly for USFMGs), bleaker economic prospects, especially as medicine becomes more capital-intensive moreso for solo practice. The factors may spawn a wide range of organizational arrangements.

Competition among physicians will lead to an expansion in the types and levels of services rendered for the spectrum of patient problems. The actual difference in behavior over time will be less influenced by specialties, either complementing or competing, than by the intensity of competition in siecific market areas. As competıtion intensifies, popular practice locations will become "overdoctored" economically, and newly trained physicians will seek better economic opportunities in less well-served areas.

The actual case mix specialists treat may also change. Major urban centers with high densities of specialists may find physicians actually treating a wide variety of cases. Over time, new physicians may be
expected to be trained in more than one specialty, and new programs may be designed to assımilate the prospective physician.

These modifications are nct all predicted to occur rapidly or smoothly, or without intense debate within the profession. As the industry changes in response to the increased supply, statutory and regulatory policies and competition, in turn, are predicted to have substantial influence on the supply of physicians and medrcal specialties (Policy pnalysis, Inc., 1983).

## Summary and Conclusions

The supply of allopethic physicians continued to grow between 1980 and 1983, but at a slightly slower pace than observed in the $1970^{\prime}$ s. Also, the 1980-1983 supply growth outpaced the growth of the resident population at about the same average annual rate that it did between 1975 and 1980.

As of 1982 , 42 percent of MDs were under the age of 40 , and 40 percent had graduated since 1970, retlecting a steadıly growing youthful MD supply. Also, more than half were board certified.

Internal medicine still heads the list as the most populaz specialty. The remaining primary care specidlties of general/family practice and pediatrics ranked second and fourth, respectively, with general surgery ranked third. Of particular note is the continual decline in the percentage of general/famıly practitioners. This decline, coupled with the moderated growth in internal medicine and pediatrics, has produced a relatively constant primazy care specialty representation for more than a decade. When the relevant subspecialties are subtracted from internal medicine and pediatrics, the primary care percentage for 1982 barely exceeded 30.

Although younger MDs tend to favor the primary care specialties--41 percent compared with 34.6 percent for all MDs--a disproportionate number were still in thear early years of training, leaving their ultimate specialty choices for future examination. Younger MDs also registered significant growth in office-based practice and research. It remains to be seen whether an increasing younger MD supply will generate continued growth in these practice activities.

FMGs maintained their approximate 21 -percent representation and remained more than twice as likely to be in hospital-based practice as their USMG or CMG counterparts. This representation in hospital-based practice has remained constant since 1970. FMG representation in GME dropped significantly between 1970 and 1980 but grew between 1980 and 1983, whereas FMG representation on hospital staffs displayed the opposite trends during the same periods.

Internal medicine contınued to be the most popular FMG specialty. The number of FMGs in general/family practice, the second most popular, declined between 1970 and 1980 as did those in overall general/family practice, but this pattern reversed by 1982. FMGs continued to account for one-third of all MDs in anecthesiology and therapeutic radiology and nearly one-half of those in physical medicine and rehabilitation.

FMGs continued to represent about one-third or more of all MDs in the States of Delaware, Illinois, New Jersey, New York, and West Virginia. In 1983, Florıda, Maıne, Maryland and New Jersey granted more than 50 percent of their medical licenses to FMGs. USFMGs represented 12.0 percent of all active FMGs, up slightly from 11.2 percent in 1979. Since 1979, uSFMGs were distributed more evenly across the specialties, most notably increasing their representation in general/family practice from 10.4 to 15.6 percent, ranking second only to internal medicine.

Since 1980, the pool of female MDs grew by 27.9 percent compared to 21.1 percent for all MDs. The average annual growth in women MDs was approximately the same as observed in the latter half of the 1970 's. Their specialty distribution has converged somewhat with that of male MDs, both showing a preterence for internal medicine. Limited data on minority MLs revealed that as of 1980 , only 11 percent of all MDs were not white. Minority women represented nearly three times more of the percentage of all minority MDs than did non-minority women. Finally, a recent examination of data on black physicians revealed that they are significantly more primary-care-oriented than all MDs.

Between 1982 and 1983 the number of office and hospital MD visits dropped for the first time. The net income of general/family practitioners continued to decline, whereas the largest net income increase was registered among surgeons (l0 percent). The overall medical care services CO، ponent of the CPI grew at a faster rate in 1984 than all CPI items.

Although access to care has improved, 24 percent of the poor still reported access problems, as did 6.2 percent of the elderly, 15 percent of blacks, and 11.5 percent of Hispanics.

The health care delivery strategies of the 1980's have inculcated cost contairment. These strategies have directed attention to the survival of prımary care services.

Little change has occurred in the geographic distribution of MDs. The gap between the percent of MDs in urban and rimal areas has remained about the same since 1970. There is evidence, however, that the increased supply of physicians has affected the location decisions of young physicians. A larger proportion of young physicians locate outside of highly populated counties, and general/family practiticners moreso than for internists and pediatricians. Yet, the total number of graduates establishing practice in rural areas between 1974 and 1978 was comparatively smàl.

The changes in population growth and various economic factors in certain rural and urban poverty areas remain unfavorable for the establishment of practice. The increased supply of physicians will improve access for certain areas, but others will continue to need public assistance.

AHECs have focused on protessional training as the vehicle for improving access. Many formerly federally-supported programs are now securing local financial support. The NHSC has located new practitioners in shortage areas, which have decreased in number since 1983; however, about 14 million people remain in underserved HMSAS.

The numer of Doctors of steopathy continues to grow at the same pace observed in the latter $h \not f$ of the $1970^{\prime} s$ and predominantly in the primary care specialties. DOs also remann concentrated in a few States: 11 out of the 16 States with the most DOs experienced growth rates greater than average; however, Michigan, ranked first, continued its decline in growth.

The supply of physicians is growing in other developed nations as well. Some of these countries are instituting policies to restrict residency specialty training slots and lim. ting entry into medical schools. In the U.S., the undergraduate and graduate medical education environments have responded to the expanded physician supply and escalating health care costs. School development has declined, as have first-year enrollments for the first time in 37 years. The four minority-ownt institutions have experienced financial stress as sources of revenues chisi. to patient care. Faculty continued to increase in number, however, producing an increase in the faculty/student ratio.

The perceived physician surplus, along with rising tuitions, also axay iave contributed to a declining applicant pool. A slıght decsease in academic ability has been predicted to accompany further declines in the pool, but should not markedly affect the overall quality of students. Academic reasons for withdrawal may increase, although overall withdrawal rates are not expected to shift.

Rising tuition and indebtedness mey have reversed the 1970's trend of a decline in family income of students. Financial assistance declined then increased $i_{،}$ 1983-84. Moreover, scholarship recipients tend to have greater debts at graduation than nonrecipients. Federal scholarship reciplents are the exceptions, (State and other scholarship sources do not completely meet the needs of their recipients). Scholarship recipients from under-represented minority members had the lowest mean debt among all aid recipients.

Women's representation in allopathic schools continues to grow reaching neariy 34 percent of new enrollees in 1984-85, up from 31 percent in 1982-83 and 14 percent in 1972-73. Underrepresented minorities have not faired so well. They continue to have lower accertance rates, GPAs and MCAT scores, and higher attrition and repeater rates. The HCOP-supported schools did have some impact $r_{1}$ withdrawal and graduation rates, but institutional commitment was w siznıficant intervening factor. with the exception of American Indians, the largest percentage of accepted applicants among under-represented mınorities came from the lowest parental income category.

Applicants to schools of osteopathy increased, but not as fast as first-year positions, which rose 6 percent in 1982. For the first time, female applicants rose above 1,000 , representing 27 percent of all. applicants. Minority applicants also rose, to 13 percent of all applicants.

In 1984-85, nearly 43 percent of all residents were in internal medicine, family practice and pediatrics. Among PGY-1 residents, 57 percent were in these programs. However, more than half of recent IM residents entered sub-specialty training. Although this rate is lower than the 80 percent
rate of the early $1970^{\prime} \mathrm{s}$, internal medicine programs also play a role in the general education of $M D$ who ultimately specialize in other fields.

More than 25 percent of residents are women; black residents whose undergraduate training was from a LCME-accredited school represented about 5 percent of all LCME undergraduate-trained residents. Black, female and total specialty preferences are similar. Resident salaries have moderated, not keeping pace with inflation. Nevertheless, residents' problems center on their educational experience and workload, reflecting a willingness to accept personal hardships as the price for attaining educational goals.

The number of GME applicancs substantially exceeded the number of available positions. USMGs continue to match at a rate that exceeds 90 percent, whereas FMG match rates, (either FNFMG or USFMG) continue to decline. Although the percentage of FMG residents continued its small but s.eady decline, the percentage of USFMGs who constitute the majority of FMG residents--continued to increase substantially. However, this USFMG percentage has leveled since 1983.

If the number of avallable positions d es not increase as fast as the number of FMG applicants, the pool of FMGs with neither residency training nor licenses to practice is also likely to i icrease. Since the mid-1970's, the number of tomporary visitors sponsored for GME by the ECFMG plummeted. This reduction has rassed concern about the declining U.S. role in international medical education exchange.

The financing of medical education continues to challenge hospitals and insurance carriers who are faced with a proposed sharp reduction in Federal support for GME and greater private insistence that price be the determinant of ccisumption. Much of the debate centers around high-cost teaching hospita. where faculty and facilities are used for both undergraduate and graduate training. Reliance upon revenues from patient care has risen substantially in recent years, while Federal support has declined. In particular, primary care departments do not generate enough income to cover costs, and they must be subsidized by the institution. As comptition intensifies, primary care programs are potentially at risk.

The pre-occupation with the impact of increased prysician supply on distributions and costs has stimulated renewed concern about its effects on quality of care. In addition to skills, a renewed emphasis on values and att:łudes in the general professional education of physicians is needed.

To boloter quality assurance standards, the Federal Government has supported undergraduate and graduate training programs in the primary care specialties. This support has produced more primary care practitioners, faculty and departments. Several studies are underway to assess the impact of these initiatives more rigorously. The Federal Government has also supported curricula development in concert with national health oijectives such as heaith promotion and disease prevention, geriatrics, cost containment, nutrition and preventive medicine.

The credentialing of physicians is designed to assure competency. The various organizations in the private sector responsible for setting

$$
3-61
$$

standards have joined with BHPr to promote equity in credentialing and state-of-the-art competency evaluation.

Physician (MD and DO) supply is projected to increase to nearly 700,000 by the year 2000, or about 49 percent. Alternative "low" and "high" projections indicate a range of about 5 percent. This supply is expected to expand at a substantially faster rate than the population, with a physicıan:poualation ratio in 1981 of 202.4 , increasing to 259.9 by the end of the century.

Women are expected to make up almost 17 percent of the active physician supply in 2990 , a number close to 100,000 , up from a level of 55,800 in 1981. By the year 2000, women are expected to compose 20.6 percent of supply and number 143,500 .

The growth in active MD supply is expected to vary by specialty group. Total growth is anticipated to be outpaced slightly by the growth in prımary care specialties, and consıderably by that in other medical specialties. Rates of growth in the surgical and other specialties will not keep pace with the total. Although the aggregate forecasts approximate physician supply with estimates of population requirements for services, some specialties such as preventive medicine and psychiatry are projected to experience shortfalls.

The growth in supply will vary only slightly across regions and States, reducing the number of shortage areas in some States, while leaving others with areas that remain underserved. Only growth in the West and in New England is anticipated to exceed the average.

Increased supply will foster increased competition which will in turn stimulate specialization by some generalists and generalization by some specialısts. Single specialty and large multi-specialty o:ganizations will emerge with increased efficiency as their main goal. Free-standing facılitıes will prolıferate, and the case mix treated by specialısts will change.


Association of Amerıcan Medical Colleges. Minority Students in Medical Education: Facts and Figures II. Office of Minority Affairs, Washington, DC, March 1985.

Association of American Medıcal Colleges. Physicı ıns for the Twenty-First Centuri. The GPEP Report, Washington; DC, November 1984.

Association of American Medical Colleges. "President's Weekly Activities Report." No. 85-11, Washington, DC, March 14, 1985.

Association of Amerıcan Medıcal Colleges. "Quality of Preparation for the Practice of Medicine in Certain Foreign-Chartered Medical Schools." Journal of Medical Education 56:963-79, 1981.

Auditor General of California. "California Has More Physicians Than It Needs." Office of Health Planning and Development, Division of Health Professions Development, Sacramento, November 1983.

Bazzoli, G.J. "Does Educational Indebtedness Affect Physician Specialty Choice?" American Medical Association, Center for Health Policy Research, workıng Paper No. l. Cnicago, 1984.

Bennett, M.D., Applegate, W.B., Chilton, L.A., Skipper, B.J., and White, R.E. "ComparıSon of Famıly Medicıne and Internal Medicine: Charges for Continulng Ambulatory Care." Medical Care 21(8):830-838, August 1983.

Bergen, S.S., Jr., and Roth, A.R. "Prospective Payment and the Unıversity Hospital." New England Journal of Medicine 310:5, February 1984.

Boerner, R. "Family Income of Medıcal School Appiicants and Acceptees and of College Students." Journal of Medical Education 52:948-949, November 1577.

Boerner, R., and Thomae-Forgues, M. "Datagram: Parental Income of 1981 First-Year Medical School Applicants and Accepted Students. Journal of Medical Education 58:829-831, October 1983.

Budetti, P.P., et al. "Current Distribution and Trends in the Locational Patterns of Pediatricians, Family Physicians, and General Practitioners." Pediatrics $70(5): 780-789$, November 1982.

Bureau of Health Professions. Inhouse communication, Offree of Data Analysis and Management, July 30, 1982.

Congressional Budget Office. Personal communication, March 1985.

Council of Teacning Hospitals. 1984 Survey of Teaching Hospitals. Washington, DC, 1935.

Councıl oí Teacning Hospıtals. Dırectory of Educational Programs and Services. Washington, DC, 1983.

Cromweıl, J., Mıtchell, J.B., Wedıg, G., et al. "Analysis of Changes in the Content of Physician Office Visits." Final Report Contract No. HRA-232-81-0039, December 23, 1983.

Crowlev, A.E. "Residency Positions: Are There Enough?" Journal of the American Med.cal Association 252:24, December 28, 1984.

Crowley, A.E., Etzel, S.I., and Peterson, E.S. "Unjergraduate Medical Education." Journal of the Amerıcan Medical Association 252:1525-1532, September 28, 1984.

Cuca, J.M., Sakaheeny, L.A., and Johnson, D.G. The Medical School Admissions Process: A Review of the Literature, 1955-76. Washington, DC, 1976.

Cultice, J., et al. "GMENAC Supply Projection Estimates Reassessed: Issues and Implications." Presented at the Twentieth Annual Meeting of the U.S. PHS Professional Association, April 1985.

Dentzer, S., Hager, M., Coppola, V., et al. "Taking a Scalpel to Doctors: Reagan's Budget Cutters Plan a Dramatic Reform of Prysicians' Fees for Medicare." Newsweek January 14, 1985.

Dublin, T., et al. "Where Have All the Students Gone?" Presented $=0$ the American Epidemiological Sociecy, March 27, 1984.

Earp, J.A., Fletcier, S.W., O'Marley, M.S., and Fletcher, R.H. " 5 ttitudes of Internal Medicine Subspecialty Fellows Towards Primary Care." Archives of Internal Medıcine 144:329-33, 1984.

Educational Commission for Foreign Medical Graduates. Annual Report 1983-1984. Philadelphia, 1984.

Educatıonal Comaissir, for Foreıgn Medıcal Graduates. "Results of Educational Cc aission for Foreign Medical Graduates Examinations," 1982 and 1985. Philadelphia, 1983 and 1984.

Eisenberg, J.M., and Nicklin, D. "Use of Diagnostic Services by Physıcians in Community Practice." Medical Care 19(3):297-309, March 198J.

Flood, A.B., Scott, W.R., and Ewy, W. "Does Practice Make Perfect; Part I: The Relation Between Hospital Volume and Outcomes for Selected Diagnostic Categories." Medical Care 22:98-114, February 1984.

Freedman, S.A. "megacorporate Health Care--A Choice for the Future." New England Journal of Medicine 312:9, February 1985.

Fruen, M.A. "Medrcal School Admıssions." In: Keport on Medical Education and Societal Needs: A Planning Report for the Health Professions. Institute of Medicine, Wasnington, D.C., July 1983.

Fruen, M.A., and Cantwell, J.R. "Geographic Distrıbution of Physicians: Past Trends and Future Infliences." Inquiry 19:44-50, Spring 1982.

Geyman, J. "Funding Patient Care, Education and Research in Famıly Practice: Interrelated System Problems." The Journal of Family Practice September 1981.

Graettinger. J.S. "Results of the NRMP for 1984." Jcurnal of Medical Education 59:5, May 1984.

Hanft, R., Fishman, L., and Evans, W. Blacks and the Health Professions in the 80's: A National Crisis and a Time for Action. The Association of Minority Health Professions Schuuls, June 1983.

Healthcare Publicatıons. "A Weekly Report on Health policy and Cost Containment." Super HMOS 12:1-2, January 14, 1985.

Hıggıns, E.J., and Jolly, H.P. Partıcipation of Women and Minorities on U.S. Medical School Faculties. Wash:ngton, D.C., July 1982.

Hixson, Jesse S. Health Sector Forecasting with Orthodox Economic Models. Unpublished paper. DHHS, Bureau of Health Professions (HRSA), 1984.

Hough, D.I., and Bazzolı, G.J. "The Economic Envıronnent of Resident Physicians." Journal of the American Medical Association 253:12, March 22/29, 1985.

Hynes, K., and Givner, N. "Physician Distrıbution in a Predominantly Rural State: Predictors and Trends." Inquiry 20:185-190, Summer $: 983$.

Igras, S.M., Franklin, R.R., Samaha, P., et al. "Factors Associated with Retention of Medical School Graduates for in-State GME." Journal of Medical Education 58:733-35, Septenver 1983.

Illinois State Medical Society. "Hospital Cost Measure Clears As jembly." On the Legıslative Scene 6:18, July 1984.

Institute of Medicine. Report of a Study on Manpower Policy for Primary Health Care. National Academy of Sciences, Washington, DC, May 1978.

Johnson, D.E. "Life, Death and the Dollar Sigh, Medical Ethics and Cost Containment." Journal of American Medical Association 252:2, July 13, 1984.

Johnson, D.G. Physıcıans in the Makıng: Personal, Academic and Socioeconomic Characteristics of Medical Students from 1980 to 2000. San Francisco, 1983.

Jolly, H.P., Boerner, R.J., and Dıal, T. "Study of How Medical Students Finance Their Education, 1978-i982." Jouznal of Medical Education 59:9, September 1984.

Jones, R.F., and Tnomae-Forgues, M. "Valıdıty of the MCAT in Predicting Performance in the first Two Years of Medical School." Journal of Medical Education 59:455-464, June 1984.

Jones, R.F., and Vanyur, S. "Datagram: MCAT Scores and Student Programs in Medıcal School." Jol_nal of Medıcal Education 59:527-531, June 1984.

Kındig, D. "Growth in Internatıonal Physician Supply, 1950-1979." Accepted for publication in Journal of the American Medical Association, February 1984.

Kindig, D., Dunham, N.C., and Movassagh1, H. Trends in the Supply and Distribution of Physicians ir, Selected Urban Areas 1.963 to 1980. Madison, e: ${ }^{\top}$, September 14, 1984.

Koba Associates. The Treatment of Practices of Black Physicians. DHEW Pub. No. 80-628, U.S. Government Printing Office, Washington, $D C, 1979$.

Kosecotf, J., et.al. "General Medıcal Care and the Education of Internists in University Hospitals." Annals of Internal Medicine 102:250-257, 1985.

Langwell, K., and Nelson, S. "Characterıstıcs of Ruraj Communities and Changing Geographic Distribution of Physicians." Presented to the Eighth Annual Institute, American Rural Health Association, Orlando, FL, June 7, 1984.

Langwe 11 , K.M., Nelson, S., and Lenk, E. "Comparatıve Evaluation of National Health Service Corps Alumni Retained in Health Manpower Shortage Areas." Final Community Profiles Report Contract No. HRSA- 240-83-0012. Washington, DC, November 19, 1984.

Lawlor, A., and Reıd, J. "Hrerarchical Patterns in the Locations of Physician Specialists Among Counties." Inquiry 18:79-90, Spring +981.

Lorber, J., and Ecker, M. "Career Developments of Female and Male Physicians." Journal of Medical Education 58:447-457, June 1983.

Luft H., and Trauner, J. The Operations and Performance of Health Maintenance Organizations: A Synthesis of Findings from Health Services Resear=a. National Center for Health Services Research, Hyattsville, MD, 198i.

MacDougall, Sock-Foon Chew. "Assassment of HCOP-Srpported Retention Programs in Medical Schools." Unpublished report, Contract No. 232-DDA-000(2), Bureau of Health Professions, Kxckville, MD, July 1984.

MacLeod, N.M., and Smith, S.R. "Coverage: A Sımulation Game to Teach Health Care Finincing." The Journal of Family Practice 18(4):587-589, 1984.

Manard, B.B., and Lewin, L.F. Physician Supply and Distribution: Issues a d Options for State Policy Makers. Prepared for the National Center for Health Services Research, Office of the Assistant Secretary for Health, U.S. Departinent of Health and Human Services, Rockville, MD, September 15, 1983.

McCarron, H. "The Future of Financing medizal Education." Inhouse draft report, Bureau of Health Profissions, Rockville, MD, 1984.

McDonald, K. "medical Schools Fey U.S. Cuts Will Hurt Blacks." Chronicle of Higher Education November 17, 1982.

McGuinness, A.C. and Mason, H.R. "Career Destiny of 550 Americans Several Years After Graduating From Two Foreign Medical Schools." Journal of Medical Education 57:581-5, 1982.

Mantovani, R.E., Gordon, T.L., and Johnson, D.G. Medical Student Indebtedness and Career Plans, 1974-75. Division of Student Studies, Association of American Medical Colleges, Washington, DC, September, 1976.

Morenstein, J.H. "A Comparison of Residency Tralned Family Physicians and Internists." Family Medicine $16(5): 165-169$, September-October 1984.

Morrısey, M.A., Sloan, F.A., and Mitchell, S.A. "State Rate Setting: An Analysis of Some Unresolved Issues." Health Affairs Summer 1983.

Natıonal Cmission for Health Certıfyıng Agencies "Will Credentialıng Survive in New Competitive Environment?" Americal Hospital Association Spokesman, Bulletin November 1983.

National Medical Association. Final Report of the Project to Validate the National Medical Association's Masterfile of Black Physicians. Washington, D.C., 1985.

Noble, J. Unpublishei letter to Deputy Director, Division of Medıcine, Bureau of Health Professions, February 1, 1985.

Poiicy Analysis, Inc. Potential Impact of Increased Numbers of Physicians Upon Physician Behavior, Access to and Cost of Medical Care. Deliverable Item 6 in compliance with Contract No. HRA-232-82-0023, 1983

Robert wood Johnson Foundation. Special Rexrt: Updated Report on Access to Health Care for the American reople. Princeton, NJ, 1983.

Roos, L.L. "Surgical Rates and Mortality: A Correlational Analysis." Medical Care 22:586-588, June 1984.

Rudzınski, K. and Katzoff, J. "Impact of Productivity Changes on 1990 Physician Requirements and Anticipated Surplus." presented at 1985 Pub'ıc Health Conference on Records and Statistics, August 15, 1985.

Scheffler, R.M. "Reimbursement Practice and the Primary Care Physician: An Economist's View." The Journal of Family Practice September 1981.

Schleiter, M.K., and Tarlov, A.R. "National Study of Internal Medicine Manpower: VIII. Internal Medıcine Residency and Fellowship Training: 1983 Update." Annals of Internal Medicine 99:380-387, 1983.

Schrceder, S.A. "Western European Responses to Physician Oversupply Lessons for the United States." Journal of the American Medical Association 252(3):373-384, 1984.

Schroeder, S.A., Myers, L.P., McPhee, S.J., Shostack, J.M., Simborg, D.W., Chapman, S.A., and Leong, J.K. "The Failure of Physician Education as a Cost Containment Strategy--Report of a Prospective Controlled Trial at a University Hospital," Journal of the American Medical Association 252:2, July 13, 1984.

Shelov, S. P., Rayman, I., Straus, J., Fallcn, S., Boufford, J., and Alpert, J. "The Impact of Primary Care Training Programs on Career Choice in Pediatrics." Unpublished report, 1984.

Society of Teachers of Family Medicine. Family Medicine Guide to Substance Abuse. Kansas City, MO,

Society of Texchers of Family Medicine/Association of Teachers of Preventive Medicine. Interrelationships Between Preventive/Community Medicine and Family Medicine. Kansas City, MO, January 1983.

Sorkin, A. L. Health Economics: An Introduction. Lexington Books, Massachusetts, 1984.

Southern Regional Education Board. Issues in Higher Education. Newsletter, No. 21, Atlanta, GA, 1985.

Stimmel, B., et al. "Fifth Pathway programs in Amerıcan Medical Schools." Bulletin of the New York Academy of Medicine 57:149-56, 1981.

Stimmel, B., and Graettınger, J.S. "Medical Studer Trained Abroad and Medical Manpower." New England Journal of Medicıne 310(4):230-235, January 26, 1984.

Stimmel, B., and Smith, H. "Career Cholce and Performance on State Licensing Examination of 'Fifth Pathway' Students." New England Journal of Medicine 299:227-230, 1978.
U.S. Department of Health, Education and Welfare, Bureau of Health Manpower. Report of the Secretary of Health, Education and Welfare: An Assessment of National Area Health Education Center Program. DHEW PuD. NO. HRA 80-33. U.S. Government Printing Office, Washington, D.C., November 1979.
U.S. Department of Health and Human Services, Bureau of Health Professions. The Current and Future Supply of Physicians and Physician Specialists. DHHS Pub. No. HRA 80-60, U.S. Government. Printing Office, Washington, DC, September 1980a.
U.S. Department of Health and Human Services, Bureau of Health Professions, Division of Health Professions Analysis. The Location of Family Practitioners and Other Medical Specialists in Shortage and Rural Areas. Report No. DHPA 81-6, Hyattsville, MD, December 31, 1980.

```
U.S. Department of Health and Human Servaces. Healthy People: Objectives for the sation. U.S. Government printing Office, Washington, DC, 1979.
```

נ.S. Department of Health and Human Services, Bureau of Health Professions. Historical and Estimated Data for the U.S. Health Sector 1949-1976. DHHS PLiD. No. HRA 81-1, U.S. Government Printing Cffice, Washington, DC, Jarieary 1981.
U.f. Department of Health and Human Services, Public Health Service, Office of Health Maintenance Organizations. HMO Fact Sheet. Rockville, MD, December 1984.
U.S. Department of Health and Human Services, Bureau of Health
Professions. NHSC Alumni Practice Location Study. Preliminary
Results, Rockville, MD, March 1985a.
U.S. Department of Health and Human Services, Office of the Assistant Secretary for Health and Surgeon General. Promoting Health/Preventing Disease: Objectives for the Nation. U.S. Government Printing Office, Washington, DC, Fall 1980b.
U.S. Department of Health and Human Services, Public Health Service, National Institute on Aging. Reprort of Education and Training in Gerıatrics and Gerontology. Admınistrative document, February 1984.
U.S. Department of Health and Human Services, Office of Graduate Medical Education. Report of the Graduate Medical Education National Advisory Committee to the Secretary, Department of Health and Human Services, Volume I, Summary. HRA Pub. No. 81-651, Government Printing Office, Washington, D.C., April 1981.

[^6]U.S. Department of Health and Human Services, Bureau of Health professions, Office of Data Analysis and Management. projections of Physician Supply in the U.S. Pub. No. HRP-0906330, Rockville, ID, March 1985c.
U.S. Department of Health and Human Services, Bureau of Health professions. The Imapct of Foreign Trained Physicians on the Supply of Physicians. DHHS Pub. No. HPS-P-OD-83-2, Rockville, MD, September 1983.
U.S. Genera' Accountıng Office. Polıcies on U.S. Cıtizens Studying Abroad Need Review and Appraisal. Report to the Congress of the U.S., J.S. GOvernment Printing Office, Washington, DC, 1986.
U.S. General Accounting Office. Physician Cost-Containment Training Can Reduce Medical Costs. Report to the Secretary of Health and Human Services, U.S. GOvernment Printing Office, Pub. No. HRD-82-36, February 4, 1983.
U.S. Senate. Report of the Committee on Labor and Human Resources. Report No. 96-935, Washington, DC, 1980.

Wasson, J.H., Sauvıgne, A.E., Mogielnickı, R.P., et al. "Continuity of Outpatient Medical Care in Elderly Men." Journal of American Medical Association 252:2413-2417, November 2, 1984.

Wennberg, J.E., McPherson, K., and Caper, P. "Will Payment Based on Diagnostic Related Groups Control Hospital Costs?" The New England Journal of Medicine 311:300, August 2, 1984.

White, J. "City vs. County Practice; Whıch Pays Off Best Today?" Medical Economics March 5, 1984.

Wıllensky, G. "New Information About Physician-Inıtiated Demand." Speech presented at the National Health Policy Forum, Washington, DC, June 29, 1982.

Williams, A.P., Schwartz, W.B., Newhouse, J.P., and Bennett, B.W. "How Ma..y Miles to the Doctor?" The New England Journal of Medicine 309:16:958-963, October 20, 1983.

Wilson, G., and Begun, J.W. "Trends in Physicians' Patient Volume." Inquiry 14, June 1977.

Wunderman, L.E., and Steiber, S.R. "Physicians Who Move and Why: From Residency to Practice, 1974-1978." Journal of Medical Education 58 (5):389-394, May 1983.

	Aggregate supply as of December 31				
	1963	1973	1978	1981	1982
Total Physicians	276.475	366,379	437,486	485,123	501.958
U.S. Graduates	238,571	288,719	339,114	374,581	387.083
Poreign Graduates	36.569	77,660	98,372	110.542	114,875
canadian	5,644	6.325	7,021	7.780	7,591
Other	30.925	71.335	91,351	102,762	107,284
Percent PMGs	13.2	21.2	22.5	22.8	22.9
Physicians per 100,000 Population Total	146	174	196	210	217
USHGs	126	137	152	162	167
FMGs	19	37	44	48	50
Total U.S. Population (in thourands)	189,242	210,908	223,400	230,500	231.800


	Average Annual increases							
	1963-1973		197う-1978		1:78-1982		1963-1982	
	Number	Percent	Number	Percent	Number	Percent	Nupher	Percent
Total Physicians	8.990	3.3	14.221	3.9	16,118	3.7	11.868	4.3
U.S. Graduates	5,015	2.1	10.079	3.5	11,922	3.5	7.816	3.3
Foreign Graduates	4,109	11.2	4, 142	5.3	4.126	4.2	4.121	11.3
Canadian	68	1.2	139	2.2	143	2.0	102	1.8
Other	4,041	13.1	4,003	5.6	3.983	4.4	4,019	13.0
Total U.S. population (in thousands)	2,167	1.2	2,498	1.2	2,100	0.9	2.240	1.2

a/ Includes 1.335 physicians, ardresses unknown, who are not histributed according to sources of medical education.
SOUHCES: Anerican Medical Association. Distribution of physicians in the U.S., 1973. Chicago, 1974, American
Hedical Association. Physician Distribution and Medical Licensure in the U.S., 1978. Chicago, 1979; American Medical Association. Data sheet on Physicians, and Physician Characteristics and Distribution, l981. Excerpts from the MMA Physician Masterfile. Chicago, January, 1983; American Medical Association. Physician Characteristics and Distribution in the U.S., 1983. Chicago, 1984; Population estimates were provided by the U.S. Departmerit cf Commerce, Bureau of the census.

114

## BEST COPY AVALLABLE

## BEST CUPY AVAILABLE

Tadie 3-2. Number End Percent ubstraut.on of Professionelily active mbs in Primery Cara, and kete Per 100,000 Populetion, 1970-1982

	1970	1975	2980	1981	1982
Category	Number of mDa				
Protesesonslly Actave	310,845	340,280	414,916	430.745	449,389
Primary Cere, Totel ${ }^{\text {g/ }}$	117,761	130.634	159,922	163,383	173.734
Gensel Practice $C^{\text {/ }}$	57,948	54,55.	60.049	60,594	62,339
Internsl medicine	41,872	54.331	71.531	75,211	79.980
Padietrics	17,941	21.746	28,342	29,578	31,415
Ald otner	193,084	209.646	254,994	267.362	275,655


Percent Dietribution					
Profesemonelly Actave a/	100.0	100.0	100.0	100.0	100.0
Pramary cares totel $\mathrm{g}^{\text {/ }}$	37.9	38.4	38.5	38.4	38.7
Gencrel Prectace $5 /$	18.6	16.0	14.5	14.1	13.9
Internel Medicane	13.5	16.0	17.2	17.5	17.8
Pedietrace	5.8	6.4	0.8	6.9	7.0
All Other	62.1	61.6	61.5	61.6	61.3
	Rate per 100,000 Populetion				
Profesemonsliy Active ${ }^{\text {a }}$	149	255	179	185	191
Pramery Cere: totel ${ }^{\text {g }}$	57	60	69	70	74
Generse Practices/	28	25	26	26	26
Internal Medicine	20	25	31	32	34
Pedatcice	9	10	12	13	13
All Other	93	96	116	115	117

$\begin{array}{lllllll}\text { Populetion (in thousende) d/ } 208.066 & 219.272 & 231.266 & 233,459 & 235,691\end{array}$ populetion 14 Yeers end

| Under (12n thousends) | 57.881 | 53.648 | 51.290 | 51,264 | 51.387 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Pedietrace Rate tor Ags 14
Yeare end Under $E /$

3 Excludes anective, not cleseafied end address unk nown cetegories.
D $\quad$ n its puolicetion of 1981 dets, the NHA began differsitieting additionsl euospeciabists an anternel medicins end pedistrics, wisn ars included under genersl anternel medicine end pedietrice in this teble. Separete estametes an anternel medicine ere provided for ellergy end immunology, dienetes, endocrinology, geristrics, hamatology, imanology, infectious diecsese, neoplestic disceses, nephrology, nutration, oncology and rheumatology. Separate setimater in pedietrice were provided for sdolsecent medicine, neonetel-perinetel medicine,
pedietrice-sndocifinology, pedietrice hematology/oncology, and pedietrice-nepnrology. When these groupe ers excludad from the 1982 internel medicine end pedietric deta in this tebie, the reepective eetamates for anternel medicine end pedietrice become 64,151 and 29,687. Thus, thess epecisltise decreses from 17.8 percant end 7.0 percent to 14.3 percent end 6.6 percent respectivaly of ell ective pnyeiciens.

C/ Includes mDe in Famaly Practics, 1970-1981.
d) U.S. Censue setimates ars es of July 1 for asen yeer end include U.S. residente, srmed torces overseas and the civibian populetion in U.S. posesesions.
ef Ae of July 1 of esch yest, Dut estimates axclude the civilien populetion of Pusto faco and outlyang arese, for whom ege-apecific dete ere not evelledle.
5/ Pedistrice rete celcuistion excludes dete for practitioners and populetion of Puerto Rico end outlying erens.

SOUNCES: Anericen medzcel Associetion. Physicien Charectaristics and Distribution in the U.S., 1983. Chicego, 1984. Aleo previous ennuel additione tut 1970, 1975, 1980 and 1981 dete; U.S. Department of Comerce, Burseu of the Census, Current Populetion Aeporte seriee P-25, Nos. 951, 943-944 and previous iesues.

Table 3-3. Mubter of Active myalciane (moa) and myalcian-to-population Ration, by cenersil and specielty practice: selected Yoero. December 31, 1970-1982 a,b,c/




 mentoleqy,








melver tercenic motholet?.
twolutiee paneral prevantl' andicine.
twelwien both diaqnost ic and ther oppotic cediolony.

Table 3-4. Number of Federal and Non-Federal Physicians (MDs only) in the United States and Possessions by Detailed Specialty,

December 31, 1981 and 1982a/

	1981	1982
Total Physicians	485,123	501,958
General Practice	60,594	62,339
Family Practice (FP)	31,195	33,831
General Practice (GP)	29,399	28,508
Medical Specialties	+32,031	140,103
Allergy (A)	1,527	1,525
Cardiovascular Diseases (CD)	10,378	10,934
Dermatology (D)	5,825	6,066
Gastroenterology (GE)	4,464	4,729
Internal Medicine	75,211	79,980
Allergy and Immunology (AI)	846	850
Dıabetes (DIA)	408	417
Endocr inology (END)	2.023	2,093
Geriatrics (GER)	697	714
Hematology (HEM)	1,963	2,076
Infectious Diseases (ID)	1,565	1,672
Immunology (IG)	358	359
Internal Medicine (IM)	60,118	64,151
Neoplastic Diseases (ND)	659	657
Nephrology (NEP)	2,438	2,558
Nutrition (NTR)	171	182
Oncology (ON)	2,167	2,334
Rheumatology (RHU)	1,798	1,917
Pediatrics	29,578	31,415
Adolescent Medicine (hDL)	249	278
Neonatal-Eerinatal Medicine (NPM)	865	990
Pediatrics (PD)	28,027	29,687
Pediatrics, Endocrinology (PDE)	125	135
Pediatrics, Hematolcgy-Oncology (PHO)	236	248
Pediatrics, Nephrology (PNP)	76	77
Pediatric Allergy (PDA)	398	421
Pediatric Cardiology (PDC)	704	734
Pulmonary Diseases	3,946	4,299
Broncho-Esophagology (BE)	12	12
Pulmonary Diseases (PUD)	3,934	4,287
Surgacal Specialties	113,704	128,799
General Surgery	34,651	35,775
Abdominal Surgery (ABS)	377	373
Cardiovascular Surgery (CDS)	1,751	1,963
General Surgery (GS)	31,308	32,135
Head and Neck Surgery (HNS)	206	221
Hand Surgery (HS)	481	517
Pediatric Surgery (PDS)	402	436
Tramatic Surgery (TRS)	126	130
Neurological Surgery (NS)	3,498	3,726
Oostetrics and Gynecology	27,200	28, 383
Gynecology (GYN)	1,761	1,759
Obstetrics (OBS)	205	215
Obstetrics and Gynecology (OBG)	25,234	26,409
Ophthalmology (OPH)	13,281	13,841
Orthopedic Surgery (ORS)	14,572	15,571

Table 3-4. Number of Federal and Non-Federal Physicians (MDs only) in the United States and Possessions by Detailed Specialty, December 31, 1981 and 1982a/
(Centinued)

	1981	1982
Otorhinolaryngology	6,529	0,873
"aryngology (LAR)	9	9
Otology (OT)	106	110
Otorhinolaryngology (OTO)	6,403	6,712
Rhino ogy (RHI)	11	12
Plastic Surgery	3,245	3,482
Maxillofacial Surgery (MFS)	52	60
Plastic Surgery (PS)	3,193	3,422
Colon and Rectal Surgery (CRS)	754	762
Thorasic Surgery (TS)	2,085	2,140
Urologi (U)	7,889	8,236
Other Special	124,416	128,158
Aecospace vedıcine (AM)	629	634
Anesthesiology (AN)	16,845	18,794
Child Psycniarry (CHP)	3.295	3,468
Diagnostic Radıology (DR)	8,647	10,732
Forensic Patholory (FOP)	273	283
Neurology	6,226	6,675
Chald Neurology (CHN)	416	425
Neurology ( N )	5,810	6,250
Occupational Medicine (OM)	2,623	2,587
Psychiatry	48,524	29,674
Hypnos 18 (HYP)	59	53
Psychiatry (P)	27,303	28,467
Psychoanalysis (PYA)	1,003	992
Psychosomatic Medzcine (PYM)	159	162
Pathology	13,855	14,513
Blood banking (BLB)	195	202
Clinical Pathology (CLP)	896	921
Dermatopathology (DMP)	86	90
Neuropathology (NA)	176	176
Pathology (PTH)	12,502	13,124
Radioisotopic Pathology (RIP)	---	,
Physical Medicine and Rehabilitation (PM)	2,355	2,685
General Preventive Medicine (GPM)	809	839
Public Health (PH)	2,115	2,129
radiology	10,892	12,071
Nuclear Medicine (NM)	2,156	1,1,12
Nuclear Radiology (NR)	33	42
Pediatric Radiology (PDR)	201	215
Radiology (R)	9,502	8,777
Therapeutic Radiology (TR)	1,744	1,895
Other	14,102	14,772
Emergency Medicine (EM)	7,811	8,172
Clinical Pharmacology (PA)	505	512
Legal Medicine (LM)	131	131
Other Specialty (OS)	5,655	5,658
Unspecified (US)	11,482	8,302
Not Classified	14,154	13,558
Inactive	35,011	35,690
Address Unknown	5,213	3,321

a/ Using specialty codes of the Amerıcan Medical Association.
SOURCE: American Medical Association. Physician Characteristics and Distcibution in the U.S., 1982 and 1983 editions. Chicago, 1383 and 1984.

Table 3-5. Major Professional Activity of Federal and Non-Federal Physicians, (MDs): Selected Years, 1970-1982

r.ctivity	1970	1975	1980	1981	1982	Percent Change 1970-1982
Total Physicians	334,028	393,742	467,679	485,123	501,958	50.3
Patient Care	278,535	311,937	376,512	389,369	408,663	46.7
Office-Based	192,439	215,429	272.000	288,038	299,191	49.7
Hospital-Based	86,096	96,508	104,512	101,331	109,472	17.7
Residents	51,228	57,802	62,042	63,349	68,986	23.7
Staff	34,868	38,706	42.470	37,982	40,486	8.9
Non-Patient Care	32,310	28,343	38,404	41,376	40,726	28.1
Medical Teaching	5,588	6,445	7.942	7.202	7,505	28.9
Administration	12,158	11,161	12,209	13.250	13,408	9.0
Research	11,929	7,944	15,377	17.901	16,743	50.1
Otner	2,635	2,793	2,876	3,023	3,070	14.7
Not Classified or						
Address Unk nown	3.562	32,013	27.029	19,367	16.879	43.7
Inactive	19,621	21,449	25,744	35,011	35,690	78.4

Percent Distridution

Activity	1970	1975	1980	1981	1982
Total Physicians	100.0	100.0	100.0	100.0	100.0
Patrent Care	83.4	79.8	80.5	80.3	81.4
Office-Based	57.6	54.7	58.2	57.7	59.6
Hospltal-Based	25.8	24.5	22.3	20.9	21.8
Residents	15.3	14.7	13.3	13.1	13.7
Staff	10.4	9.8	9.1	. 8	8.1
Non-Patient Care	9.7	7.2	8.2	8.5	8.1
Medical Teacning	1.7	1.6	1.7	1.5	1.5
Administration	3.6	2.8	2.6	2.7	2.7
Researcn	3.6	2.0	3.3	3.7	3.3
Other	0.8	0.7	0.6	0.6	0.6
Not Classified or Address Unk nown	1.1	8.1	5.8	4.0	3.4
Inactive	5.9	5.4	5.5	7.2	7.1

SOURCES: American Medical Ascociation. Physician Distribution and Medical Licensure in the U.S., 1968-1982 editions, and Physician Characteristics and Distribution in the U.S., 1982-1983 editions. Chicago. Data are as of December 31 of each year.

Table 3-6. Inıtial Licensure of Physicians (MDs) Each Year in the U.S., 1950-1983

Year	Total New Licentiates	U.S. and Canadian Graduates	FMGs (Other Than Canadian Graduates)	
			Number	Percent
1950	6,002	5.694	308	5.1
1951	6,273	5,923	350	5.6
1952	6,885	6,316	569	8.3
1953	7,276	6,591	685	9.4
1954	7,917	7.145	722	9.8
1955	7,737	6,830	907	11.7
1956	7.463	6,611	852	11.4
1957	7.455	6,441	1.014	13.6
1958	7,809	6,643	1,166	14.9
1959	8,269	6,643	1,626	19.7
1960	8,030	6,611	1,419	17.7
1961	8,023	6,443	1,580	19.7
1962	8.005	6.648	1,357	17.0
1963	8,283	6,832	1,451	17.5
1964	7,911	'6.605	1,306	16.5
1965	9,147	7.619	1,538	16.7
1966	8,851	7.217	1,634	18.5
1967	9,424	7,343	2,081	22.1
1968	9,766	7.581	2.185	22.4
1969	9,978	7,671	2,307	23.1
1970	11.032	8,016	3.016	27.3
1971	12.257	7.943	4.314	35.2
1972	14,476	7,815	6,661	46.0
1973	16,689	9.270	7.419	44.5
1974	16,706	10,093	6,613	39.6
1975	16,859	10,894	5,965	35.4
1976	17,724	11.288	6.436	36.3
1977	18,175	12,324	5,851	32.2
1978	19,393	14,815	4.578	23.6
1979	19,896	16.330	3,566	17.9
1980	18,172	14,862	3.310	18.2
1981	18,831	15,700	3.131	16.6
1982	17.605	13.409	4.196	23.8
1983	20,601	15,848	4,753	23.1
Total	412,329	304,014	94,906	23.0
Averages				
1950-1554	6,871	6,334	537	7.8
1955-1959	7.747	6,634	1,113	14.4
1960-1964	8,050	6,628	1,423	17.7
1965-1969	9,433	7,486	1,947	20.6
1970-1974	14.232	8,627	5,605	39.4
1975-1979	18,409	13,130	5.279	28.7
1980-1983	18,802	14,955	3,848	20.4

SOURCI: American Medical Association. U.S. Medical Licensure Statistics, 1983, and Licensure Requarements, 1984. Chic 190, 1985.

Table 3-7. Federal and Non-Feteral Pnysicians (MDs)
by Specialty and Gender, 1975 and 1982

Momen Eperialty	1975			1980			1982			Change $1975-198$
	Rumber	percent of Women Physiciana	Percent of All Phyaicians	Number	Percent of mompn Physicians	Percent   of All   Physacians	Number	Percent of Women Physicians	Percent of All Pnysicians	Percent of Women Physicians
Total Physiciane	35.636	100.0	9.1	54,284	100.0	11.6	64.247	100.0	13.1	80.3
General Practice	2.866	0.0	5.3	4,671	8.6	1.8	6,067	9.4	9.9	111.7
Internal Medicine a/	4.006	11.2	7.4	8,130	14.9	11.4	10,032	16.9	13.5	170.4
curgery	1,196	3.4	1.6	2,318	4.3	2.1	3,061	4.8	3.3	155.9
Pediatrics b/	5.081	14.3	24.5	8,117	15.0	28.5	9,976	15.5	31.8	96.3
Ob-Gyn	1.771	5.0	3.2	3,243	6.0	12.3	4.207	6.5	14.0	136.7
Rediology	1,006	2.8	6.2	1,742	3.2	8.6	2,250	3.5	9.9	123.7
Psychiatry $9 /$	3,803	10.7	14.3	5.257	9.7	17.1	6.454	10.0	19.5	69.7
Anestheaiology	1,819	5.1	14.2	2,388	4.4	15.0	3,077.	4.8	16.4	69.2
Other	5,674	15.9	13.8	0,834	16.3	13.8	10,341	16.1	15.1	82.3
Other Unapecified d/	0.408	23.6	15.7	9,570	17.6	11.5	1,982	12.4	15.2	5.1
	1975			1980			1982			Change $1975-198$
Men Specialty	Number	percent of Men Physiciane	Percent of All Phystcians	Number	Percent of men Physicians	Percent of All Physicians	Number	Percent of Men Physicians	Percent of All Physicians	Percent of Men Physicians
Total Physiciane	350,106	100.0	90.0	413.395	100.0	88.4	4.5.717	100.0	86.9	18.9
General fractice	51,691	14.4	94.7	55,312	13.4	92.2	55,171	13.0	90.1	6.7
Internal Medicine 9	50,325	14.1	92.6	63.401	15.3	88.6	69,148	16.2	86.5	37.4
Surgery	73,088	20.4	98.4	82,155	19.9	97.3	90.274	21.2	96.7	23.5
Pediatcics b/	15.681	3.9	75.5	20,359	4.9	11.2	21.439	5.0	68.2	36.7
Ob-Gyn	19,954	5.6	91.8	23.062	5.6	07.7	24,176	5.7	85.2	21.2
Rediology $\mathrm{C}^{\text {/ }}$	15,234	4.3	93.8	18,540	1.5	91.4	20,553	4.8	90.1	34.9
Paychiatcy	22,700	6.3	05.1	25.495	6.2	82.9	26,688	6.3	80.5	17.6
Anesthesiology	11,042	3.1	05.8	13,510	3.3	85.0	15,717	3.7	03.6	42.3
Other	53,336	14.9	96.2	68,256	16.5	86.2	58.024	13.6	84.9	8.8
other Unspacified d/	45.054	12.6	04.3	43,185	10.5	88.5	44,587	10.5	84.8	0.0

9f Includes the apecialties of allecgy, cardiovascular diseases, gastroenterology, and pulmonary diseases.
b/ Excludes the aubepecialties of pediatric allergy and pediatric cardiology.
C/ Includes general and child peychiatry.
d/ Includes inective, unclasnified and addrese unknown catugor ies.
souncti Compiled by Mealth mesources and Services Administration, Dureau of Health Professions, Division of medicine, based on data from the American Andical Aasociation. Phyeician Distribution and Modical bicensure in the U.S.e 1976 and Physician Characteristics and Distribution in the U.8., 1981 and 1983 editions. Chicago, 1911. 1981 and 1984.

Table 3-8. Federal and Non-Federal Women Physicians (MDs) by Activity, 1970 and 1982

Activity	1970			1982			Annual Percent Change1970-1982	
	Total	Women		Total	women		Total	Women
		Number	Percent		Nupber	Percent		
Total Physicians	334,028	25,401	7.6	501,958	64,247	12.8	4.2	12.7
Patient Case	278,535	18,362	6.6	408,663	50,762	12.4	3.9	14.7
Office-Rased	192,439	9,217	4.8	299,191	27,269	9.1	4.6	16.3
Hospital-Based	86,096	9,145	10.6	109,472	23.493	21.5	2.3	13.1
Residents	51,228	5,464	10.7	68,986	16,518	23.9	2.9	16.9
Full-Tame staff	34,868	3,681	10.6	40,486	6,975	17.2	1.3	7.5
Other Professional								
Activities	32,310	2,956	9.1	40,726	5,503	13.5	2.2	7.2
Medical Teaching	5,588	611	10.9	7,505	1,164	15.5	2.9	7.5
Adminietration	12,158	915	7.5	13,408	1,390	10.4	0.9	4.3
Pesearch	11,929	1,146	9.6	16,743	2,433	14.5	3.4	9.4
Other	2,635	284	10.8	3,070	516	16.8	1.4	6.8
Not Classified,								
Inactive, Address								
Unk nown	22,825	4,014	17.6	52,569	7.982	15.2	i0.9	8.2

SOUPCE: American Medical Assoclation. Physician Characteristics and Distribution in the U.S., 1983 . Chicago, 1984 .

122

Table 3-9. National Health Care Expenditures by Purpose
1976, 1981-1983 actual, 1984-85 estimate, Average Annual Rate of Increase, 1976-1981 and Yearly Percent Change 1981-82 to 1984-85
(billions of $\$$ )

	1976	1981	1982	1983	1984	1985
Total	150.8	285.8	322.3	355.4	384.3	422.6

Purpose

Physician Services	27.6	54.8	61.8	69.0	75.2	82.4
Hospital Care	60.9	117.9	134.9	147.2	155.6	173.0
All Other	62.3	113.1	125.6	139.2	153.5	167.2


	Average   Anr.ual   Rate of   Increase				
	$\underline{1976-81}$	$\underline{1981-82}$	$\underline{1982-83}$	$\underline{1983-84}$	$\underline{1984-85}$
Total	$\underline{13.6}$	12.8	10.3	8.1	10.1

Purpose

Physician Services	14.7	12.8	11.7	9.0	9.6
Hospital Care	14.1	14.4	9.1	5.7	11.2
All Other	12.7	11.1	10.8	10.3	8.9

SOURCES: Health Care Finarcing Administration, Health Care Financing Review 6:2, Winter 1984, and telepnone communication with HCFA staff.

Table 3-10. Consumer Price Indexes, 1976, 1981 and 1983

				Average Annual   Rate of Increase	
Consumer Price Index a/	1976	1981	1983	$1976-81$	$1981-83$
Medical Price Inöex	180.5	272.4	298.4	9.8	4.6
Physician services	188.5	294.5	357.3	9.8	4.0
Hospital Room	299.0	252.3	9.7	3.8	

a/ Urban consumers, Totas; $1976=100$.
SOURCE: Telephone Communication with Health Care Financing Adminıstration staff, February 1985.

Table 3-11. Distribution of the Population and Location of mos by Census Division, 1982 a/

af Colums may not add to total because of rounding.
b/ Excludes 4,906 Federal and non-Federal MDs in the possessions, 1,237 APO's and FPO's, and 3,321 MDs with unknown addresses.
G/ Excludes 4,756 non-Pederal MDs in the possessions.
SOURCE: Aerican medical Association. Physician Characteristics and Dıstribution in the U.S., 1983 edition. Chicago, l984.


9 Colvine ery not ald to total because of rounding.



Table 3-13. Distribution of Number of Graduate
Residents by Community size a/

	1980		1981		1982		1983		1984		Yearly   Growth Rate (Percent)
Type of Area	Number	Percent	Number	Percent	Numbe 1	Percent	Number	Percent	Number	Percent	
Urban	1,194	89.3	1.256	86.5	1,367	89.8	1,225	89.9	1,355	87.1	3.2
In Urban Areas b/	446	33.4	448	30.9	528	34.7	446	32.7	536	34.5	4.7
Outside Urban Areas $c /$ (Small Towns 2,500-	748	55.9	808	55.6	839	55.1	779	57.2	819	52.6	2.3
25,000)	(510)	(58.2)	(553)	(38.1)	(605)	(39.7)	(533)	(39.1)	(585)	(37.6)	3.5
Rural d/	113	10.7	196	13.5	155	10.2	138	10.1	201	12.9	8.9
Total	1,337	100.0	1,452	100.0	$\underline{1,522}$	100.0	1,363	100.0	$\overline{1.556}$	100.0	3.9

a/ Numrers of yraduates responding to the survey who indicated the size of the conmunity in which thes intended to serve. The percentage of all residents responding to the distribution survey varies over the years.
b/ Contained in 'Urbanized areas' are metropolitan areas including suburbs.
c/ Contained in 'Outsize urban areas' are small towns and small cities with population under $100,000$.
d/ Contained in 'Rural' areas are the two rural categories, large and small towns.
SOURCE: American Academy of Family Physiciars.

Type of Area	Population				Yearly Growth Rate (Percent)
	1970		1980		
	Number   (in thousands)	Percent	Number   (in thousands)	Percent	
Urban:	149,325	73.5	167,051	71.3	1.1
In Urban Areas	118,447	58.3	139,171	58.5	1.6
Outside of Urban Areas	30,878	15.2	27,880	12.8	-1.0
Rural	53,887	26.5	59.495	28.7	1.0
Total	203,212	100.0	226,546	100.0	1.1

SOURCE: U.S. Department of Comerce, Bureau of the Census.

Table 3-14. rotal Number of Csteopathic Physicians (DOs), 1975-1984

Year	Total Number Listed DOs	Total Number Active DOs
1975	14,929	14,060
1976	15,572	14.530
1977	16,175	15,090
1978	17,036	15,720
1979	17,975	16,400
1980	18,820	17,140
1981	19,686	17,970
1982	20,559	18,670
1983	21,618	19,690
1984	22,746	20,770
	Listed DOs per 100,000	Active DOs per 100,000
Year	Population	Population
1975	6.9	6.5
1976	7.1	6.6
1977	7.3	6.8
1978	7.6	7.0
1979	7.9	7.2
$\therefore 980$	8.2	7.5
1981	8.5	7.8
1982	8.8	8.0
1993	9.3	8.5
1984	9.7	8.8

SOURCES: American Osteopathic Association. Yearbook and Directory of Osteopathic Physicians, 1984-85. Chicago, 1984, and U.S. Bureau of the Census. Current Population Report P-25, Nos. 438, 542, 812, 900, 911, 92j, and 965. Active estimates for DOs estimated by the Bureau of Health Professions of the Health Resources and Services hdministration.

Table 3-15. Ostenpathıc Physicians (DOs) with Board Certification 198G, 1982 and 1984a/

	1980		1982		1984	
Certification Board	Number	Percent	Number	Percent	Number	Percent
Anesthes rology	192	5.0	212	4.4	218	3.9
Dermatology	39	1.0	46	1.0	48	0.9
Emergency Medicine	9	0.2	13	0.3	53	0.9
Fellows of AOA	76	2.0	76	1.6	81	1.4
General Practice	1,664	43.2	1,956	40.7	2,163	38.5
Internal Medianne	333	8.6	666	13.9	833	14.8
Neuroloyy/psychiatry	107	2.8	126	2.6	232	2.4
Nuclear Medicine	67	1.7	71	1.5	77	1.4
Obstetrics/isynecology	113	2.9	136	2.8	152	2.7
Opthalmology/Otorhinolaryngology	143	3.7	231	4.8	297	5.3
Pathology	108	2.8	115	2.4	221	3.9
Pediatrics	104	2.7	121	2.5	142	2.5
Proctology	56	15	72	1.5	72	1.3
Publıc Health and Preventive Medicine	--	--	--	--	38	0.7
Radıology	339	8.8	367	7.6	403	7.2
Renabilitation Medicıne	55	1.4	63	1.3	72	1.3
General Surgery	282	7.3	330	6.9	363	6.5
Neurologic Surgery	10	0.3	12	$0 .$.	13	0.2
Orthopedic Surgery	106	2.7	131	2.7	158	2.8
Plastic and Reconstructive Surgery	--	--	2	0.0	2	0.0
Thoracic Surgery	17	0.4	22	0.5	27	0.5
Urologic Surgery	35	0.9	40	0.8	48	0.9
Total	3,855	99.9	4,808	100.0	5,613	100.0

a/ Total may not equal 100 due to rounding.
SOURCE: Amer ican Osteopathic Association. Yearbook and Directory of Osteopathic Physıcıans, 1980-81, 2982-33, and 1984-85. Chicago, 1980, 1982 and 1984.

Table 3-16. Distrıoution of Osteopathıc Physicians iDOs)
by Professional Activity, 1982 and 1984

Activity	1982		1984	
	Number	Percent	Number	Percent
Total DOs	20,494	100.0	22,746	100.0
Withın U.S.	20,383	99.5	22,643	99.5
Outside U.S.	111	. 5	103	. 5
Patient Care, Private	12,844	62.7	13,520	59.4
Offıce-Based	12,442	60.7	13,046	57.3
Hospital-Based	402	2.0	474	2.1
Patient Care, Public	1,808	8.8	1.982	8.7
Government	1,415	6.9	1,582	6.9
Academic/Relıgious	393	1.9	400	1.8
Training (Interns and Residents)	3,394	16.6	4,117	18.1
Non-patient Care	2,448	12.0	3,127	13.7
Retired	1,325	6.5	1,438	-6.3
Other	1,123	5.5	1,689	7.4

SOURCE: American Osteopathic Associatıon. Yeardook and Directory of Osteopathic Physicians, 1982-83 and 1984-85. Chicago, 1982 and 1984.

Table 3-17. Distribution of Total Oateopathic phyaiciant (00s) by sace, 1942 and 1904

Rank	Mumper of POM		Percent of poat		Cumulative Percent		$\begin{aligned} & \text { Rank } \\ & 1904 \end{aligned}$
1902 state	1902	1204	1902	2914	293	1284	
1. Micaigend	3.150	3.355	15.4	14.7	25.4	14.7	1
2. Pennaylveniad	2.590	2.060	12.6	12.6	20.0	27.3	2
3. Onics/	1.767	1.984	0.6	0.7	36.6	36.0	3
4. Mrasour it/	1.310	1,396	6.4	6.1	43.0	42.1	4
5. Floride/	1,210	1.300	5.9	6.1	41.:	48.2	5
6. Teranel/	1.102	1.377	5.1	6.1	54.7	54.3	7
7. New Jorsey	1.132	:. 205	5.5	5.6	60.2	59.9	6
1. Onlahomal	715	023	3.5	3.6	63.7	63.5	\%
9. Iowe/	542	636	2.0	2.1	66.5	66.3	10
10. Arizona	563	620	2.7	2.7	63.2	69.0	12
11. Mew Yozay/	554	623	2.7	2.7	71.9	71.7	11
12. 1112nosay	554	648	2.6	2.4	74.5	74.5	0
13. Californial	478	552	2.3	2.4	76.0	76.9	13
14. Color ado	347	370	1.7	1.6	70.5	74.5	14
15. Fanmas	273	295	1.3	1.3	79.0	79.0	15
16. Weshington	253	263	1.2	1.2	11.0	01.0	10
17. Manaly	250	279	1.2	1.2	02.2	02.2	16
10. Wiaconisn	247	276	1.2	1.2	03.4	63.4	17
19. Oregon	241	248	1.2	1.1	14.6	84.5	20
20. Indiana	239	255	1.2	1.1	15.6	05.6	19
21. Massacnusetts	156	169	0.0	0.0	06.6	06.4	22
22. Georgia	153	179	0.7	0.0	07.3	07.2	21
23. Weat Virginidel	120	149	0.6	0.7	07.9	07.9	23
24. New Mexico	123	130	0.6	0.6	81.5	01.5	24
25. Rnode Ialand	91	101	0.4	0.4	10.0	60.9	25
26. Tenneasee	00	90	0.4	0.4	19.3	09.3	26
27. Delaware	68	01	0.3	0.4	09.6	19.7	27
21. Minnesoti	66	71	0.3	0.3	19.9	90.0	29
29. Virginia	64	76	0.3	0.3	90.2	90.3	20
30. Kentucky	50	62	0.2	0.3	90.4	90.6	30
31. Nevada	47	51	0.2	0.2	90.6	90.8	31
32. Maryland	43	47	0.2	0.2	90.6	91.0	32
33. Connacticut	40	45	0.2	0.2	91.0	91.2	33
34. Vermont	37	36	0.2	0.2	21.2	91.4	38
35. Nortn Carolina	36	44	0.2	0.2	91.4	91.6	34
36. Idaho	36	37	0.2	0.2	91.6	91.0	37
37. Arransas	33	39	0.2	0.2	91.0	92.0	36
30. Hawali	30	30	0.2	0.1	92.0	92.1	42
39. Misasesppl	27	43	0.1	0.2	92.1	92.3	35
40. South daxofa	27	31	0.1	0.1	92.2	92.4	40
41. Nebraska	25	10	0.1	0.1	92.3	92.5	45
42. montana	22	33	0.1	0.1	92.4	92.6	39
43. South Carolina	21	17	0.1	0.1	92.5	92.7	47
44. New Hampanica	21	20	0.1	0.1	92.6	92.8	43
45. Aladama	19	31	0.1	c. 1	36.7	92.9	41
46. Utan	17	20	0.0	0.1	92.7	93.0	44
47. Wyoming	14	10	0.0	0.1	92.7	93.1	46
49. Lousciana	11	15	0.0	0.1	92.7	93.2	48
49. Alaska	10	13	0.0	0.1	92.7	93.3	49
50. North Dakota	7	11	0.0	0.0	92.7	93.4	50
51. Distract of Columbae	7	9	0.0	0.0	92.7	\$3.4	51
52. Guan	1	1	0.0	0.0	92.7	93.4	52
53. Puarto Rico	0	1		0.0			
subtotal	19.171	22.250	92.7	23.4	92.7	93.4	
Militery Service	1.064	1,237	5.2	5.4	97. ${ }^{\text {y }}$	90.0	
U.S. Puol.c							
Heelth Servace	146	140	0.7	0.7	90.6	99.5	
Conade	53	49	0.3	0.2	90.9	99.7	
porsign	30	54	0.3	0.2	99.2	99.9	
Total	20.492	22,746	99.20/	99.9	99.2 b	99.9	

9 Statef witn Colleges of Orteopathic medicine.

- Pounding ertor.

SOURCE. COmpiled from dasa presantad in the non Yaarbook and Directory of Ofteupainic prijsicians, 19d2-g] and 1984-85. Cnicago, 1982 and 1984 .

Table 3-18. Distribution of Total Osteopathic Physicians (DOs) by Age, 1982 and 1984


SOURCE: American Osteopathic Association. Yearbook and Directory of Osteopathic Physicians, 1982-83 and 1984-85. Chicago, 1981 and 1984.

Table 3-19. Supply of DOs by State, 1981 and 1984, and Percent Cnanga, 1981-1984

	1981		1984		Change, 1981-2984	
	Number	Rank	Number	Rank	Percent	Rank
Michigan	3,123	1	3,355	1	7.4	16
Pennsylvania	2.447	2	2,860	2	16.9	8
Ohio	1,671	3	1,984	3	18.7	5
Massouri	1,287	4	1,396	4	8.5	15
Florida	1,193	5	1,388	5	16.3	7
Texas	1,118	6	1,377	6	23.2	4
New Jersey	1,110	7	1,285	7	15.8	11
Oklanoma	657	8	823	8	25.3	2
Iowa	551	9	636	10	15.4	12
New York	537	10	623	11	16.0	9
Ar 2 zona	535	11	620	12	15.9	10
Illinoss	517	12	648	9	25.3	1
Californıa	442	13	552	13	24.9	3
Colorado	330	14	370	14	12.1	13
Kansas	266	15	295	15	10.9	14
Maine	237	16	279	16	17.7	6
All Dos	19,686		22,746		15.5 a/	

a/ Actual 4-jear percentage change for all DOs was 15.5 percent, from 19,686 to 22,746.

SOURCES: American Osteopathic Association. Yearbook and Directory of Osteopathic Physicians, 1981-82. Chicago, 1981. American Osteopathic Association. Yearbook and Directory of Osteopathic Physicians, 1984-85. Chicago, 1984.

$$
155
$$

Table 3-20. Numbrs of Physicians and Rate Per $\mathbf{1 0 , 0 0 0}$ for Selected Industrial Countries a,b/

a/ Rate means number.
b/ MA-data not available.
SG ikr E: Adapted from World Health Statistics 1983, World Health Organization, Geneva, Switzerland.

Table 3-21. Number and Acceptance Ratio for Applicants to U.S. Medical Schools, by Gender: Selected Academic Years, 1961-62 Through 1984-85

Academic Year$\qquad$	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Schools } \end{aligned}$	Number of Applicants	Percent of Women Applicants	Percent Accepted		Applicants: Acceptance Ratioa/
				Men	Women	
1961-62	87	14,381	8.1	60.1	63.2	1.7
1967-68	94	18,724	10.4	51.9	50.4	1.9
1971-72	102	29,172	12.8	41.9	45.1	2.4
1977-78	122	40,569	25.1	39.2	40.0	2.5
1978-79	125	36,636	26.1	45.6	43.7	2.2
1979-80	126	36,141	28.3	46.9	46.3	2.1
1980-81	126	36,100	29.5	47.9	46.4	2.1
1981-82	126	36.727	31.8	47.7	45.7	2.1
1984-85b/	127	35,944	34.7	48.8	45.9	2.1

a/ Applicant data given for 1977-78 are for 119 schools and exclude the charter classes at Northeastern Ohio University, Rootstown; Mars ll University in West Virginia; and Catholic University in Puerto Rıco. The applicant:acceptance ratio peaked in 1974-75 at 2:9.
b/ Data for 1984-85 were provided by telephone communication with the Association of American Medical Colleges. Total number of applicants slightly $2 n c r e a s e d$ from 35,200 in 1983-84.

SOURCES: American Medical Association. "82nd Annual Report on Medical Education in the U.S. 1981-1982." Journal of the American Medical Association, 248:24, December 24/31: 1982; Datagram, Journal of Mcdical Education, 48, February, 1973; and Datagram, Journal of Medical Education, 57, November, 1982.

Table 3-22. Number and Proportion of Students Repeating the Respective Academic Year for Underrepresented Manorities and All Other Minorities, 1973-1983

	First-Year Class			All Other Classes		
	$\begin{gathered} \text { Tosal } \\ \text { Enrolled } \\ \hline \end{gathered}$	Repeating		Total   Enrolled	Repeating	
		Number	Percent		Number	Percent
1973-74						
Underrepresented	1.370	144	11.3	2.478	128	5.2
All Other	12,642	142	1.1	33.477	$\underline{202}$	0.6
Total	13,912	286	2.1	35,955	330	0.9
1974-75						
Underrepresented	1.491	202	13.5	2.872	183	6.4
All Other	13.472	$\underline{162}$	1.2	36.239	229	0.6
Total	14,963	364	2.4	39,111	412	1.1
1975-76						
Underrepresented	1,419	192	13.5	3.176	181	5.7
All Other	13,868	157	1.1	37.406	262	0.7
Total	15,227	349	2.3	40,582	443	1.1
1976-77						
Underrepresented	1.443	152	10.5	3,398	250	7.4
All Other	14,091	$\underline{174}$	1.2	38,867	303	0.8
Total	15,534	326	2.1	42,265	553	1.3
1977-78						
Underrepresented	1.621	171	10.5	3,893	210	5.4
All Other	14,513	$\underline{242}$	1.7	40,429	311	0.8
Total	If 134	413	2.6	44,322	521	2.2
1978-79						
Underrepresented	1,646	195	11.8	3,963	225	5.7
All Other	14,974	262	1.7	42,171	351	0.8
Total	16,620	457	2.7	45.134	576	1.2
1979-80						
Under represented	1,806	208	11.5	4,064	185	4.E
All Other	15,208	204	1.3	43,117	317	0.7
Total	17,014	412	2.4	47.181	502	1.1
1980-81						
Underrepresented	1.761	256	14.5	4.191	195	4.7
All Other	15,443	308	2.0	44,102	339	0.8
Total	17,204	564	3.3	48,293	534	1.1
1981-82						
Underrepresented	1,886	252	13.4	4,334	206	4.8
All Other	25,434	358	2.3	44.831	322	0.7
Total	17.320	610	3.5	49.165	528	1.1
1982-83						
Underreprese ،tẹd	1,781	239	13.4	4.488	225	5.0
All Other	15,449	327	2.1	45,168	308	0.7
Total	17.230	636	3.3	49,656	533	1.1

SOURCE: Developed by Division of Medicine Staff (Office of Data Analysis and Special Projects) from data obtained from Association of American Medical Colleges, Office of Minority Affairs.

Table 3-23 A. Pirst-Year U.S. Medical School Enrollment, a/ by Gender: 1978-79 Through 1984-85

	$\begin{aligned} & \text { 1978-79 } \\ & 24 \text { Schools) } \end{aligned}$		$\begin{aligned} & 1979-80 \\ & 26 \text { Schools) } \end{aligned}$		$\begin{gathered} 1980-81 \\ 26 \text { Schools) } \end{gathered}$		$\begin{aligned} & \text { 1981-82 } \\ & 26 \text { Schools) } \end{aligned}$		$\begin{gathered} \text { 1982-83 } \\ 27 \text { Schools) } \end{gathered}$		$\begin{gathered} 1983-34 \\ 27 \text { Schools) } \end{gathered}$		$\begin{array}{r} 1984 \\ (127 \mathrm{Sc} \end{array}$	$\begin{aligned} & -85 \\ & \text { hools) } \end{aligned}$
Gender	Nünber	Percent	Number	Percent										
Men	12,339	74.8	12,217	72.2	12,220	71.1	11,951	69.2	11.792	68.3	11,497	67.0	11,282	66.4
Women	4,162	25.2	4,713	$\underline{27.8}$	4,966	28.9	5,317	30.8	5,462	31.7	5,653	33.0	5,715	33.6
Total	16,501	200.0	16,930	100.0	17,186	200.0	17.268	100.0	17.254	100.0	17.150	100.0	16,997	100.0

a/ Includes students repeating, reenteing, or continuing.

Table 3-23 B. Total U.S. Medical School Enrollment, by Gender: 1978-79 Through 1984-85

	$\begin{gathered} 1978-79 \\ 124 \text { Schools) } \\ \hline \end{gathered}$		$\begin{gathered} 1979-80 \\ 26 \text { Schools) } \\ \hline \end{gathered}$		$1980-81$   (126 Schools)		1981-82		1982-83		1983-84		1984-85	
Gender	Number	Percent	Number	Percent	Number	Fercent	Number	Percent	Number	Percent	Number	Percent	Numbe:	Percent
Men	47.111	75.7	47,651	74.7	47,886	73.5	47,793	72.1	47.151	70.6	46,692	69.4	45,700	68.2
Women	15,102	24.3	16,149	25.3	17,248	26.5	18,505	27.9	13,597	29.4	20,635	30.6	21,316	31.8
Total	62,213	200.0	63,800	200.0	*65,189	100.0	66,298	100.0	66,748	100.0	67,327	100.0	67,016	100.0

af Total includes 35 students whose gender was not reported.
SOURCE: Pall Enrollment Survey, Association of American Medical Colleges.

Table 3-24. Average Tuition, Fees, and Other Expenses for First-Year Medical Students, 1984-85

Average
Range

Turtion	\$ 3,516	\$ 300	8,084
Student Fees	361	0	1,775
All Other Expenses ${ }^{\text {/ }}$	6,989	3,000	11,807
Average Cost for Residents	$\overline{10,866}$		
Public Medical Schools, Nonresidents ${ }^{\text {/ }}$			
Tuition	7,853	\$ 900	26,337
Student Fees	361	0	1,775
All Other Expenses ${ }^{\text {b/ }}$	6,989	3,000	11,807
Average Cost for Nonresidents	$\overline{15,213}$		
Private Medicai Schools ${ }^{\text {S }}$			
Tuition	12,596	\$4,500	19,600
Student Fees	377	0	1,800
All Other Expenses ${ }^{\text {b/ }}$	8,051	2,500	13,000
Average Cost-Private	21,024		

a/ Excludes Uniformed Services University of the Health Sciences, which does not charge tuition or fees.
b/ Includes room and board, books and supplies, transportation, and similar expenses.

C/ Eight private medical schools report a lower tuition for State residents. The higher tuition estimate for these schools was used here. Estimates exclude one school (Carıbe-Cayey) for which figures were not available.

SOURCE: Association of American Medical Colleges. Division of Student Programs, February 1985.

Table 3-25. Medical Student Financial Assistance from Federal Programs and for All Sources, 1981, 1982, and 1983 (In millions of \$)

	Academic Year			percent Change$\begin{gathered} \text { 1982-83 } \\ \text { to } 1983-84 \\ \hline \end{gathered}$
	1981-82	1932-83	1983-84	
Scholarships				
Exceptional Financial Need	\$ 4.9	\$ 2.4	\$ 2.5	$+4.2$
Medical Scientist Training Program	7.7	7.9	7.2	- 8.9
Armed Forces Health Professions	44.8	48.8	51.2	+ 4.9
National Health Service Corps	38.7	23.5	9.1	-61.3
Total Scholarships	96.1	82.6	70.0	-15.3
Loans				
Health Professions Student Loans	24.3	22.9	22.0	- 3.9
Guaranteed Student Loans	228.6	183.2	195.8	+ 6.9
Natıonal Direct Student Loans	12.7	14.9	18.2	+22.1
Health Education Assistance Loans	33.1	50.4	78.8	+56.3
Parental Laans for Undergraduate Students	2.0	11.3	18.0	+59.3
Total Loans	\$300.7	282.7	332.8	+17.7
College Work Study Program	1.5	1.4	2.7	+92.9
Federal Total	398.3	366.7	405.5	+10.6
Total, All Sources	\$465.4	439.8	485.8	+10.5

SOURCE: Compiled by the Health Resources and Services Administration, Bureau of Health Professions, Division of Medicine, from data published by the Association of American Medical Colleges. Journal of Medical Education, 1983 and 1984.

Table 3-26. Acceptance Number and Percentage of A11
Applicants to 'edical School, by Underrepresented Minority Status, 1974-75 Through 1984-85


Rceptance Rates   and Munbers



EOUnces: Asaociation of Ame:ican Madical Colleges. Minority Studenta in Madical Education: Facts and Figures.
Noyember 1983: 1984-85 data were plovided through teleptione communication with the ANMC.

Table 3-27. Ficit-Year U.S. Medicel School Encollment a/ by Racial/Ethnic Group and citisenship b/e 1978-79 Through 1984-85

Raclal/Ethnic Group	1978-79		1979-80		1980-81		1981-82		1982-83		1983-84		1984-85	
	Nunber	Percent	Nunber	Percent	Number	Percent	Number	Fercent	Number	percent	Number	percent	Mumber	Percent
U.8. Citizens														
White	14,048	85.1	14,259	84.2	14,262	85.0	14.218	82.4	14.085	81.6	13,909	81.1	13,606	80.0
Onder repr atented Minoritien														
Slack	1,061	6.4	1,108	6.5	1,120	6.6	1,196	6.9	1,145	6.6	1,173	6.8	1,448	6.6
American indian or Alagkan mative	47	0.3	63	0.4	67	0.4	10	0.4	62	0.4	75	0.4	77	0.5
Mexican-American/ Chicano	260	1.6	290	1.7	258	1.5	300	1.0	305	1.8	301	1.8	329	1.9
Nuer to Rican (Mainland)	75	0.5	86	0.5	95	0.5	105	0.6	114	0.7	109	0.6	118	0.7
(eubatatal)	(1,443)	(0.8)	(i,547)	(9.1)	(1,548)	(9.0)	(1,671)	(9.7)	$(1,626)$	(9.4)	$(1,658)$	(9.7)	(1,672)	(9.8)
Other U.E. Studente														
Asian or Pecific Iolander	452	2.7	502	3.0	572	3.3	765	4.4	936	5.4	983	5.7	1.124	6.6
Puerto Rican   (Comommealth)	179	1.1	226	1.3	241	1.4	250	1.5	229	1.3	235	1.4	236	1.4
Other miopanic	151	0.9	188	1.1	224	1.3	247	1.4	278	1.6	248	1.4	243	1.4
(Subtotal)	(782)	(4.7)	(916)	(5.4)	(1,037)	(6.0)	$(1262)$	(7.3)	(1,443)	(6.4)	$(1,466)$	(8.5)	(1,603)	(9.4)
Unidentified	--	--	--	--	--	--	6	0.0	9	0.0	4	0.0	5	0.0
Poreign	220	1.4	200	1.3	339	2.0	11	0.6	91	0.5	113	0.7	111	0.7
Total	16,501	100.0	16,930	100.0	17,186	100.0	17,268	100.0	17,254	100.0	17,150	100.0	16,997	100.0

-f Firet-yesr enrollment includee now entrants end atudents repenting, reentering, or continuing.
b/ U.8. Citisens redefined in 1981-82 and thereefter to Include permanent reeidents.
EABCE: Aesociation of Amarican madical Collegee. Fall Enrollment survey.

Aecial/thnic Grous.	1976-79		1979-80		1980-81		1981-82		1982-83		1983-84		1984-15	
	Muber	purcent	Number	Peccent	Number	Percent								
U.8. Citizens														
mite	53,720	06.4	54.854	66.0	55.434	85.0	56,201	84.8	56,032	03.9	56,167	83.4	55,232	82.4
Onder repremented Minorities														
Black	3,357	5.7	3,627	5.8	3.708	5.7	3,884	5.9	3,869	5.8	3,892	5.8	3,944	5.9
american Indian or Aleakan mative	202	0.3	212	0.3	221	0.3	229	0.3	235	0.4	258	0.4	257	0.4
Hexican-American/ Chicano	882	1.4	964	1.5	952	1.5	1,040	1.6	1,071	1.6	1,082	1.6	1,126	1.7
Puer to Rican (Mainland)	277	0.4	283	0.4	329	0.5	350	0.5	369	0.6	368	0.5	380	0.6
(Eubtotal)	(4,098)	(7.0)	(5,086)	(8.0)	$(5,209)$	(8.0)	(5,503)	(8.3)	$(5,544)$	(8.3)	$(5,600)$	(8.3)	$(5,707)$	(6.5)
Other U.S. studente														
Asian or Pacific Is lander	1,592	2.6	1,777	2.6	1,924	3.0	2,510	3.8	2,936	4.4	3,290	4.9	3,763	5.6
Puerto Rican (Comermeelth)	617	1.0	700	1.1	798	1.2	856	1.3	903	1.4	925	1.4	917	1.4
Other Hispanic	489	0.8	567	0.9	683		847	1.3	962	1.4	983	1.5	987	1.5
(Subtctal)	(2,698)	(4.4)	$(3,044)$	(4.8)	(3,405)	(5.2)	(4,221)	(6.4)	(4,001)	(7.2)	(5,198)	(7.7)		(0.5)
Unidentified	--	--	22	0.0	55	0.1	7	0.0	17	0.0	6	0.0	30	0.0
Porelign	897	1.4	194	1.2	1,086	1.7	366	0.5	354	0.5	356	0.5	380	0.6
rotal	62.213	100.0	63,000	100.0	65,189	100.0	66.298	100.0	66,748	100.0	67.327	100.0	67.016	100.0

9) U.3. Citisens redefined in 1981-82 and thereefter to include permarent reaidents.
gouncer Aseccietion of American medicel Colleges! Fell Encollment Survey.

Table 3-29. Applicants to U.S. Schools of Osteopathic Medicine, by Gender, 1976-77 Through 1983-84a/'

Academic   Year	Number of   Applicants	Men	Nomen	Percent   Female
		NA	NA	NA
$1976-77$	3,707	3,359	559	14.5
$19,7-78$	3,918	2,920	610	17.3
$1978-79$	3,530	3,091	765	19.8
$1979-80$	3,856	2,982	804	21.2
$1980-81$	3,786	2,984	901	23.2
$1981-82$	3,885	2,952	965	24.6
$1982-83$	3,917	2,959	1,092	27.0
$1983-84$	4,051			

a/ NA - data not available.
SOURE: American Association of Colleges of Osteopathic Medicine. Annual Statistical Report, 1984. Rockville, MD, 1984. Daさa include colleges participating in the American Association of Colleges of Osteopathic Medicine Appizcation Service (AACOMAS).

Table 3-30. Applicants to U.S. Schools of Osteopathic Medicine, by Racial/Ethnic Category, 1976-77 Through 1983-84

Academic   Year	Total   Applicants	Manority   Applicants	Black	Hispanic	Anerıcan   Indian	Asian	Percent   Manority	
$1976-77$	3,707		168	59	33	14	62	4.5
$1977-78$	3,918	220	111	42	12	55	5.6	
$1978-79$	3,530	231	116	38	18	59	6.5	
$1979-80$	3,856	312	113	56	19	104	8.1	
$1980-81$	3,786	319	130	76	15	98	8.4	
$1981-82$	3,885	362	138	92	15	117	9.3	
$1982-83$	3,917	433	150	128	16	139	11.1	
$1983-84$	4,051	530	188	134	37	171	13.1	

SOURCE: American Association of Colleges of Osteopathic Medicine, Annual Statistical Report, 1984. Rockville, MD, 1984. Data include colleges participating in the American Association of Colleges of Osteopathic Medicine Application Service (AACOMAS).

Table 3-31. First-Year and Total Enrollment and Graduater in U.S. Schools of Osteopathic Medicine, by Gender. Entering Year 1968 Through $198 ?$

$\qquad$	Nüber of Schools	First-Year Enrollment			Total Enrollment			Graduates		
		Total	women	Percent Women	Total	Women	Percent Homen	Total	Women	Percent Women
1968-69	5	521	21	4.0	1,879	53	2.8	427	8	1.9
1969-70	6	577	14	2.4	1,997	59	3.0	432	12	2.8
1970-71	7	623	17	2.7	2,151	61	2.8	472	11	2.3
1971-72	7	670	29	4.3	2,304	79	3.4	485	18	3.7
1972-73	7	810	56	6.9	2,579	116	4.5	649	18	2.8
1973-74	7	884	83	9.3	2,780	181	6.5	594	17	2.9
1974-75	9	974	106	10.9	3.139	267	8.5	702	44	6.3
1975-76	9	1,038	140	13.5	3,443	362	10.5	809	48	7.2
1976-77	10	1,088	179	16.5	3,671	472	12.9	908	84	9.3
1977-78	12	1,163	192	16.5	3.926	570	14.5	971	68	7.0
1978-79	14	1,322	222	16.8	4,221	688	16.3	1,004	163	16.2
1979-80	14	1.426	265	18.6	4.571	789	17.3	1,059	192	18.1
1980-81	15	1,496	329	22.0	4.940	971	19.7	1,151	202	17.6
1981-82	15	1,582	378	23.9	5,304	1,108	20.9	1,017 a/	186	18.3
1982-83	15	1,682	428	25.4	5,822	1,317	22.6	1,317	261	19.8

af Decline attributable to a changeover in one school from a 3-year to a 4-year curriculum.
SOURCE: American Association of Colleges of Osteopathic medicine. Annual Statistical Report, 1984. Rockville, MD, 1984.

Table 3-32. First-Year Enrollment and Total Enrollment in U.S. Schools of Osteopathic Medicine, by Racial/Ethnic Category, Entering Years 1976 Through 1982

$\begin{aligned} & \text { Entering } \\ & \text { Year } \\ & \hline \end{aligned}$	Number of Students						Percent Minority
	First-Year Enrollment	$\begin{aligned} & \text { First-Year } \\ & \text { Minority } \\ & \text { Enrollment } \end{aligned}$	Black	Hispanic	American Indian	Asian	
1976	1,088	59	26	12	6	15	5.4
1977	1,163	63	26	13	8	16	5.4
1978	1,322	74	31	17	10	16	5.6
1979	1,426	93	40	18	6	29	6.5
1980	1,496	99	40	18	8	33	6.6
1981	1,582	104	37	22	12	33	6.6
1982	1,682	127	38	33	10	46	7.6


Entering	Number of Students						percent   Minority
	Total   Enrollment	Total Minority	Black	Hispanic	American Indian	Asian	
1976	3,671	155	i0	27	16	42	4.2
1977	3,926	173	76	33	19	45	4.4
1978	4,221	192	87	36	24	45	4.5
1979	4,571	241	100	45	26	70	5.3
1980	4,940	252	94	$5 ?$	19	87	5.1
1981	5,304	301	104	62	26	109	5.7
1982	5,822	355	116	81	25	133	6.1

sOURCE: American Asaociation of Colleges of osteopathic M-jicine. Annual Statistical Report, 1984. Rockville, MD, 1984.

Table 3-33. Interns, Residents, and Other Trainees in Accredited Hospital Graduate medical Education Programs, by Source of Undergraduate Hedical Education,

1950-51 to 1984-85 -

$\begin{aligned} & \text { Acadenic } \\ & \text { Year } \\ & \hline \end{aligned}$	Internship and Residency programg							Other Fraining Programa		
	Positions	positions	$\begin{aligned} & \text { Filled by } \\ & \text { USMGs/CME } \end{aligned}$	Filled by Fucs		Positions Vacant		Total Trainees	$\begin{gathered} \text { FHG } \\ \text { Trainees } \\ \hline \end{gathered}$	$\begin{gathered} \text { Percent } \\ \text { FMGe } \\ \hline \end{gathered}$
	Offered	Filled		Number	Percent	Number	Percent			
1950-51	28.039	21,525	19,453	2,072	9.9	7,209	25.7	MA	MA	--
1955-56	38,132	31,029	24,995	6,033	19.4	7,104	18.6	na	M	-
1960-61	45,333	37,562	27.627	9,935	26.4	7,711	17.1	na	NA	--
1965-66	51,933	41,568	30,074	11,494	24.9	10,365	20.0	5,725	2,355	41.1
1970-71	61,936	51,015	34,708	16,307	32.0	10,923	17.6	7,822	3,321	42.6
1971-72	65,615	54,578	37,090	17,489	32.0	11,037	16.8	9,173	4,106	44.1
1972-73	65,308	56,244	37,849	18,395	32.7	9,064	13.9	9,038	3,595	39.1
1973-74	66.302	60,113	41,765	18,348	30.5	6,189	9.3	9,324	3,499	37.5
1974-75	61,122	62,512	44,381	18,131	29.0	5,610	8.2	10,854	4,186	38.6
1975-76	Mn	MA	MA	NA	--	NA	--	NA	NA	30.6
1976-77	65,046	60,561	45.065	15,496	25.6	4,485	6.9	9,986	3,748	37.5
1977-78	NA	56,019	42,310	13,709	24.5	M ${ }^{\text {a }}$	--	NA	HA	37.5
1978-79	Mn	63,163	50,342	12,821	20.3	na	--	NA	HA	--
1979-80	69.036	64,615	52,550	12,070	18.7	4,421	6.4	MA	NA	--
1980-61	66,066	61,465	49.387	12,078	19.7	4,601	7.0	4,086	MA	--
1981-82	72,263	69,738	56,544	13.194	18.9	2,525	3.5	6,563	MA	--
1982-83	73,281	70,523	57.400	13.123	18.6	2,758	3.8	6,841		
1~33-84	74,523 b/	72,397	59,176	13,221	18.3	2,126	2.9	NA	NA	--
1984-85	76,200 b/	74,495	61,158	13,337	17.9	1,705	2.2	NA	NA	
1985-86	$76,411 \mathrm{c} /$									

a/ Mn-data not available.
b/ adjusted; actual number of positions calculated on sum of budgeted filled and unfilled positions as of september l.
C/ Estimated; number of positions reported by program directors in Annual Residency Survey, october 1984.
sOURCES: American medical Association. Direc'ories of Approved Internshipe and Rasidencies, 1951-52 to 1973-74; Directory of Approved gesidencies, 1974-75; Directories of Accredited Residencies, 1975-76 and 1977-781 80/81 Directory of Residency Training Prograna Accredited by the Liaicon Comittee on Graduate Medical Education: Directories of Residency Training Programe Accredited by the Accreditation Council for Graduate Medical Education, 81/82, 82/83, 1983/84, 1984/85 and 1985/86. Chicago.

Tabls 3-34. Number of Residents on Duty as of Septamber 1, 1984, Rank-Crdared b: Stats

State	Approximate Number of Residents	percent of Total Pasidente	Cumulative Percent
1. Sew Yor	10.876	14.6	14.6
2. litornia	7,152	9.6	24.2
3. Pennaylvania	4,763	6.4	30.6
4. Texas	4,321	5.8	36.4
5. Illinola	4,172	5.6	42.0
6. Onio	3,799	5.1	47.1
7. Massachusetts	2,980	4.0	51.1
8. Michigan	2,980	4.0	55.1
9. New Jersey	2.011	2.7	57.8
10. Maryland	1,937	2.6	60.4
11. Florida	1.713	2.3	62.7
12. Missouri	1,713	2.3	65.0
13. District of Columbia	1,639	2.2	67.2
14. North Carolina	1,639	2.2	69.4
15. Minnesota	1,490	2.0	71.4
16. Connecticut	1,490	2.0	73.4
17. Varginia	1,415	1.9	75.3
18. Loursiana	1,341	1.8	77.1
19. Tennesses	1.342	1.8	78.9
20. Wisconsin	1,266	1.7	80.6
21. Georgia	1,266	1.7	82.3
22. Colorado	894	1.2	83.5
23. Indiana	894	1.2	84.7
24. Washington	894	1.2	E 5.9
25. A"* ram	819	1.1	87.0
26. Asizona	745	1.0	88.0
27. Kentucky	745	1.0	89.0
28. South Carolina	745	1.0	90.0
29. Iowa	670	0.9	90.9
30. Oklahoma	670	0.9	91.8
31. Kansas	596	0.8	92.6
32. Oregon	447	0.6	93.2
33. West Virginia	447	0.6	93.8
34. Arkansas	372	0.5	94.3
35. Hawalı	372	0.5	94.8
36. Mississippi	372	0.5	95.3
37. Rhode Ialand	372	0.5	95.8
38. Utah	372	0.5	96.3
39. Nedraske	372	0.5	96.8
40. Naw Maxico	223	0.3	97.1
41. Delaware	149	0.2	97.3
42. Maine	149	0.2	97.5
43. New Hamphire	149	0.2	97.7
44. Vermont	149	0.2	97.9
45. Mevada	74	0.1	98.0
46. North Dakota	74	0.1	98.1
47. South Dakota	74	0.1	98.2
48. Wyoming	! 1	0	98.2
49. Montana	--	--	--
50. Idaho	(1)	!	--
51. Alaaka Totalb	73, $\frac{-2}{148}$	--	--

a/ Less than $1 / 10$ th of 1 percent.
b/ Totel axcludse residenta in Pusrto Rico.
SOURCE: American Medical Association. 1985-86 Directory of Residency Training Programe. Cnicago, 1985.

Table 3-35. Number of Residents, Rank-Ordered by Specialty, 1984

Specialty	Number of Residents	Percent of Total Residents	Cumblative Percent
1. Internal Medicine	18,167	24.4	24.4
2. Surgery	8,189	11.0	35.4
3. Family Practic	7,408	9.9	45.3
4. Pediatrics	6,025	0.1	53.4
5. Ob/Gyn	4,615	6.2	59.6
6. Psychiatry	4,558	6.1	¢ . 7
7. Anesthesiology	3,894	5.2	70.9
8. Radiology, Diagnostic	3,176	4.3	75.2
9. Orthopedic Surgery	2,842	3.8	79.0
10. Pathology	2,462	3.3	82.3
11. Ophthalmology	1,569	2.1	84.4
12. Transitional Year	1,480	2.0	86.4
13. Neurology	1,408	1.9	88.3
, Emergency Madicine	1,108	1.5	89.8
\&.. Otolaryngology	1.047	1.4	91.2
16. Urology	1,043	1.4	92.6
17. Dermatology	779	1.0	93.6
18. Physical Medicine and Rehaoilitation	712	1.0	94.6
19. Neurological Surgery	695	0.9	95.5
20. Child Psychiatry	520	0.7	96.2
21. Radiology, Therapeutic	519	0.7	96.9
22. Plastic Surgery	430	0.6	97.5
23. Thoracic Surgery	292	0.4	97.9
24. Allergy and Immunology	258	0.3	98.2
25. Neonatal-Perinatal Medicine	216	0.3	98.5
26. Nuclear Medicine	203	0.3	98.8
27. Preventive Medicine General	199	0.3	99.1
28. Pediatric Cardology	138	0.2	99.3
29. Radiology, Diagnostic (Nuclear)	88	0.1	99.4
30. Occupational Medicine	87	0.1	99.5
31. Combined General Preventive Medicine/Public Health	58	0.1	99.6
32. Aerospace Medicine	54	0.1	99.7
33. Neuropithology	44	0.1	99.8
34. Colon \& Rectal Surgery	41	0.1	99.9
35. Forensic Pathology	35	--	--
36. Blood Banking	34	--	--
37. Pediatric Surgery	27	--	--
38. Vascular Surgery	27	--	--
39. Public Health	25	--	-
10. Dermatopatholo3y	23	--	--
rotal	74,995		

SOURCE: American Medical Association, 1985-1986 Directory of Residency Trainıng Programe. Chicago, 1985.

Table 3-36. Number and Percentage of Residents in AOA-Approved Osteopathic Prograns

Specialty	Academic Year1982-83		Acadenic Year1984-85	
	Number	Percent	Number	Percent
Anesthesiology	50	5.0	80	7.0
Angiography	1	0.1	0	0
Cardiology	24	1.4	11	1.0
Dermatology	1	0.1	1	0.1
Diagnostic Radiology	29	2.9	18	1.6
Emergency Medicine	36	3.5	37	3.3
Endocrinology	0	0	0	0
Gartroenterolgy	10	1.0	8	0.7
General Practice	103	10.4	132	11.6
Hematology	1	0.1	2	0.2
Hematology/Oncology	9	--	1	0.1
Infectious Diseases	0	0	0	0
Internal Medicine	218	21.9	245	21.6
Medical Diseases of the Chest	10	1.0	13	1.1
Nephrology	0	0	3	0.3
Neurosurgery	8	0.8	$\underline{\square}$	0.7
Neurology	5	0.5	6	0.5
Nuclear Medicine	1	0.1	0	0
Obstetrics/Gynecology	85	8.5	99	8.7
Oncology	0	0	0	0
Ophthalmology	24	2.4	23	2.0
Orthopedic Surgery	107	10.8	109	9.6
Osteopathic Principles and practice	4	0.4	0	0
Otorhinc z yngology	12	1.2	17	1.5
Otorhin/Orofacial Plastic Surgery	19	1.9	17	1.5
Pathology	12	1.2	15	1.3
Pediatrics	21	2.1	28	2.5
Proctology	5	0.5	0	0
Psychiatry	4	0.4	10	0.9
Child Psyoniatry	0	0	1	0.1
Radiology	45	4.5	48	4.2
Radiation Oncology	0	0	3	0.3
Rehabilitative Medicine	1	0.1	2	0.2
Rheumatology Immunology	0	0	0	0
Surgery	148	14.9	172	15.1
Thoracic Surgery	3	0.3	2	0.2
Urological Surgery	18	1.8	25	2.2
Total	995	99.9	$\overline{1,136}$	100.0

a/ No program in existence at that time.

SOUACE: Arerican Osteopathic Association. Yearbook and Directory of
Osteopathic Physicians Prograns, 1982-83 and 1984-85. Chicago, 1982 and 1984.

Table 3-37. Approxamate Number of FmGs in Residency and Parcant FMGs of all Raadants, September 1, 1984

State	Approximeta Number of Realdents	FMGs		Percent FMGa of Total Readenta
		Nunber	Percant	
1. Now Jeraey	2,011	1.240	9.3	61.3
2. New York	10,876	4,129	31.0	37.8
3. Illinoia	4,172	1,136	8.5	27.0
4. Michigan	2,980	659	4.9	21.9
5. Delaware	149	35	0.3	23.3
6. Connecticut	1,490	357	2.7	23.5
7. Maryland	1,937	378	2.8	19.7
8. Fiorida	1,713	341	2.6	19.4
9. Onlo	3,799	646	4.8	17.0
10. Penneylvania	4,768	816	6.1	17.2
11. Rhode laland	372	62	0.5	15.8
12. Oiatrict of Columbza	1,639	250	1.9	15.6
13. Missourd	1,713	249	1.9	14.7
14. Nebr alak	372	58	0.4	16.3
15. North Dakota	14	17	0.1	17.7
16. Louisiand	1,341	181	1.4	13.7
17. Navada	74	9	0.1	11.2
18. Tenneasae	1,341	149	1.1	11.0
19. Kentucky	745	69	0.5	9.6
20. Kansaa	596	60	0.4	10.2
21. Maasachusetts	2,980	314	2.4	10.4
22. West virginda	447	51	0.4	11.9
23. Oxlahoma	670	58	0.4	8.7
24. Californa	7.152	632	4.7	8.8
25. Wiaconain	1,266	109	0.8	8.9
26. Texas	4,321	322	20.4	7.5
27. South Dakota	74	7	0.1	7.6
28. Arszona	745	48	0.4	6.6
29. Alabama	819	59	0.4	7.0
30. Georgaa	1,266	86	0.6	6.7
31. Lowa	670	42	0.3	6.0
32. Kiasinasppi	372	17	0.1	4.7
33. Maine	149	9	0.1	5.8
34. Oregon	447	20	0.1	4.2
35. North Carolina	1,639	69	0.5	4.2
36. Virgania	1,415	69	0.5	4.8
37. Hawail	372	15	0.1	4.1
38. Minneaota	1,490	90	0.7	5.9
39. Utah	372	12	0.1	2.9
- Indsana	894	42	0.3	4.5
-2 Saw Hampshire	149	3	--	1.3
42. Vermont	149	6	--	3.4
43. South Carolina	- 745	34	0.3	4.6
44. Color ado	894	26	0.2	2.9
45. New Mexico	223	18	0.1	7.4
46. Washington	894	16	0.1	1.7
47. Wyoming	-	1	--	2.4
48. Arkansaa	372	17	0.1	4.1
49. Mcntana	-	0	--	0
50. Idaho	9	0	--	0
51. Alaaka	--	0	0	0
Total U.S. $/$	--	13,3375/	99.8	$\overline{17.9}$

3/ Exact information unavailable for calculation.
b/ of the total number of FMGa, 1,314 are U.S. citizana.
Sf Totala include 304 frica in Pcerto Rico.
SOURCE: American Madical Aaacciation. 1985-86 Diractory of
Reladency Traznang Prograns. Chacago, 1985.

Table 3-38. Sources of Revenues for Undergraduate medical Education 1975-76, 1980-81, and 1982-83
(in aillions of $\$$ )

	Revenues						Percent of Total		
	Current			1972 Constant 8					
	1975-76	1980-81	1902-83	1975-76	1980-81	1982-83	1975-76	1980-81	1982-83
Total Revenuee	3,389	6,425	8.179	2.747	3,615	3,694	100	100	100
Pederal total	1,221	1,842	2,070	989	1,035	986	36	29	25
Research	823	1.446	1.655	677	813	788	24	23	20
Other	398	396	415	322	222	198	12	6	5
State/Local Covernment	808	1,452	1,784	655	817	850	24	23	22
Tuition and Fres	156	346	482	127	194	230	5	5	6
sedical servicas	669	1,850	2,626	443	1.041	1.250	18	29	32
Other mevenus:	595	935	1,216	482	526	579	18	15	15


	Average Annual Rate of Increare				Percent Change 1972 Conatant   1975-76 to 1982-83
	Current		1972 Constant \&		
	1975-76 to 1980-81	1980-61 to 1982-83	1975-76 to 1980-81	1980-81 to 1982-83	
Total mevenues	13.6	12.8	5.6	1.5	42
Federal Total	8.6	6.0	. 9	- 2.5	- 0
Research	11.9	7.0	5.7	- 2.0	18
other	0.0	2.3	-7.0	- 6.0	-35
State/Locel Government	12.4	10.8	4.4	2.0	30
Tuition and rees	17.3	18.0	9.0	8.9	82
medical Services	25.0	19.1	16.2	9.6	153
Other Revenues	9.5	14.1	1.8	4.9	104


School:	$1975-76$	$1980-81$	1982-83
Number Meporting			
to ANC Annual survey	111	115	124
Total Mumber	114	121	127

sOURCE: Assocation of meerican Medical Colleges, 1984.

Table 3-39. Costs of Graduate Medical Education, 1978-79 and
Sources of Federal Support for Graduate Medical Education, 1981 (in millions of $\$$ )

	Arount	$\begin{aligned} & \text { Percent } \\ & \text { of Costs } \\ & \hline \end{aligned}$	Amount	Pe:cent of Costs	Percent   Federal   Support
	(in current \$)		(in	972 \$)	
Costs (1) (1972					
House Staff Stipends and Benefits	1,600.0		1,064		
Teaching Faculty	376.0		250		
	\$1,976.0	100	1,314	100	
Federal Support for GME, Total	805.9	41	413	31	100
Medicare and Federal Share of Medicaid	600.0	33	307	23	74
Direct Costs ćf Kesidents Salaries	500.0	27	256	19	62
Clinical Facalty Salaries	100.0	5	51	4	12
VA Support of GME	151.7	8	77	6	19
NIH Trainee Grants and Clinical Fellowships	11.4	1	5	0	1
DOD	NA	-	NA	-	
BHPr	42.9	$\underline{2}$	21	$\underline{2}$	5
GIM/GP Grants	19.3	$\frac{1}{1}$	9	$\overline{1}$	$\frac{5}{2}$
Family Medicine Granis	23.6	1	12	1	3

SOURCES: Hadley, J. and Tigue, P. Financing Graduate Medical Education: An Update and Suggestions for Reform. Health Policy and Education, 1982. Powell, C.D. and Smith, C.T. "Financing Graduate Medical Education in a Competitive Atmosphere." Hospitals, 8:10, May 1984. (Data presented in the Powell and Smith journal artacle were desived from the following sources: Health Care Financing Administration unpublished data. Mather, J.H. et al. Health Manpower Education and Training in the Veterans Administration Health Care and Services System, V.A. Report No. 81-6007. Washington, DC, July 1981. National Institutes of Health Basic Data relating to NIH, 1981. Health Kesources Adminastrative Grants Office Table 1 for Grant Cycles, 1981.

Table 3-40. Number of Trainees in Family Medicine Program Components Supported by the Predoctoral Training Grant Program, 1978-1983

Fiscal   Year	Blective or Required Family Medicine Courses or Clerkships	Family Medicine Preceptorships	Family Medicine Research Student Assistantship	Totals
1978-79	6,483	2.706	58	9,247
1979-80	6,893	2.734	70	9,697
1980-81	6,746	2,579	65	9,390
1981-82	7,772	3,090	142	11,004
1982-83	8,361	3,317	142	11.829
1983-84	11,262	3,297	$\underline{205}$	14,864
Total	47,517	17,823	682	66,022

SOURCE: Bureau of Health professions, Unpublished grant information, 1984.

156

Table 3-4l. First-Year Enrollments and Graduates of Allopathic and Osteopathic Medical Schools: 1979-1980 Through 1999-2000


NOTE: For allopathic schools, first-year enrollments are actual, 1979-1980 through 1984-1985 and are projected under the basic assumption 1985-1986 through 1999-2000; graduates are actual, 1979-1980 through 1983-1984 and are projected under the basic assumption 1984-1985 to 1999-2000; for osteopathic schools, first-year enrollments and graduates are actual, 1979-1980 through 1982-1983 and are projected under the basic assumption 198.3-1384 to 1999-2000.

SOI- : : Health Resources and Services Admınistra ion, Bureau of Health Professions.

Table 3-42. Supply of Active Physiciano (MD and DO) by Country of Medical Education
Estimated for Base Year 1981, and Projected Basıc Series, 1985-2000

Category	$\frac{\text { Estimated }}{1981}$	Projected			
		1985	1990	1995	2000
	Number of Active Physicians C/				
All Active Physicians	467,000	520,720	587,680	645,530	996,550
MDS	449,000	498,780	559,500	611,140	656,110
U.S. Trained	343,300	386,660	439,210	484,550	525,800
Canadian Trained	7,000	6,980	7,030	7,060	7,070
Foreign Trained ${ }^{\text {a/ }}$	9?.700	105.140	113,260	119,530	123,240
DOs	18,100	21,940	28,180	34,390	40,440
Tctal U.S. Trained b/	361,300	408,590	467,400	518,940	566,240
	Rate per 100,000 Population				
All Active Physicians	202.4	$\underline{218.2}$	235.4	248.7	259.9
MDs	194.6	209.0	224.1	235.5	244.9
U.S. Trained	148.8	162.0	175.9	186.7	196.2
Canadian trained	3.0	2.9	2.8	2.7	2.6
Forelgn Trained a/	42.8	44.1	45.4	46.1	46.0
DOs	7.8	9.2	11.3	13.3	15.1
Total U.S. Trained b/	156.6	171.2	187.2	199.9	211.3

Percent Distribution $C /$

All Active Physicians	100.0	100.0	100.0	100.0	100.0
MDs	96.2	95.8	95.2	94.7	94.2
U.S. Trained	73.5	74.3	74.7	75.1	75.5
Canadian Trained	1.5	1.3	1.2	1.1	1.1
Forelgn Trained a/	21.1	20.2	19.3	18.5	17.7
DOs	3.8	4.2	4.8	5.3	5.8
Total U.S. Trained ${ }^{\text {/ }}$	77.4	78.5	79.5	80.4	81.3

a/ Includes U.S. citizen FMGs.
b/ Includes U.S. trained MDS and all DOs.
c) Figuzes may not add to totals due to independent rounding.

Population Base: U.S. Bureau of Census Current Population Reports Series P-25, No. 966, issued March 1985, and Series P-25, No. 952, Series II, issued May 1984.

Table 3-43. Supply of Active Physicians (MD and DO)
by Country of Medical Education
Estimated for Base Year 1981, and Projected Low Series, 1985-2000

	Estimated	Projected			
Category	1981	1985	1990	1995	2000
	Number of Active Physicians c/				
All Active Physicians	467,000	520,440	583,000	632,500	674,800
MDS	449,000	498,510	554,880	598,600	635,370
U.S. Trained	343,300	386,600	438,700	480,460	517,750
Canadıan Trained	7,000	6,980	7.030	7,060	7,070
Foreign Trained ${ }^{\text {/ }}$	98,700	104,860	109.160	111,080	110,550
DOs	18,000	21,940	28.110	33,870	39,430
Total U.S. Trained b/	261,300	408,590	466,810	514,330	557,180

Rate per 100,000 Population

All Active Physicians	$\underline{202.4}$	218.1	233.5	243.7	251.8
MDs	194.5	208.9	222.3	230.6	237.1
U.S. Trained	148.8	162.0	175.7	185.1	193.2
Canadian Tralned	3.0	2.9	2.8	2.7	2.6
Foreign Trained ${ }^{\text {a/ }}$	42.8	43.9	43.7	42.8	41.3
DOs	7.8	9.2	11.3	13.0	14.7
Total U.S. Trained b/	156.6	171.2	187.0	198.2	207.9

Percent Distribution $C /$

All Active Physicians	100.0	100.0	100.0	100.0	100.0
MDS	96.2	95.8	95.2	94.6	94.0
U.S. Trained	73.5	74.3	75.2	75.9	76.6
Canadian Tramned	1.5	1.3	1.2	1.1	1.0
Forelgn Trained ${ }^{\text {/ }}$	21.1	20.1	18.7	17.5	16.4
DOs	3.8	4.2	4.8	5.4	5.9
Total U.S. Trained b/	77.4	78.5	80.1	81.3	82.6

a/ Includes U.S. citizen FMGs.
b/ Includes U.S. trained MDs and all DOs.
c/ Figures may not add to totals due to independent rounding.
Population Base: U.S. Bureau of Census Current Populaticn Reports Ser ies p-25, No. 966, issued March 1985, and Series P-25, No. 952, Series II, issued May 1984.

Table 3-44. Supply of Active Physicians (MD and DO) by Country of Medical Education
Estimated for Base Year 1981, and Projected High Series, 1985-2000

Category	Estimated	Projected			
	1981	1985	1990	1995	2000
	Number of Active Physicians c/				
All Ac:ive Physicians	467,000	521,030	593,700	661,320	722,380
MDs	449,000	499,100	565,390	626,530	681,270
U.S. Trained	343,300	386,660	439,730	488,930	534,440
Canadian Traıned	7,000	6,980	7,030	7,060	7,070
Foreign Trained ${ }^{\text {a/ }}$	98,700	105,450	118,630	130,540	139,770
DOs	18,000	21,940	28,310	34,790	41,110
Total U.S. Trained b/	361,300	408,590	468,040	523,720	575,550

Rate per 100,000 Population

All Active Physicians	202.4	218.3	$\underline{237.8}$	254.8	269.5
MDS	194.6	209.1	226.5	241.4	254.2
U.S. Trained	148.8	162.0	176.1	188.4	199.5
Canadian Tramned	3.0	2.9	2.8	2.7	2.6
Forelgn Trained a/	42.8	44.2	47.5	50.3	52.2
DOs	7.8	9.2	11.3	13.4	15.3
Total U.S. Trained ${ }^{\text {/ }}$	156.6	171.2	187.5	$\underline{201.8}$	$\underline{214.8}$

Percent Distíibution $\mathbf{c} /$

All Active Physicians	100.0	100.0	100.0	100.0	100.0
MDs	96.2	95.8	95.2	94.7	94.3
U.S. Trained	73.5	74.2	74.1	73.9	74.0
Canadian Tralned	1.5	1.3	1.2	1.1	1.0
Forelgn Trained a/	21.1	20.2	20.0	19.7	19.3
DOs	3.8	4.2	4.8	5.3	5.7
Total U.S. Trained ${ }^{\text {/ }}$	77.4	78.4	78.8	79.2	79.7

a/ Includes U.S. citizen FMGs.
b/ Includes U.S. trained MDs and all DOs.
c/ Figures may not add to totals due to independent rounding.
Population Base: U.S. Bureau of Census Current Population Reports Series P-25, No. 966, issued March 1985, and Series P-25, No. 952, Series II, issued May 1984.

Table 3-45. Supply of Physicians (MD and DO) by Gender; Estimated 1970 and 1981; Projected Using the Basic Methodology, 1990 and 2900

Category	Estimated				Projected			
	1970		1981		1990		2000	
	Number	Percent	Number	Percent	Number	Percent	Nunder	Percent
Total Active Physicans	323,200	100.0	467,000	100.0	587,700	100.0	696,500	100.0
Male	301,400	93.3	411,100	88.0	489,400	83.3	553,000	79.4
Female	21,800	6.7	55,800	12.0	98,200	16.7	143,500	20.6

SOURCES: 1970: The Current and Future Supply of Physicians and Physician Specialists, U.S. Department of Health and Human Services, Public Health Services, Health Resources Ad.ainistration, BHPr, DHPA, Pub. No. (HRA) 80-60. 1981-2000: Bureau of Health professions General Supply Model.

Table 3-46. Number of Active Physicians (MDs) a/ by Specialty and Percent Change, Estimated 1981 and Projected 1990 and 2000

Specialty	1981	1990	2000	$\begin{aligned} & \text { Percent } \\ & \text { Change } \\ & 1981-1990 \end{aligned}$	$\begin{aligned} & \text { Percent } \\ & \text { Change } \\ & 1981-2000 \end{aligned}$
Total	448,800	559,230	655,770	24.6	46.1
Primary Care	180,210	230.670	276,020	28.0	53.2
General and Family Practice	65,600	77,680	89,130	18.4	35.9
Internal Medicine	82,020	107, 60	130,140	31.6	58.7
Pediatrics	3:3,590	45,020	56.750	38.2	74.1
Primary Care with 00/Gyn	209,390	267,890	320,530	27.9	53.1
Other Medical Specialties	28,340	38,870	49,200	37.1	73.6
Allergy	1,640	1,650	1,630	0.5	-0.5
Cardiovascular Disease	10.730	14,460	17.930	34.7	67.1
Dermatology	6,000	7,870	9.730	31.2	62.2
Gastroenterology	4,600	7,170	9,850	55.8	114.2
Podiatric Allergy	450	400	320	-12.0	29.1
Pediatric Cardiology	750	1,080	1,390	44.1	85.7
Pulmonary Diseases	4,180	6,250	8,345	49.4	99.6
Surgical Specialties	121,210	144,000	162,3,30	18.8	33.8
Colon and Rectal Surgery	740	770	790	3.9	6.4
General Surgery	37,990	41.930	44,140	10.4	16.2
Neurological Surgery	3,600	4,200	4,550	16.5	26.4
Obstetrics and Gynecology	29,180	37,220	44,510	27.6	52.5
Oph thalmology	13,680	16,520	19,060	20.8	39.3
Ortnopedic Surgery	15,200	18,950	21,950	24.7	44.4
Otorhinolaryigology	6,870	7,810	8,500	13.7	23.7
Plastic Surgery	3,370	4,740	5,940	40.6	76.2
Thoracic Surgery	2,280	2,510	2,590	10.2	13.7
Urology	8,310	9,340	10,100	12.4	21.6
Other Specialties	119,050	145,700	168,420	22.4	41.5
Aerospace Medicire	740	850	910	14.9	22.4
Anesthesiology	18,400	21,880	24,390	18.9	32.6
Child Psychiatry	3.540	4,520	5,520	27.8	56.0
Diagnostic Radiology	8,820	13,570	18,110	53.8	105.4
Forensic Patnology	260	220	160	-16.2	-40.4
General Preventive Medicine	890	970	1,060	9.1	18.8
Neurology	6,510	9,330	11,870	43.3	82.4
Cccupational Medicine	2,500	2,260	2,010	-9.5	-19.4
Paychiatry	30,250	34,680	38,000	14.6	25.6
Public Health	2,520	1,900	1,270	-24.5	-49.6
Physical Medicine and Renabilitation	2,570	2,840	2,990	10.6	16.3
Pathology	15,050	18,240	20,620	21.2	37.0
Radiology	12,040	12,210	11,610	1.4	-3.5
Therapeutic Radiology	1,830	2,300	2,600	25.5	41.9
Other Specialties	13,130	19,920	27,300	51.7	107.9

a/ These figures differ from those published by the AhA since they reflect adjustments to include approximately 90 percent of the physicians who are not classified according to activity status by the American Medical Association and whose addresses are unkown.

NOTE: Figures may not add to totals due to independent rounding.
SOURCE: Health Resources and Services Administration, Bureau of Health Professions.

Table 3-47. Number ot Activa nyaiclana (MDa) Dy Geographic Ragion. Divieson, and Stata and Parcant Chat ga Eatsated 1941 and Projectad 1990 and 2000

	Nuncie of peyateianal			Parcant Changa	
	1981	1990	2000	1981-1990	1981-2000
UWITED ETATED	448.899	554.309	685.120	21.6	46.1
moncticat	117.650	141,710	164,010	21.3	40.1
xen reckap	30,430	12.120	47,500	29.3	$\frac{36.2}{50.3}$
Connecticut	7.940	10.010	11.940	0	50.3
Maine	1.670	2.190	2.640	+ 1	57.1
Mesaschuateta	16.070	21.030	25.430	30.9	51.2
Now Mampenita	1.560	1,980	2.420	270	55.1
Rhode laland	2.050	2.520	3.040	23.1	48.1
Varmont	1.130	1.580	2.050	39.5	11.2
mtodes atlantic	17,210	103.460	117.320	12.6	34.5
mev Jerasy	15.060	17.710	19.990	17.6	32.8
Wew Yorx	48.480	56.390	63070	16.3	30.1
Pennayivana	23.690	29.360	34.260	23.9	41.6
Morim ceirral	100, 620	121,180	136,740	20.4	33.9
CAST WORTH CENTMAL	71,670	14.750	94,220	$\underline{10.3}$	31.5
111inode	22.440	26,540	29.290	14.2	30.5
Indama	7.340	8.800	9.940	20.6	35.5
Hichigan	15.330	17.510	15.170	14.6	25.1
Onso	18,580	21.910	24.500	18.0	31.9
Waconam	0,000	9.880	11.300	23.5	41.3
WEET MORTH CENTRAL	20.930	36,430	42,520	25.2	66.9
Iown	3.240	4,710	5.460	21.1	30.7
Kanama	3.960	4.930	5.590	24.5	41.0
Minnasota	1.160	10.910	13.410	33.7	14.3
Miasour 1	f. 540	10.420	11.920	21.9	39.6
Nator vak	2.520	3.130	3.600	24.2	43.0
Norten Dasces	960	1.200	1.330	24.8	38.3
South Daxota	870	1.070	1.210	22.4	39.3
SOUTH	131,640	164,790	193,470	25.2	47.0
SOUTH atlantic	72,600	90,360	105,710	$\underline{24.3}$	45.4
Delamata	1.050	1.220	1,330	16.0	26.6
Diatrict of Columota	4.010	4.980	5.820	24.2	45.1
Floriaa	11.540	22.030	25.150	18.8	35.6
Georgia	1.604	10.730	12.580	24.7	46.3
maryiand	13.320	17.130	20.392	24.6	53.1
North Carolina	9.470	12.010	14.210	26.1	50.1
Soutn Garolina	4.460	5.430	6.220	21.1	39.3
virginia	10.330	13.360	16.050	29.4	55.3
Wate varganam	2.890	3.470	3,970	20.0	37.4
EAST SOUTH CENTMAL	21,100	26,630	31,440	36. 2	49.0
Alabama	5.230	6.420	7.320	22.4	39.9
Kantucay	5.250	6.850	1.200	30.4	56.2
Micaiamippl	2.960	3,760	4.560	27.2	54.0
TannasaEa	7.640	9.590	11.360	25.6	48.1
WEST SOUTM GENTRAL	37,090	47,100	36,320	26.2	48.7
Armansas	2.970	3.850	1.570	29.4	53.8
Lousaiana	6.870	4.500	9.190	23.7	43.9
Owlahoma	4.220	5.480	6.750	29.9	59.9
Texea	23.820	29.970	35.120	25.8	47.4
West	23.490	122,400	141,950	30.9	59.3
mountais	20,240	27,550	34,620	36.1	71.1
Arimona	5.220	6.810	4.440	30.4	61.1
Colorado	6.220	1.480	10.460	36.3	60.1
Idano	1.100	1.550	2.030	41.2	14.2
moneama	1.130	1.490	1.820	32.1	61.3
Nevada	1.200	1.720	2.190	43.6	12.3
Now Maxico	2.200	3.160	4.270	43.7	94.2
Utan	2.560	3.500	4.300	36.8	68.1
myoning	620	130	1.110	34.0	79.0
pactpic	73,250	24,050	114,320	29.5	56.1
Alfita	640	1.360	1.550	66.1	141.6
calltornie	57.430	13.400	47.440	27.1	52.3
Mavali	2.140	2,770	3.300	29.3	54.3
Oregon	4.980	6.780	4.540	36.2	11.4
Mashington	0.070	10.840	13.500	34.3	67.3

[^7]SOURCE: Hasitn Reaourcae and Sarvacas Admanateration, buram of haten profasions

	Fixajciene per 100,000 populationd			porcent Change	
	1918	1990	2000	1921-1290	1981-2000
UNITED GTATEED	$\pm 3$	324.4	245.2	17.4	20.3
morthicast	238.1	294.1	355.2	23.5	41.7
HEW EMGLAND	245.0	301.7	371.8	26.0	51.1
Connecticut	254.2	319.1	319.1	25.5	53.3
Mane	147.4	176.1	201.5	20.1	36.7
Manamenuaetta	279.1	360.7	463.1	32.1	65.9
Ney Hampanita	166.5	174.0	177.4	4.5	6.5
Node Ialand	215.3	265.5	321.0	${ }^{3} 3.3$	52.3
Varmont	219.0	274.3	327.5	25.3	49.5
MIDOLE ATLANTIC	236.1	219.9	148.9	22.4	47.3
Mex Jersey	203.3	235.7	269.2	15.9	32.4
Naw York	276.1	342.7	133.4	24.1	[1.3
pennaylvanae	1:9.4	250.5	305.7	25.6	53.3
NORTH CENTMAL	$\underline{170.6}$	201.1	229.0	17.9	34.2
EAST MOKTH CF . RAL	171.6	200.0	226.2	16.6	31.0
1112noss	195.7	$230 .:$	461.1	17.9	33.1
Indiana	133.7	155.9	175.1	16.6	31.0
mactagan	166.4	107.1	201.2	12.4	25.1
Onio	172.1	203.6	236.6	10.3	37.5
Wiaconain	169.0	196.2	216.7	16.1	21.2
west nonth central	167.4	203.6	235.1	21.6	10.6
Iowe	135.1	159.9	113.9	10.4	36.1
kanas:	165.9	200.2	223.1	20.7	34.9
Mannesoza	198.4	250.4	291.7	26.2	50.6
Massouta	172.9	205.2	234.7	10.7	35.7
Nedr atma	159.2	190.9	216.1	19.9	36.2
Nottn Daxota	145.2	176.6	194.7	21.6	34.1
Soutn Daxote	125.7	152.9	176.3	21.6	40.3
SOUTH	171.0	180.1	193.1	10.0	14.5
south atlantic	192.4	209.4	215.6	1.8	12.2
delewate	176.3	193.4	201.2	9.7	11.1
Dastract of Columbay	634.5	993.4	1545.1	56.6	143.6
Flotsde	182.4	165.4	144.2	-9.2	208
Georgia	154.4	173.7	147.6	12.5	21.5
maryland	312.0	321.5	444.9	22.0	42.2
Horen Carolina	151.9	485.5	206.9	16.7	30.2
South Caroiana	140.0	152.6	159.1	9.0	13.6
Vacganas	190.0	224.2	251.2	10.0	12.2
west Vatganae	147.4	170.3	192.0	15.5	30.3
EAST SOLTH CENTRAL	$\frac{142.1}{123}$	165.2	203.1	15.7	282
Aladama	133.2	152.5	165.0	$-5$	245
Kentucky	142.9	161.1	186.3	17.6	30.4
Mrasiesippl	116.2	136.3	155.1	17.3	33.5
Tennasaee	165.0	119.1	209.7	14.6	27.1
WEST SOUTH CENTRAL	155.0	161.7	272.3	1.1	11.2
Amanast	129.1	149.4	161.1	15.7	24.1
Lousasala	150.1	179.0	191.6	12.0	19.9
ombanoma	136.0	156.4	171.0	159	25.7
Taxas	161.6	171.3	169.3	6.0	4.1
WEST	211.1	231.3	231.2	2.6	12.1
HOUNTAIN	173.3	177.1	171.9	-3.0	-0.2
Arizona	116.0	170.5	151.3	$-3$	-18
Color ado	211.3	225.7	224.5	0.1	4.2
Idaho	114.1	127.4	134.0	12.1	17.4
montana	142.0	168.1	119.3	11.4	33.3
Mavade	142.2	135.1	114.0	-5.0	-19.0
New Maxico	164.4	205.8	247.4	25.2	50.5
utan	161.0	171.7	154.9	2.2	-7.
Wroming	125.8	1110.5	110.8	-5.1	-11.9
Paciric	223.2	252.8	369.8	12.3	19.1
Alaaka	153.8	203.6	245.1	32.4	59.4
Calatornas	237.1	266.7	215.6	12.5	20.5
Havali	218.1	243.0	251.3	11.4	10.5
Oregon	186.6	204.3	2121	9.5	13.7
Waeningtan	190.6	216.3	231.5	13.5	21.5

- Tnese itgutet include about 90 percant of those mbs not claseifiad accotding to activity atatus by tha Amecican medicel Aasociation.
of Incivaes prysiciens in the U,S. Possessions,
sounce. Heatth Resoutces anu services hdmamatration, Bureau of hestry piotesstons


## Chapter 4

## PHYSICIAN ASSISTANTS

## Introduction

Dhysician assistants (PAs) are skilled members of the health care team who, working dependently with physicians and under their supervision, provide diagnostic and therapeutic patient care. They lake patient histories, perform physical examinations, and order laboratory tests. When medical problems are diagnosed PAs develop treatment plans, and explain them to patiant.s. They recommend medications and drug therapies, and, in a growing numbs of States, have the authority to wrate prescriptions.

Specific technical procedures performed by pas vary with the practice setting, but include t wide range of musculoskeletal, pulmonary, ear, nose and throat, cardiovascular, gastroıntestınal, genitourinary, obstetrical and gynecological therapies.

PAs carry out a variety of minor suryical procedures, such as the management Oi lacerations, abrasions and burns. They may provide pre- and post-operative care. Sutgeon assistants (graduates of specialized training programs) and PAs with surgical training often act as first or second assistants in major surgery.

Appropriately trained pas have demonstrated that they can relzeve physicians of essential but time-consur ing patient care duties with no decrease in the quality of care provided (Cawley, et al., 1983; USDHEW, 1977). Over th:e past 15 years, many studies have shown that when properly utilized PAs can increase the availability of primary care services, promote cost savings, and improve practice productivity (NAS, 1978; Perry and Weston, 1983). Acceptance of the concept by employiag physicians and patient satisfaction in both ambulatory and nonambulatory settings has been generally positive (Perry, et a1., 1981; Spıtzer, 1984; CBO, 1979).

The American Academy of Physician Assistants (AAHA), is the national professional society for PAs. Tue Association of Physician Assistant Programs (APAP), a closely related organization comprised of all accredited PA programs, encourages communication among PA programs and serves as a national information center on PA education. The APAP publishes reference documents on the profession and has conducted several longitudinal surveys of PAs (AAPA, Feb. 1985d). This report includes numerous AAPA and APAP statistics drawn primarıly from three sources: Secondary Analysis: 1981 National Survey of Physician Assistants, funded by the National Center on Health Services Research; unpublished data from the AAPA 1985 Masterfile Survey, supported in part by AAPA and the Administration on Aging; and the First Annual Report on Physician Assistant Educational. Programs in the United States 1984-85. The data for the AAPA 1985 Masterfile Survey are based on - personal response rate of approximately 50 percent; the data for the 1985 APAP program survey are based on a program response rate of 76 percent. For both these surveys, followup analysis of nonrespondents reveals no significant differences between then and respondents.

## Develcpments in Physician Assistant Practice

## National Certification

Once a year lnc Natıonal Commission on Certıficatıon of Physician Assistants (NCCEA) administeis a competence examination which is open to . raduates of accredited PA programs and, under limıted conditions, to other qualified persons. Successful completion of the examination confers the title "Physician Assistant-Certifled" (PA-C), which is valid for 6 years. Reregistration is every 2 years and requires 100 hours of approved continulng medical education (AAPA, Feb. 1985b). Since 1973, 14,857 formally trained PAs have sat for the NCCPA examination (Oliver, 1985).

## Legal Aspects of Physician AssisLant Practice

PAs continue to operate in a heterogeneous legal environmeat. They are permitted to perform medical services with physician supervision in 49 States and the District of Columbia. In 1984, New Jersey remained the only State which limited PA practice to Federal facilities. As of 1984, 4. States had enacted legislation or regulations pertaining to pas. Legislative enactments which "regulate" PAs have largely replaced the early trend of legislatively defining the physician's authority to "delegate." Although both approaches have advantages and disadvantages, States increasingly are adopting the regulatory authority form because it permits States to exercise more control over PA utilization. Although 31 states now require PAs to graduate from an accredited training program, the regulatory systems including registration and licensure requirements, vary from itate to State. Of the States that have enacted enabling legıslation, 17 have granted PAs practice authority to prescribe medications from certaln classes of drugs (AAPA, Feb. 1985e).

The amolguity and lack of uniformity oi the State rfogulations have constrained the potential for the full use of pas (Fasser, et al., 1984; Miller, 1978). Spokespersons for the profession strongly encourage a nationally coordinated State-level effort, to devise uniform practice regulations.

Early concern about the potential for malpractice litigation against physicians because of their employment of PAs has proven to be unfounded. Studies have shown that when pas are employed, walting periods are reduced and patients receive more personal care which measurably improves compliance while reducing symptomatic complaints, return $\quad 11 s 1 t s$, and hospitalizations (Light, l9」4). For these reasons, the AMA's assistant general counsel stated ihat "PAs probably hold the potential for being one of the best malpractice tools available at the present time" (Ryser, 1976). No specific studies nave yet been conducted on malpractice litigation as a result of PA use; however, there are no reports that the health status of patients under the care of nurse practitioners or pas has deteriorated (Spitzer, 1984). Insurance premiums for PAs have remained low, indicating that the frequency of litigation is negligible.

## Number and Charditeristics of PAS

As of January 1983, there were an estimated 15,100 PAs in the country, of whom 12,000-13,000 were estimated to be employed full-time (AAPA, 1983)-an increase of at least 36 percent since 1980, when the estimated active supply was 8,800. Recently redefined enrollment and graduate data indicate 'hat this rapid rate of growth has decelerated. During the past 2 years, the total PA population has grown by approximately 1,900 , for a potential employment pool of 17,000 . Of this number, between 13,600 and 14,450 are estimated to be clinically active in the profession. (AAPA, Mar. 1985).

In the $1960^{\prime} \mathrm{s}$, most PAs were young white males with more than 7 years of previous health care experience, usually obtained as miiitary corpsmen. By 1981, 36 percent of the overall PA population were women and 8.6 percent were classified as minorities of whom slacks constatuted more than one-third (Table 4-1). A follow-up survey of nonrespondents that year indicated that minorities were under represented statiscically and that their proportion may have been closer to 12 percent icarter, et al., June 1984). By 1984, the precent age of women had increased to 41.1 percent and that of minorities had remain 1 the same. It is not known whether minorities continue to be underresresented in these statistics (AAPA, Mar. 1985.)

	Distribution of PAs by   Gender and Race, 1978, 1981, and 1984					
	1378		1981		1984	
	Number	Percent	Number	Percent	Number	Percent
Gender						
Women	1,366	30.6	2,208	36.4	2,501	41.1
Men	3,099	69.4	3,847	63.6	3,548	58.9
Total	4,465	100.0	6,055	100.0	6.049	100.0
Race						
White	3,925	87.7	5,513	91.4	5,449	'1.4
Black	234	5.2	196	3.3	161	3.0
Hispanic	109	2.4	122	2.0	160	2.7
Other	269	4.7	198	3.3	169	2.9
Total	4,471	100.0	6.029	100.0	5,959	100.0

SOURCES: Carter et al., Secondary Analysis: 1981 National Survey of Physician Assistants, Rockville, MD, June 1984; AAPA 1985 Masterfile Survey, Arlington, VA, Feb. 1985.

Male and fen'ale PAs show significant differences in certain professional and sociodemographic characteristics. In general, male PAs earn higher annual incomes, enter family medicine and surgery in larger numbers, and practice more hours per week than female PAs (Table 4-2). Similar differences exist between made and female physicians; however, there are fundamental differences in the processes by which physicians and PAs select medical specialties ar3 choose practice locat), 3 (Olıver, et al., 1984).

Physicians shoose specialties through residency training, and the choice is relatively independent of the type and location of their subsequent medical practice. When PAs, as dependent practitioners, accept smployment, their medical specialty and practice characteristics (type and location) are established simultaneously. Their deployment pattern therefore relates directly to the availability of employment, which in turn originates with either a physician or a health care administrator. Thus, the difference in practice characteristics between male and female PAs may reflect, in part, employer preferences (Oliver, et al.,1984).

Responderits to the 1981 National Survey, by Gender and Professional Activity

Professional Activ	$\begin{gathered} \text { Males } \\ (\mathrm{N}=3,791) \end{gathered}$	$\begin{gathered} \text { Females } \\ \frac{(N=2,223)}{\text { Percent }} \end{gathered}$	$\begin{aligned} & \text { Total } \\ & (\mathrm{N}=6,056) \end{aligned}$
Employed as a PA			
Patient Care (\| 20 Hours/Week)			
Civilian ( 140 Weeks in 1980) ${ }^{\text {a/ }}$	59.7	46.6	54.4
Civilian ( 40 Weeks in 1980)	11.8	24.3	16.3
Military	12.6	1.0	8.3
Unclassifiable	1.6	1.3	1.4
Non-patient Care ${ }^{\text {/ }}$	4.6	6.9	5.4
Subtotal	90.4	79.9	85.9
Not Employed as a PAC/	9.6	20.1	1; 4
Unclassifiable			0.7

a/Study Sample, $N=3,294$.
b/e.g., Medical teaching, administration, research, etc.
c/e.g., Unemployed, student, in other profession.
SOURCE: Oliver, et al. 'Practice Characteristics of Male and Female Physician Assistants." American Journal of Public Health Dec. 1984.

By 1981, almost half of matriculants to PA programs were coliege graduates and very few were military corpsmen. The percentage of informally trained PAs (those who dic not graduate from a PA training program) declined from

7 percent of the responding PA population in 1976 to 3 percent in 1981 (Carter et al., June 1984). Although comparable information is not available from the 1985 Masterfile Survey, it indicated that fully 86.1 percent of respondents had current national certıfication (AAPA, Feb. 1985a).

The amount of pre-enrollment health care experience declined from a high of 102.6 months in 1973 to an average of 35.2 months in 1984 (AAPA, Feb. 1985a; Carter, et al., June 1984).

The average age at graduation has varled little between 1972 and 1982, from a low of 27.8 years in 1980 to a high of 30.0 years in 1973 . The average age of the overall PA population in 1981 was 34 years, and the average at graduation was 28 years (Carter, et al., June 1984) (Table 4-3).

## Geographic Distribution

Early PA graduates practiced in the South or Northwest close to the PA programs from which they graduated (Carter, et al., June 1984). However, as the profession has grown, regjonal distribution of PAs has generally paralleled that of the U.S. population. New York has the largest number of PAs, followed by California, Texas, and Pennsylvania. Almost one-half of PAs are located in the Southeast and Northeast regions of the United States (Table 4-4).

Proportionately, the numbers of PAs are high in many of the country's most rural and sparsely populated States Each of the four States with the highest PA:population ratio contains. solated communities separated by extensive distances from large population centers, and each of these States has substantial Natıve Ameriran or Alaskan Native populations. No clear correlation with the ratio of physicians to population is apparent from the review of these 10 States.

Comparison of PA to Non-Federal Physician:Population Ratios in States With the Highest and Lowest PA Population Ratios

	Estimated   Number of PAs (per 100,000 Population)	Number of NOZ-Federal Physicians (per 100,000 Population)
State	1985	1981
Alaska	33.8	132
North Dakota	17.1	148
South Dakota	16.4	126
New Mexico	16.2	171
District of Columbia	15.3	571

Cont.
Comparison of PA to Non-Federal Physician; Population Ratios in States With the Highest and Lowest PA Population Ratios

	Estimated   Number of PAs (per 100,000 Population)	Number of Non-Federal Physicians (per 100,000 Population)
State	1985	1981
New Jersey	2.8	209
Indiana	2.6	139
Louisiana	2.1	165
Arkansas	1.7	134
Mississippi	1.3	115

sOURCES: Adapted by the Health Resources and Services Administration, fureau of Health Professions, from the AAPA Membership Division, Mar. 1985, and from the AMA State Summary Data on Physicians, 1981.

## Health Manpower Shortage Areas

In the 1960's PA training program, were created to address a perceived need for greater public access to medical care. In the two decades since, PAs have improved access to and quality of primary medical care in underserved areas.

Under Section 783 of the Public Health Service Act, a funded PA training program must: (l) develop and use methods to encourage graduates to work in Primary Care Health Manpower Shortage Areas (PCHMSAs), such as supervised clinical practice, and (2) develop and use methods to place graduates in positions for whlch they have been trained, including positions in PCHMSAS. Twen $+y$-three of the 34 Bureau of Health Professions (BHPr)-funded grant reciplents for FY 1982 provided information about their graduates placements: approximately 32.6 percent of these graduates have been deployed in shortage areas. A 1981 student survey confirms that the majority of students continue to be willing to work in health manpower shortage areas (APAP, 1981).

PAs and primary care physicians have similar patterns of locating in health manpower shortage areas (counties which are wholly or partia」ly federally designated). Although the PA:population ratio in rural States is high, recent data show a trend for PAs to practice in the more urban shortage areas (Weston, 1984). The increasing number of primary care physicians may affect the geographic distribution of PAs, but it is prenature to speculate how.

## Size of Community

In 1981, more than one-fourth of patıent care PAs were located in small communities of 10,000 or fewer persons; more than one-third were practıcıng in metropolitan areas with more than 250,000 persons. The percentages of PAs in communities with intermediate populations (10,000-49,999 and $50,000-250,000$ ) were equivalent at 19 and 18 percent, respectively. From 1974 to 1981, there was a shift from the intermediate-population communities to the metropolitan areas (more than 250,000 population), but the proportion of PAs in smaller communities remained essentially unchanged (Carter, et al., June -.984). However, unpublıshed data from the AAPA 1985 Masterfile Survey reveal a decrease to 19 percent of PAs serving communities of fewer than 10,000 persons. Of PAs surveyed in 1984, weli over half practice in communities with a population of fewer than 125,000 persons, and almost one-fifth practace in the country's largest urban centers, those containıng more than 1 million persons (AAPA, Feb. 1985a).

There are significant differences detween the practice locations of male and femzle civilian patie * care PAs. Women PAs are more likely to practıce in large urban communatic, and less likely to practice in rural areas. More than 90 percent of all female physicians practice in urban areas (Wunderman, 1980). Mure male than female pAs practice 1 n both medically underserved areas and satellıte/remote clinics (Oliver, et al., 1984).

Size of Community	Number	Percent*
Fewer Than 10,000	1,086	18.6
10,000 to 24,999	660	11.2
25,000 to 49,999	6-7	10.1
50,000 to 124,999	928	15.6
125,000 to 499,999	915	15.5
500,000 to 999,999	571	9.7
1,000,000 to 2,499,999	529	8.7
2,500,000 to 4,999,999	244	4.2
5,000,000 or More	374	6.5
Total	5,914	
*Percents do not total 100 because of rounding.		

SCIDSE: AAPA 1985 Masterfile Survey, Arlington, VA, Feb. 1985.

Physician Assistant Distribution by Practice Characterıstics and Gender, 1981			
	$\frac{\text { Males }}{\text { Percent }}$	$\begin{aligned} & \text { Females } \\ & \text { Percent } \end{aligned}$	$\frac{\text { Total }}{\text { Percent }}$
Practice Community population	( $\mathrm{N}=2,2$	$(\mathrm{N}=1,020)$	$(\mathrm{N}=3,241)$
Large (1 250,000;	31.5	43.1	35.0
Medium ( $50,000-250,000$ )	17.1	20.7	18.2
Small ( $10,000-50,000$ )	21.3	16.5	20.0
Rural	3C. 1	19.7	26.8
Practice in Medıcally Underserved Areasㅁ/b/			
Yes	31.8	26.5	30.2
No	68.2	73.5	69.8
Practice in Satellite/ Remote Clinıc	( $\mathrm{N}=2,2$	$(\mathrm{N}=1,020)$	$(\mathrm{N}=3,262)$
Yes	15.4	11.8	14.3
No	84.6	88.2	85.7

a/Civilian PAs only.
b/Respondents were asked whether they "considered the community in which they pracised . . . to be medically underserved," and not whether the area was desıgnated by the DHHS as a prımary medıcal care shortage area.

SOURCE: Carter, et al. Secondary Analys1s: 1981 National Survey of Physician Assistants, Rockville, MD, June 1984.

## Setting

Physicien assistants have shown marked flexibility in their ability to work in a wide variety of icalth care settings. primary care pas appear to have little difficulty in adapting to new roles in specialty or inpatient settings and have expanded these practice settings to include Health Maintenance Organizations (HMOs), prepaid group practices, occupational health settings, hospitals, clinics and emergency rooms, correctio al instıtutions, and long-term care Eacılities (Cawley, et al., 1983; Lichtenstein, 1983) (Table 1-5). The vistribution of pa respondents by type of practice setting from 1974 to 1981 shows an increase in the proportion of pAs working in hospitals, nonhospital ambulatory care clinics, and extended care facılities (Carter, et al., Apr. ?984). This dıstribution showed r.o
marked differences between 1981 and 1984 except a slight increase in hospital-based practice and corresponding decrease in office-based practice (AAPA, Feb. 1985a).

According to the 1981 National Survey of Physician Assistants, minority PAs were less likely than white PAs to work in office-based practices ( 34.0 percent minority vs. 40.7 percent white) and more likely to work in other clinical facilities such as public clinics ( 38.5 percent minority vs. 26.3 percent white). Thus, $1 t$ is not surprising that white PAs see about twice as mary patients per week in hospitals as minority PAs or that minority PAs see about twice as many patients per week in other facilities as white PAs. Compared to white PAs, minority PAs see a greater percentage of patients who are nonwhite and are from low-income famılles covered by Medicaid.

In contrast, white PAs serve a higher percentage of patients who are affluent, are over age 65, and are covered by Blue Cross/Blue Shield or other health insurance plans (Tables 4-4 and 4-7).

Proportionately, fewer female than male civilian patient care PAs were in non-HMO office-based practices in 1981. Women were more likely than men to practice in clinics and HMOs (Carter, et al., June 1984).


Physicians have not been drawn in sufficient numbers to settings such as prisons and institutions for the chronically, physically, and mentally 111. A 1981 study of physicians in correctional institutions indicates that continuity of care could best be accomplished by the use of nonphysician providers, becau moderate physician turnover normally occurs in such settings (Lichterıstein, l981). PAs are currently used in various prison 'ystems including those in Maryland, New York, and Oklahoma. As of March '85, the Federal Correctional System employed 256 PAs in 1 ts faciluties.

Interest in employing PAs in these settings is increasing (Rodino and Sullivan, 1984), and several PA programs have incorporated clinical rotations in correctional facilities in their curricula.

The financial risk to the institutional employer of nonphysician heal $h$ care providers is usually less significant than that of the private practice employer. Institutional providers of primary health care, realize cost savings of more than 50 percent as a result of salary differences between PAs and physicians, whick could create a continued demand for PAs in the institutional setting (Perry and Weston, 1983).

Other data suggest that PAs in organizational settings can provide 63 percent of physician services at 38 percent of physician costs (Cawley et al., 1983). Additionally, a 1981 survey of hospitals with more than 400 beds, which addressed the use and function of PAs now and in the future, found that the hospitals employed PAs to: (1) increase labor supply and (2) fill surgical requirements created by termination of surgical residencies. The consensus of the responding hospitals that used PAs was that PAs contributed significantly to patient care and allowed for general cost containment within the hospital. A majority of the responding surgical chairpersons indicated a desire to expand PA use in the future (Perry, et al., 1981).

Thus, instıtutionai providers of ambulatory care, such as hospital outpatient departments, industries, HMOs, community-based clinics, and Government- operated health programs (e.g., the Veterans Administration (VA) and military health care programs) may employ increasing numbers of pAs and other nonphysician health care providers in place of physicians. In 1984, approximately 550 PAs were employed in 120 of the country's 154 VA hospitals (VA, May 1984).

## Medical Specialty

The overall percentage of PAs practicing in primary care specialties has declined from its 1978 and 1981 levels. This is primarily because of the decline of pAs in family practice settings. Although family practice continues to be the most common medical practice specialty, this specialty has experienced the greatest decline in the past 3 years (from 53.5 percent in 1981 to 42.5 percent in 198i). However, the numbers for the other specialties included in the primary care grouping have either leveled off or experienced an increase. Overall, 65.3 percent of PAs in 1984 were working ir primary care specialties (Carter, et al., 1984; AAPA, Feb. 1985b).

Surgery specialties employ the second highest number of PAs, according to both the 1981 and the 1984 surveys. There has been a steady increase in surgery and other specialties since 1978. Industrial/occupational medicine represented approxımately one-third of the "other" specialties in both 1981 and 1984 (AAPA, Feb. 1985a; Carter, et al., June 1984).

Distribution of Physician Assistants by Specralty, 1978, 1981, and 1984			
Specialty	1978	1981	1984
	$\begin{gathered} \text { Percent } \\ (\mathrm{N}-3,416) \end{gathered}$	$\begin{gathered} \text { Percent } \\ (\mathrm{N}-4,496) \\ \hline \end{gathered}$	$\begin{gathered} \text { Percent } \\ (\mathrm{N}-5,601) \end{gathered}$
Primary Care Speciaities	74.2	74.0	65.3
Family practice	52.0	53.5	42.5
General Internal Medıcine	12.0	9.6	9.2
Emergency Medicine	4.9	4.8	6.4
General pediatrics	3.3	3.7	4.1
Obstetrics and Gynecology	2.0	2.6	3.1
Medical Suospecialties	6.3	2.9	4.8
Surgical Specialties	11.7	13.4	18.2
Other Specialties	7.8	9.7a/	11.76
Total	100.0	100.0	100.0

a/Includes 3.1 percent Industrial/Occupational Medir 3 . b/Includes 4.1 percent Industrial/Occupational Medicı، and 1.4 percent Geriatrics.

SOURCE: Carter, et al., Secondary Analysis: 1981 National Survey of Physician Assistants, DHHS, Rockville, MD, June 1984; AAPA 1985 Masterfile Survey, Arlington, VA, Feb. 1985.

In 1981,83 percent of minority pas worked in primary care specialties, whereas 75 percent of white pas did so. Proportionately, twice as many whit PAs worked in surgery as minority PAs ( 15.1 percent white vs. 6.8 percent minority) (Carter, et al., June 1984) (Table 4-8; Analysis of the 1984 data comparing minority to white PA specialty practice characteristics has not been completed.

A comparison of the 1981 and 1984 surveys indicates that the majority of PAs are finding and retaining employment in their profession (if they wish to be employed as PAs): 91 percent of the 1984 PA respondents were employed as PAs (AAPA, Feb. 1985a), compared to 86 percent of the 1981 respondents (Carter, et al., June 1984).

Slightly more tnan 35 percent of the 1984 respondents to the 1985 Masterfile Survey were in patient care, an increase of 4 percent since in 1981. Both physicians and pas spend most of the:r time providing darect patient care services. In 1980, physicians spent an average of 44.5 hours $2 n$ direct pattent care services, compared to 39.4 hours by PAs (Goldfarb, 1981). Of the 1984 respondents who were not employed as PAs ( 9 percent), the majority were employed in another health field (AAPA, Feb. 1985a).

Because the 1985 Masterfile Survey was prımarily interested in the characteristıcs of patient care PAs, the 1984 breakdown of nonpatient care employment characteristiss for PAs is not available. However, in 1981, 2 percent of respondents were $1 n$ medical teaching; 1 percent, in clinical administration: and less than 1 percent, in clinical research. The distribution of PA respondents by professional activity is almost identical for the 1976, 1978, and 1981 surveys (Carter, et al., June 1984). A greater propor . $^{-n}$ of the 1981 PA respondents who were employed in non-patient care roles were women ( 48.5 percent non-patient care pAs vs. 32.7 percent patient care PAs) and persons with 4 or more years of previous college experience ( 59.1 percent non-patient care PAs vs. 49.7 percent patient care PAs) (Oliver, et al., 1984). Only prelıminary data are available from the 1985 Masterfile Survey; therefore, an updated analysis of the ditferences in employment charactistics between male and female PAs is not yet possible.

## Salaries

Median salary for PAs in 1980 was $\$ 21,000$. The data gathered from the 1976, 1978, and 1981 surveys indicate that (although at a lower base) mean PA salaries have kept pace with mean physicıan salarıes: $\$ 15,600$ in 1976 (vs. $\$ 59,500$ for MDs), $\$ 17,400$ in 1978 (vs. $\$ 65,500$ ), and $\$ 22,200$ in 1980 (vs. $\$ 80,900$ ). The pas earn about one-fourth to one-third as much as physicians, and that ratio has changed little over a recent 5 -year period (Carter and Oliver, 1983). Preliminary analysis of data from the 1985 Masterfile Survey and follow-up indicate that the average 1984 salary for PAs was approxamately \$25,500.

Specialty, years of practice, and gender $\therefore$. the major determinants of salary for PAs. Surgery and occupational medicine pay the highest salaries, and pediatrics and obstetrics/gynecology pay the lowest (Table 4-9). For most specialties, there apf sars to be little difference between salaries in office and hospital employment settings.

Salaries for male civilian PAs are significantly higher than for females. However, women pas are more likely to locate in larger communities where salaries are lower, and also are more likely to accept part-time employment, which reduces their annual salary proportionately. Women also tend to work in lower-paying specialties.

Although nonwhites represent only 8 percent of civilian pas surveyed in 1981, they have slightly higher salaries. (As expected, pas with the longest employment history earn significantly higher salaries.) For the period 1973-1980 an increment of $\$ 790$ in salary is associated with each additional year of experience (Carter and Oliver, 1983).

# Educational Developments: PA Programs 

## Accreditation

The American Medical Association (AMA) established an accreditation mechanism for PA programs in 1971 and developed the Essentials and Guidelines of an Educational Program for the Assistant to the Primary Care Physicıan. AMA revised the Essentials in March 1985. The revision was a cooperative effort of the American Academy of Family Physicians, American Academy of Pediatrics, American Academy of Physician Assistants (AAPA), American College of Physicians, American College of Surgeons, AMA, and the Association of Physician Assistant Programs (APAP). Of particular note is that the publication's title has eliminated the primary care emphasis and has been changed to Essentials and Guidelines of an Accredited Educational Program for the rhysician Assistant. This "generalıst" fccus appears throughout the revised Essentials and reflects AMA's recognition of the need to prepare PA program graduates for expanded settings and roles (AMA, 1985).

## Number and General Description

In November 1984, there were 53 accredited PA pro rams and three surgeon's assistant programs (AMA, 1984). Three of the primary care programs are Federal military-based. The remalning non-Federal programs are divided nearly equally between privately and publicly operated institutions.

## Organizational Base for PA Programs, Civilian and Military

Prımary Surgeon's

Care Assistant

Allopathic Medical School	18	2
Osteopathic Medical School	1	
School of Allied Health or		
4-Year COllege	25	
Community-College	6	1
Hospital-Based	3	-
Total	53	3

SOURCE: AMA, Department of Allied Health Education and Accreditation. Accredited Educational Programs for the Assistant to the Primary Care Physician. Chicago, IL, Nov. 1984.

PA programs award an academic degree and/or certificate upon graduation, depending upon the institution and the educational background of the student. All programs have clinical teaching affiliations with medical schools or medical school faculties, regard?ess of their institucional setting. There has been a tendency to lengthen nrograms, as well as increase che number of programs granting a bacc aureate degree. As of March 1985, at least four programs included a thirc year ior part thereof) in thear curricula. Thirty-nine, or 74 percent, of APAP member programs offered a baccalaureate degree or degree optinn. Currentiy, three programs offer a masters of science option (APAP, 1985).

Recently, postgxaduate programs have emerged to provide advanced educational experiences for PAs in medical and surgical disciplines. Often termed "PA residencies," these programs accept graduates of PA programs and offer additional ciinical and structured learning experiences in specialty areas. At least 10 residency programs currently exist, with residencies in surgery, emergency medicine, pediatrics, neonatology, and occupational medicine (APPAP, 1985).

The uniformed services began PA education in the early $1970^{\prime} s$ and now operate three programs. The Indian Health Service sponsored two training programs for PA, whicn graduated approximately 180 Native American students; these proqrams have been discontinued.

## Firancıal Characteristics

A though PA programs recezve funding from a variety of sources (Federal, Swte, institutional, and foundations), Federal support has played an muportant role in their rapid expansion.

From FY 1972 to FY 1y85, the Federal Government, through contracts and grants under Title VII of the Puillic Health Service Act., expended $\$ 92.6$ million in demonstration $7 \mathrm{~m}^{\prime}$ training programs. Fignty-five percent of pramary care PA program: nave received support. under these programs administered by BHPr (Table 4-10).

The Office of Economic Opportunity, the fodel Citıes Program, the VA and the Departments of Labor and Defense earlier commsted another \$i5-\$20 million in PA program support. The VA has made a iajor contribution to developing the profession by participating in training cí rivilian pas and by preparing detālled guidel יnes for use of pas in VA hospitals. In FY 1983 the VA provided clinical rotations for 633 PA trainees in 48 affiliated programs (VA, May 1984).

The sponsorırg insticution provides the pramary source of internal PA program support which averages $\$ 169,581$ per year per program (range from $\$ 15,000-\$ 388,000$ ). Five programs reported that they receive no financial support from their sponsoring institutions; only six programs reported that they recelved substantıal support (a mean of $\$ 107,000 /$ program) firectly from student tuition and fees (APAP, May 1.985).

BHPr training grants provide the pramary source of external fınancial support for PA programs. Over 70 percent of responding programs reported that they recelved Federal funds during FY 1984-85. The amount of Federal support provided averaged $\$ 130,889$ per program (range, $\$ 57,000-$ $\$ 274,000 /$ year). In addition to Federal grants, seven of the programs surveyed reported recelpt of State support averaging $\$ 88,148$ per year, and four programs reported financial assistance from other sources (such as Allied Education Centers and contracts from industry) totaling an average ot $\$ 40,000$ per year (range, $\$ 10,000-\$ 73,000$ ). The total annual financial support from all sources for PA educational programs averaged $\$ 276,919$ per pruyram (range, $\$ 120,000-\$ 620,000$ ). The Federal grant support provided 35 percent of this trtal (APAP, May 1985).

Sources of Financial Support for PA Programs
Source of Financial Support
Mean
Range
Internal
Sponsoring Institution $\left(N=3^{\prime}\right) \quad \$ 169,581 \quad \$ 15,000-388,000$
Tuition and Fees $(\mathrm{N}=6) \quad 107,167$ 43,000-186,000
External

Federal Grants $(N=27)$	130,889	$57,000-274,000$
State $(N=7 ;$	88,143	$6,000-200,000$
Other $(N=4)$	$4 C, 000$	$10,000-73,000$

Total Program Support $(\mathrm{N}=37) \quad \$ 276,919 \quad \$ 120,000-620,000$

SOURCE: APAP. First Annual Report on Physician Assistant Educational Programs in the United States 1984-85. Arlington, VA, May 1985.

## Curriculum Type and Program Content

Although programs vary in curziculum design because of educational needs, student characteristics, previoas experience in health-related fields, and local demand, the typical PA program is 2 yuars and consists of both didactic and clinical instruction. Preclinical coursework rarging from 6 to 12 months includes cuurses in anatomy, physiology, microbiology, pharmacology, psychology, clinical medicine, physical diagnosis, preventive medicine, and courses in the behavioral sciences and clinical laboratory procedures. . The didactic portion of the educational program is followed by clinical training, lasting 9 to 15 months, which is designed to develop practitivater skills.

The clinical phase consists of rotations and preceptorshıps in medical disciplines. Practicing physlcians supervise these practicums which occur within a hospital, office, clinıc, or institutional setting. PAs are educated in those areas of basic medical science and clinical disciplines which prepare them to function as generalısts. This includes training in family medicine, internal medicine, obstetrics/gynecology, pediatrics, surgery, concepts of benavioral medicine and psychiatry, pharmacotherapeutics, health maintenance, and ambulatory, emergency, and long-term care (AMA, 1985). PA students are tralned to obtain a patient's medical history, perform comprehensive physical examinations and rinor surgical procedures, order and complete routine diagnostic tests, develop diagnostic and management plans, provide basic treatment for persons with common illnesses, and respond approprlately to life-threatening emergencies. PAs are also trained to counsel patients on preventive health care topics and to facilitate the referral to the community's health and social service agencies when appropriate (AMA, 1985). The curricula of the surgeon's assistant programs are st: tsturally similar to programs for primary care PAs, except that they place greater emphasis on clinical and technical skills related to surgical patient care. Clinical rotations include general and specialty surgical services.

Over the past decade, studies to measure pa program eftectiveness have led to a number of innovations in medical education. PA educators were among the first to use patient management problems, computer-based clinical simulations, clinical algorithms, and patient instructors. Another inncvation ploneered by PA programs, particularly MEDEX programs, is the jemonstration of how practitioners can be employed in medically underserved areas after completing preceptorships in those areas (Carter, et al., Apr. 1984).

PA educators and practitioners continue to monitor changes in the "real world" of practice and to modify and refine their curricula to be responsive to evolviny roles. Both the AAPA and individual programs have sonducted role delineation surveys since 1976. As a result, the majority of PA programs have incorporated comretence-based or practice-oriented curricula into their educational process (Curry and Luckie, 1984).

The emergeace of new roles in preventive medicine, geriatrics, occupational/ public health, surgery, rehabilitative medicine, alcohol/druy abuse, psychiatry, ortnopedics, multicultural settings, urban community health, hospice care, women's health, and family/child abuse also has caused modification in program curricula.

## Student Enrollment

As of March 15, 1985, 2,396 students were enrolled in the 53 AMA-CAHEAaccredited PA programs and surgeon's assistant programs (AAPA, Mar. 1985), a dec.ine in enrollment of 475 students since the January 1983 reporting period (AAPA, Jan. 1983). The average class size reported for 1982-83 was 28.5 (APAP, 1982-83). The mean class size of the two most recently enrolled PA classes (1983-84 and 1984-85) was 22.4 and 23.9 students, respectively. APAP officials estimate that the total number of PA students currently enrolled in first- and second-year classes is approximately 1,267 and 1,187, respectively (APAP, May 1985).

## Applicant and Student Characterıstics

Enrollment of women in PA programs has been increasing steadily since the first all-male class matriculated in 1965. In 1978-79, 44 percent of students were women; by 1981-82, the figure was slightly more than one-half. Women now constitute 60 percent of the student population. Women appear to have a slightly greater likelihood of being accepted and enrolling in a PA program than men: 34 percent of female applicants are eventually accepted and enrolled, compared to 31 percent of male applicants (APAP, May 1985). APAP estimates that the ratio of applicants to positions is 4:l (Oliver, 1985), the same as that reported in 1982.

In both the 1983-84 and 1984-85 classes, the majority of students enrolled were between the ages of 20 and 26. Approximat.ely one-fourth were over 30 and less than 1 percent were under 20 years old.

Seventeen percent of students enrolled in 1984-85 are minorities (non-whites). This is an 2 ncrease ovei the 1981-82 reporting period when minorities constituted 11.4 percent of the PA student population (APAP, 1981). Enrollment of both black and Hispanic students has increased since 1981-82, when blacks comprised 5.6 percent of enrollees and Hispanics constituted 2.8 percent (APAP, 1981).

Applicant and Student Characteristics by Gender, 1983-84 and 1984-85 Entering Classes

Gender	$\begin{gathered} \frac{1983-84}{\text { Mean }} \\ \text { Number } \\ \text { Enrolled } \end{gathered}$	1984-85		
		Mean Number of Al'.   Applicants	Mean Number Accepted	
Female	13.6	50.2	17.3	14.6
Male	9.7	27.4	11.4	- 9.1

SOURCE: APAP. First Annual Report on Physician Assistant Ecucationai programs in the United States 1984-85. Arlington, VA, May 1985.

Nearly one-half of the PA students of both the 1983-84 and 1984-85 entering classes held baccalaureate degrees before enrollment in the 34 responding programs, and an additioral 16 percent held associate degrees before matriculation (APAP, May 1985). The total percentage of students earning a degree before enrollment ( 67 percent) corcelates r,losely to the 68 percent reported in APAP's 1981 survey (ADAP, 1982).

## Student Educational Experses

In general, nonresident tuition was reported as 50 percent higher than resident tuition. Because the length of the programs varied extensively (from 12 months to 37 months), the data are expressed as the mean cost per month. The expenses associated with oooks, fees, and equipment represent 15 percent and 11 percent of the total expenses for resident and nonresident students, respectively.

The 1984 National Proyram Survey did not request information about the specific type and amount of student financial aid which was being received; however, 64.6 percent of students from responding programs reported receiving some sort of financial aid, ranging from 5 to 100 percent of the cost of theır educational proyram.

In a 1981 survey, students indicated that the median amount they recerved from personal sources was $\$ 3,800$. The median amcunt received from sources that require repayment, such as guaranteed student loans, State loans, personal bank loans, or other loans, was $\$ 4,900$; the median amount received from sources that do not require repayment (veterans benefits, training stipends, scholarships) was $\$ 900$ (APAP, 1981). There are no Federal fınancıal aid programs specıfically geared toward PA students.

Expenses   Enrolled   Expenses	of Stude   PA Pro		M 3 /Month Program
	Mean	Range	
Tuition			
Resident ( $\mathrm{N}=37$ )	\$6,378	\$1,000-15,600	\$274
Nonresident ( $\mathrm{N}=36$ )	8,986	4, 200-18,200	367
Bonks, Fees, Equipment $\langle\mathrm{N}=351$	1,129	300-2,500	$N A \cdot /$
Total Student Costs (Tuition			
Books, Fees, Equipment)			
Resident,$~ N=35)$	7,669	1,600-i7,000	330
Nonresident ( $\mathrm{N}=34$ )	9,962	4,500-17,000	416
Percentage of Students Receiving			
a/NH $=$ Not Avarlable			
SOURCE: APAP. First Annual Report on Physician Assist e Educationa:			
Programs in the United States 1984-8	Arling	n, VA, May 198	

## Recent PA Graduates

The mean size of the most recent graduating class was reported as 21.9 for 35 responding programs, and the majority of graduates ( 57 percent) were women. Ninety-one percent of 1984-85 graduates were white/non-Hispanic, 6 percent were either Hispanic or black, and less than 3 percent were classified in the remaining ethnic groups. The majority ( 55 percent) of recent PA graduates were within the 24-29 age group on admission, 26 percent were 30 years of age or older and less than 1 fercent were under age 20. The overall attrition rate reported by 35 program respondents was 9.2. In 1982, data from federally funded programs indicated that the attrition rate s.as approximately 9 percent and the rates for male and female students did not differ significantly.

The attrition rate relative to the age of the student indicates that chose between the ages of 20 and 23 and those 30 and older are nearly twice ar likeiy to withdraw from their program as compared to studeais aged 24 tr 29. The attrition rates among ethnic groups varied extensively. Black/ non-Hispanic attrition was markedly higher than any other group (APAP, May 1985).

## A Look at The Future

## Supply Pro_ 3ctions

The AAPA estrmates the total PA population has grown by only 1,862 over the past ? years for a potential employment pool $\mathrm{If}^{\mathbf{f}} 16,962$ (AAPA, Mar. 1985). If 5 to 10 percent accurately represents the number of graduates who never take the national certifying exame then National commission on Certification of Physician Assistants statistics reinforce the acruracy of the estimate of the currant number of PAs (approximately 17,000).

Based on the information available during the 1983 reporting poriod, a 20 percent inactive rate was used to determine PA supply. The $2^{\text {n }}$ percent inactive rate was applied to the 15,100 known PAs in 1983 , the supply of practicing PAs was estimated to be 12,080. Preliminary analysis of the data from the AAPA 1985 Masterfile Survey indicates that 86 percent were currently actively certified. It also shows that the inactive rate for the profersion appears $t$ be sonewnat less than the 20 percent estimated in 1983; therefure, ar inactive rate of 14 percent will be used for this report.

If a 14 percent inactive rate is applied, the current supply of practicing PAs is estimated to be 14,620. Training programs add an annual supply of approximately 1,200 new PAs. Under th. assumption that 85 percent of graduates find and keep employment of PAs, an annual increment of 1,020 PAs would be expected, based on current numbers of graduates. Using this approximation for a straight-line projection and igroring death and retirement, which should be minimal for this relatively young ecofession, the total number of practicing pas would reach 20,740 by the end of 1990 .

In 1981, the Graduate Medical Education National Advisory Committee (GMENAC) projected the 1990 practicing population to be 20,800 , using 1978 baseline data. Current projections based on 1985 data demonstrate a close correlation to GMENAC supply projections for PAs in 1990. Specific data on attrition from the profession are needed to improve the accurancy of supply projections.

## Requirements

The current complexity of the health care system and uncertainty about economic and political developments that will affect the roles that PAs fill make numerical projection of future requirements impossible. Key issues that may influence the need for PAs in the years to come include: (1) health care financing issues; (2) projected physician oversupply; (3) the aging of the U.S. population; (4) the growing number of women in the profession; and (5) differences among State laws governing PA practice (which has been previously addressed).

## Health Care Finanring Issues

Although numerous stidies have documented the impact and effeこtiveness PAs exhibit in the health care setting, constraints which affect their full uce have changed little. Various state professional practice acts place legal constraints on their services and the narrow eligibility for reimbursement under Medicare restricts theır potentıal for maxımal use (Cawley, Mar. 1985; Weston, 1984).

The cost to the physician practitioner for services rendered by PAs is not reimbursable under Medicare Part $B$ or most Blue Shield plans. Twenty-four States provide such reimbursement under Medicaid.

The AAPA is aeeking a change to Medicare rules that would allow for reimpursement of physician-type selvices that PAs provide to Medicare beneficiaries. This change would affect outpatient settings other tnan certified rural health clinics and certain HMOs, in which PA services are already covered. Reimbursement would be directed to the PA's employer, not to the PA. Conversely, the direct costs for PAs in institutional settings are usually fully reimbursable under Medicare Part A, Medicaid, and most insurance plans (Rosen and Vanderbil', 1983).

The recent establishment of a Prospectıve Payment System (PPS) for Medicare reimbursement could profoundly affect the financing of the health care Anlivery sy, tem in years to come. PPS and other systems of payment that may be instituted wall be designed to reduce or contaln the cost of health care. Therefore, health care providers will be seeking ways to build economies into their operation. PAs, who are trained to perform many services now done by physicians, may become increasingly attractive to physicians and health administrators in settings where the 1 r services can be appropraitely reimbursed.

This system could increase demand for pas in several ways. For example, it will become necessary to use the most qualified and least costly health care provider in order to maintaln services while stabillzing income. Hospitals are already shifting portions of their operations to the outpatient sector, because outpatient services do not yet come under the $\mathrm{DR}^{-}$system; therefore, hospitals will rely more on ambulatory units as a means $o^{-}$maintaning fiscal integrity. PA use could expand in these settings to increase efficiency in outpatient operations (Cawley, Mar. 1985). Hospitals may contirually cut down the costs of their inpatier services by decreasing the number of residency slots, and early discharge may lead to a greater need for care in intermediate facilıties and home health care. Hospitals have long wrestied with the problem of separating the costs of their residency programs from the programs' educational value to the physician. until now, they have charged these costs to the patient's care. unaer PPS, hospitals may reduce costs by reducing the 1 r residency slots and relying on pas.

## Projected Phvsician Oversupply

Opinions differ about the effect of the projected physician surplus on the future of pas. Increasing competition amcng providers has been cited as a primary outcome of the oversupply of physicians. Recognizing the potential for reduced earnings, physicians may encourage restrictive policies geared toward physician extenders or may move into underserved practice areas which now provide patients to PA-augmented medical practices.
pas currently do not appear to pose a threat to a physician's private practice but bring an ability to expand and extend it. Physicians who develop effective managerial and delegatory skills in using pas may well be the ones who will gain the competitive edge in the future (Light, 1984). PAs generate about four times more in revenue than they earn in salary in primary car'? practices (Carter et al., June 1984) (Table 4-11). Although it is cost- effective for physicians to use pAs in their practices, it is too early to determine whether the PA will be in direct competition with the new physicians who are seeking practices in areas previously underserved by physicians (Cawley, 1985) or whether these pnysicians perceive PAs as practice facilitators (USDOL, 1985).

PAs have demonstrated the ability to adapt to changing practice requirements and to provide complementary services which are not competitive to the physician. Examples are preventive and primary care ser?ices provided in the home and intermediate care facilities. This flexibility will be an asset in the future as new roles emerge pecause of the changes in the U.S. health care financing system.

## The Aging oi the U.S. Population

In the year 2,000 , there are likely to be 36 million or more americans aged 65 or older. This is 10 million more than 1980 (USDHHS, 1984). Increased numbers of elderly, who are heavy users of health care services will place increased demands upon the realth care system.

Although consideration must be given to the expander "well elderly" patient population found in primary care practice settings frequented by PAs, a major concern about the aging population is the care of persons at home or if long-term care institutisns. This concern is heightened by the economic implications of the siaft of older patrents who require additional care to a nursing home before returning them to the community to avoid exceeding Medicare allowable costs under the DRG-based reimbursement systen.

Studies indicate that physicians have not been widely attracted to geriatric practice (Kane, et al., i980) (Kleh, 1978). If this trend continues more nonphysician health care providers may be needed to meet new health personnel requirements.

Several repc-cs have demonstrated the effectiveness of PA use in the geriatric setting (Cawley, et al., 1983). Phyeicians who employ PAs use them to expand the quantity and quality of services provided to their nursing home patients. However, to achieve maximal effectiveness of PAs in the nursing home setting, third-party payors will have to be convinced of the benefits of reimbursing pAs in those settings (Tideiksaar, 1984).

At the 1984 Twelfth Annual Physician Assistant Conference. discussions focused on the reed $\pm 0$ stimulate and educate faculty about the special $\mathrm{r}^{\prime \prime}$ th care needs of the elderly. Short-term faculty development at centers wellence was proposed to improve the quality and quantity of geriatric .rng in PA programs.

The Report on Education and Training in Geriatrics and Gerontology submitted to Congress in rebruary 1984 reflects the growing concern for PA and other health professionals' faculty development in geriatrics/gerontology (NIA, 1984). In addition to strengthening the overall delivery of services, the reprort recommended that additional PAs be prepared to work in long-term care institutions and other programs serving the elderly.

In response to the need for PA faculty development in geriatrics/gerontology, the Bureau of Health Professions funded a 2-year contract to Stanford University providing for short-term intense education in major facets of care of the elderly for approximately 22 PA faculty members nationwide. Further support of traıning for $P$ as in this area is anticipated in FY 1985.

The Admanistration on Aging (AOA) awarded the AAPA a grant in FY 1984 to conduct geriatric research activities to assess and improve PAs' knowledge and skills in geriatrics. As part of this project, three surveys were conducted: (1) the "Masterfile Survey," which was sent to the known universs of PAs; (2) the "Instructional Needs in Geriatrics Survey," which surveyed pas in practice to ascertain their perceived needs for training in geriatrics and their level of involvement with health care problems encountered by the elderly; and (3) the "Teaching in Geriatrics Survey," which was sent to PA programs to identify what topics they were teaching in geriatrics and their perceptions of what should be taught. Both
practitioners and programs were polled to determane whether their perceptions of needea $t=r$ !cs were congruent. Attitudes of students and practitioners toward i.e elderly were also aduressed.

Preliminary survey re:iults of the AOA/AAPA project indicate that the majority of the PA program ofterings $2 n$ geriatrics (whether required or elestive) are a recent occurrence. Before 1979-80, there were only 16 required and/or elective courses in geriatrics. Since 1979, these numbers have increased dramatically to approximately 44. This expansion was directly related to the increased Federal initiative to encourage geriatrics training of health care professionals. A survey of BHPr FY 1984 training grant projerts snows that more than 75 percent have included geriatrics to some degree, in either their didactic or clinical curriculum.

The AOA/AAPA project survey rerults also found that most of the PA programs coursework geared toward the elderly wa; geriatric medicine-oriented rather than gerontology. Thereiore, these programs may have to place more emphasis on the psychosocial aspects of aging.

## The Growing Number of Women in the Profession

If the current trend continues, women in the profession will outnumber men. From 1981 to 1984 , there was an increase of 13.3 percent in the number of practicing women PAs. In 1981, women constituted slightly more than one-half of the student population, and as of 1984, this proportion had grown to 62 percent. The impact, of thas trend remains to be seen. Compared to men, women tend to be underrepresented in family medicine and surgery and overrepresented in internal medicine, pediatrics, and obstetrics/ gynecology. They are more commonly employed in a clinic practice or hmO located in medium-sized to large communities, allocate their time differently in the practice setting, and are more frequently unemployed (often by choice). The distribution of PAs by specialty and practice setting may show an increase in those areas currently frequented by women; however, marketplace decerminants may be a controlling factor, and the number of women in predominantly male specialties and settings may increase. Because the inactive rate for females in the profession is twice that of males, the percentage of inactive pas will probably continue to increase as women pAs choose to become unemployed for personal reasons. Although these women are likely to become active PAs as their personal or family obligations change, the increased number of women in the profession will affect the active supply.

## Surmary

The PA profession has experienced rapid growth from the mid-1970"s to the mid-1980's; howevel, the rate of acceleration now appears to have levesed off. PA practice is changing: the largest number of PAs continue to practice in primary care settings, but the proportion continues to drop as a growing number of pas become employed in medical and surgical specialties and subspecialties. Larger numbers of pAs are also working in industrial/
occupational medıcıne; increased percentages are working in non-primary care settings such as occupational health clanics, HMOs, hospitals, and institutional settings. However, PAs are still caring for underserved populations in places unattractive to physicians, such as rucal areas, inner city neignborhoods, prison systems, and long-term care facılities. Their suitability for expanded practice in these and other settings, such as in intermeliate and home health care for the elderly, has been demonstrated. It rer.ains to be seen whether the increase in physician supply will impinge upon the roles of PAs or will decrease the demand for thear services. No such trend has yet developed.

Over the past 15 years, numerous reports have shown that PAs increase the availability of primary care services, promote cost savings, and increase productivity in a wide variety of settings. Acceptance of the concept by employing physicians and patient satisfaction, both in quality of care and more personalized care, in both ambulatory and non-amoulatory settings has been generally positive.

Training programs provide PAs inth a good tuandation of medical knowledge and skills. These programs cuntinue to expand and modify their curricula to be responsive to changes in PA settings and roles. In an effort to be responsive to changing PA roles, the AMA has revised its Essentials and Guidelines of an Accredited Educational Program for the Physician
Assistant. The previous emphasis on primary care has been modified in the Essentials and a less restrictive "generalist" focus has been incorporated throughout the revised document.

Although the PA st.adent population has stabilized, the background and demographic characteristics of students continues to move away from those found in the early 1960's. At that time, the typical student was a white male with several years of previous health care experience (usually as a military corpsman) and limited academic background. At present, the majority of PA students are white females with more academic credentials but with fewer years of experience in a health-related occupation, Although the PA profession has been an attractive career pathway for minorities, their numbers have been declining. The minority composition of the pa profession has fluctuated from 18.1 percent in 1975 to 12 percent in 1981 and 9.2 percent in 1984. Blacks represented one-third of the minorities in 1981 and 1984. Current enrollment figures indicate that 14 percent of the most recently enrolled PA class are manorities; almost two-thirds of these students are black and 5 percent are Hispanic. Attrition rates in PA programs have remained stable at 9.2 percent. Women and men have comparable attrition rates from programs. Blacks have the highest rate of attrition.

According to the 1980 data (and reinforced by the 1984 data), attrition from the profession has stabilized and the number of employment opportunities for PAs is good. PA program direstors currently report that jobs remain plentiful; however, several national issues affect the fature demand for PAs and make that demand difficult to predict:

O The lack of uniformity and ambigulty of State laws governing PA practice have deterred full PA use since the early years of the profession. Although the AAPA has historically encouraged efforts to effect consistency araong $S$ ee statutes, the eventual success of these efforts is questionable.
o Concern over cost containment in the health care sector remains an important issue for the 1980 's. The recently enacted federal legıslation establishing fixed reimbursement for Medicare could increase PA use because it will becor ? beneficial to use the most qualified and least costly health care provider in order to maintain services while stabilizing income. In addition, the PPS has already caused hospitals to shift services to the outpatient sector, because outpatient services are not covered under the DRG system. Pi. use could expand in these settings in both the ambulatory and short-term institutional realms. Hospitals may seek to reduce costs further by cutting their number of residents and substituting them witn PAs.

O The current narrow eligibility for Medicare reimbursement through HCFA also has a negative impact upon PA use. Payment is not authorized to physicians' offices for PA services, because they are not considered services incidental to the physician. The increased acceptance and use of PAs in hospitals in various supportive roles including surgery, emergency room, and house-staff duties, as well as the trend toward specialization, could well be the result of the reimbursement system, because PA services are fully reimbursable in the hospital setting. HCFA 15 studying the potential for enhancing the efficiency of the health care system by changing the regulations related to Pas. The results of these studies will have long-range implications for the use of PAs.
o The current and potential role of pas in providing care to the growing elderly segment of the Nation's population, in both primary care and institutional settings, is well documented. Increased quality of care, improved relations with patients and families, and decreased ger atric patient mortality through the use of PAs have been demonstrated. To avoid exceeding Medicare allowable costs under the DRG-based relmbursement system, more older patients (who require addıtional care) may be shifted to intermediate care facilities before they return to the community. Pas have the skill to help fill the growing need for health care providers in these locations in a cost-efficient manner. However, third-party payors will have to be convir.jed of the benefits of reimbursing ?As in these settings.

The profession has moved from a predominantly male 20 what trend data indicate may be a predominantly female career. The impact of this trend on future practice profiles remains to be seer. The distribution of pas by specialty and practice setting may increase in those areas currently frequented by women; however, marketplace determanants could also increase
the numbers of women in male-domınated specialties and settings. Because the 1 nactive rate for females is significantly higher than for males, the greater numbers of women in the profession will affect the active supply.

The effect of the projected physician surplus on the future of PAs is uncertain. Studies have demonstrated that PAs generate about four times more revenue than they earn in primary care practices and that they can provide services whicn are complementary to the physician's. In addition, pas serve in practice settings which continue to be unattractive to physicians.

The PA profession's adaptability in serving the health care needs of the country in diverst settings has been demonstrated. The profession con'in inues to offer an attractive career option to persons who want to help others in a meaningful and responsible way but who are unable or unwilling to commit themselves to the extended years of intensive education required of physicians.

## References

American Academy of Physician Assistants. AAPA 1985 Masterfile Survey Preliminary report supported in part by Administration on Aging Grant No. OOAT0094. Unpublished data, Arlington, VA, February 1985a.

Americar: Academy of Physician Assistants. Physician Assistant Credentials Arlington, VA, February 1985b.

Amer ican Academy of Physicıan Assistants. Physician Assistant National Legislative Issues Arlington, VA, February 1985c.

Amerıcan Academy of Physician Assistants. Physician Assistant Organizations Arlington, VA, February 1985d.

American Academy of Physician Assistants. Pnysicıan Assistant State Regulations Arlington, VA, February 1985 e .

American Academy of Physician Assistants. Membership Division. Statistics of the Physician .issistant Profession Arlington, VA, January 1983.

Amer ican Academy of Physician Assistants. Total Physician Assistant Population Arlington, VA, March 15, 1985.

American Medical Association, Department of Allied Health Education and Accreditation. Accredited Educational Programs for the Assistant to the Primary Care Physician Chicago, IL, November 1984.

American Medical Association, Joint Review Committee on Edicational Programs for Physician Assistants. Essentials and Guidelines of an Accredited Elucational Program for Physician Assistants. Chicago, IL, March 1985.

American Medical Association, Division of Survey and Data Resources. State Sumary Data on Physicians 1981 Chicago, IL, November 1983.

Association of Physivian Assistant Prcgrams. Annual Report of Member Programs 1982-83 Arlington, VA, undated.

Association of Physician Assistant Programs. First Annual Report on Physician Assistant Educational Programs in the United States 1984-85. Arlington, VA, May 1985.

Assoriation of Physician Assistant Programs. Length of Program and Degree Awarded. Arlington, VA, March 1985.

Association of Physician Assistant Programs. National Directory of Physician Assistant Programs 1985-1986 Arlington, VA, June 1984.

Association of Physician Assiscant Programs. 1981 National Survey of Physician Assistants. Arlington, VA, May 1982.

Assocıation of Physicıan Assistant Programs. Shysicıan Assistant Student Survey 1981-82. Preliרinary report prepared by APAP under sponsorship of the Robert Wood Johnson Foundation, I.D. No. 4506. Arlington, VA, October 1981.

Association of postgraduate Physician Assistant programs. Postgraduate Residency Programs for Physician Assistants. New Haven, $\overline{\mathrm{CT}}, \mathrm{April} 1985$.

Carter, R.D., Emelio, J.W., and Perry, H.B. "Enrollment and Demographic Characteristics of Physicians Assistant Students." Journal of Medical Education. April 1984.

Carter, R.D. and Oliver, D.R. "An Analysis of Salaries for Clinically Active Physician Assistants." Physician Assistant July 1983.

Carter, R.D., Oliver, D.R., and Per ', H.B. Secondary Analysis: 1981 National Survey of Physician Assis ants. Final report to National Center for Health Services Research Grant No. (HS) 04862. U.S. Department of Health and Human Services, Rocixville, MD, June 1984.

Cawley, J.F. "Health Policy Issues Facing PAs." Physician Assistant March 198s..

Cawley, J.F. "The Physician Assistant Profession: Current Status and Future rrends." Journal of Public Health Policy Vol. 6, No. 1, 1985.

Cawley, J.F., O'tt, J.E., and DeAtley, C.A. "The Future for Physician Assistants." Annals of Internal Medicine June 1983.

Congressional Budget Office. Physician Extenders: Their Current and Future kole in Medical Care Delivery. U.S. Congress, U.S. Government Printing Office, Washington, DC, April 1979.

Curry, R.H. and Luckie, R.W. "The Role of the Primary Care PA." Physician Assistant September 1984.

Fasser, C.E. , Andrus, P., and Smith, Q. "Certifying Registration and Licensure of Physician Assistants." Alternatives in Health Care Delivery: Emerging Roles for Physician Assistants Warren H. Green, Inc., St. Louis, MO, 1983.

Federal Keyl.ster. Rules and Regulations. Part 5l--Criteria for Evaluating Comprehensive Plan to Reduce Reliance on Alien Physicians Vol. 48, No. 14, January 20, 1983.

Goldfarb, D. "Trends in Physicians" Income, Expenses and Fees: 1970-1980." Profile of Medical Practice 198i American Medical Association, Chicago, IL, 1981.

Isiadinso, O. "Physician Assistants in Geriatric Medıcine." New York State Journal of Medicine June 1979.

Kane, R., Solomun, D., Beck, J., et al. "The Future Need for Geriatric Manpower in the U.S." New England Journal of Medicine 1980.

Kleh, J. "When to Institutionalize the Elderly." In The Geriatric Patient (Reichel, W., ed.) H. P. Publishing Co., Inc., New York, NY, 1978.

Lichtenstein, R. Physicıan Job Satisfaction and Retention in Correctional Health Programs. Final report to National Center for Health Services Research Grant No. (HS) 4127, 1981. National Technical Information Service, Sprangfieid, VA. Access No. 82-146101.

Light, D.W. "Is Competition Bad?" New England Jolrnal of Medicine November 1984.

Miller, $H$. Review and Analysis of State Legıslation and Reimbursement prantice of Physician Assistants and Nurse Praccitioners. National Technical Information Service, Springfield, VA. DHHS publication No. (PB) 279-242, 1978.

National Academy of Sciences, Institute of Medicine. A Manpower Policy for Primary Health Care Washington, DC, 1978.

National Instıtute on Agıng. Report on Education and Training in Gerıatrics and Gerontology Administrative document. Bethesda, MD, February 1984.

Oliver, D.R. Association of Physician Assistant Programs. Personal communication. April 19, 1985.

Olıver, D.R., Carter, R.D., and Conboy, J.H. "Practıce Characteristics of Male and Female Physician Assistants." American Journal of Public Health December 1984.

Perry, H.B. Mnysician Assistants: An Overview of an Emerging Health Profession. Medical Care December 1977.

Perry, H.B., Detmer, D.E., and Redmond, E.L. "The Current and Future Role of Surgical Physician Assistants: Report of a National Survey of Surgical Charrmen in Large U.S. Hospitals." Annals of Surgery February 1981.

Perry, H.B. and Weston, J.L. "Factors Encouraging the Continuel Utilization of Primary Care Physician Assistants." Alternatives in Health Care Delivery: Emerging Roles for Physician Assistants (Carter, R.D. and Perry, H.B., eds.) Warren H. Green, Inc., St. Louis, MO, 1983.

Rodino, F.J. and Sullivan; M. "The Physician Assistant: Addressing the Health Care Needs of New York State." Report to the New York State Board of Regents, New York, NY, September 1984.

Rosen, R.G. and Vanderbilt, C.E. "Issues in the Employment of Physician Assistants as Housestaff." Alternatives in Health Care Delivery: Emerg2ng Roles for Physician Assistants (Carter, R.D. and Perry, H.B., eds.) Warren H. Green, Inc., St. Louis, MO, 1983.

Roy, A.. "Educating the Primary Care Physician." Alternatives in Health Care Delively: Emerging Roles for Physician Assistants (Carter, R.D. and Perry, H.B., eds.) Warren H. Green, Inc., St. Louis, MO, 1983.

Ryser, J. "PAs Seen as an Asset in Liabılity Crisis." American Medical News April 1976.

Spitzer, w. J. "The Nurse Practitioner Revisited: Slow Death of a Good Idea." New England Journal of Medicine April 1984.

Tideiksaar, R. "The PAs Role in the Nursing Home." Physician Assistant November 1994.
U.S. Department of Health, Education, and Welfare, Public Health Service, Health Rescurces Administration. Report of the Physician Extender Workgroup Hyattsville, ML, June 1977.
U.S. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Professions, Area Resource File Rockville, MD, September 1984.
U.S. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Professions, Office of Data Analysis and Management. A Report to Congress on the Evaluation of Health Manpower Shortage Area Crıterion Executive summary, Rockville, MD, June 1983.
U.S. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Professions, Division of Medicine. Physician Assistant Program Fises Rockvalle, MD, April 1985.
U.S. Department of Health and Human Services, National Insticute on Ajing. Report on Eaucation and Training in Geriatrics and Gerontology Administrative Document, Rockville, MD, February 1984.
U.S. Department of Labor. Occupational Outlook Handbook--1986-87 Preliminary draft, Washington, DC, May 1985.
U.S. Veterans Administration, Personal Communications May 8, 1984.

Weston, J.L. NPs and PAs: Changes-Where, Whether and why. National Center for Heálth Services Research, Unpublished document, U.S. Department of Health and Human Services, Rockville, MD, November 1984.

Wunderman, L.E. "Female Physicians in the 1970s: Their Changing Roles in Medicine." Profile of Medical Practice 1980 American Medical. Association, Chicago, IL, 1980.

Table 4-1. Personal Background and Professional Characteristics of PAs Responding to the 1976, 1978, and 1981 Physician Assistant Graduate Surveys

Characteristic	1976		1978		1981	
	Number	Percent	Numbel	Percent	Number	Percent
Sex						
Men	2,528	72.5	3,099	69.4	3,807	63.5
Women	958	27.5	1,366	30.6	2. 89	36.5
Total	3,486	100.0	4,465	100.0	5,996	100.0
Race/Ethic Origina/						
White	2,865	86.5	3,925	87.7	5,460	91.4
Black	195	5.9	234	5.2	195	3.3
Other Minorities	152	4.6	218	4.9	261	4.4
None of the Above	100	3.0	94	2.2	53	. 9
Total	3,338	100.0	4,471	100.0	5,969	100.0
Prior Academic Experience ${ }^{\text {/ }}$						
College Wıth Degree	1,562	46.8	2,067	49.9	2,536	49.7
College Without Degree	1,280	38.3	1,632	39.4	2,148	42.1
No College	496	14.9	445	10.7	419	8.2
Total.	3,312	10C. 0	4,144	130.0	5,103	100.0

Prior Health Care


Military Corpsmen	1,490	42.6	1,871	41.9	1,801	34.8
Technologist/rechnician	734	21.0	898	20.1	1,284	24.9
Registered Nurse	402	11.5	598	13.4	653	12.6
Other Health Fields	610	17.5	589	13.2	811	15.6
No Experlence	257	7.4	509	11.4	626	12.1

Type of Traininga/

Formal	3.242	92.8	4,442	95.0	5,886	97.2
Informal	351	7.2	223	5.0	167	2.8
$\quad$ Total	3,493	100.0	4,465	100.0	6,053	100.0

Professional Activitya/

Active	3,065	87.7	3,476	86.6	5,202	86.5
(Patient Care)	$(2,837)$	$(82.1)$	$(3,278)$	$(81.7)$	$(4,873)$	$(81.0)$
(Nonpatient Care)	$(198)$	$(5.6)$	$(198)$	$(4.9)$	$(329)$	$(5.5)$
Inactive	428	12.3	537	13.4	812	13.5
$\quad$ Total	3,453	100.0	4,013	100.0	6,014	100.0

a/Percentages based on number responding to question.
b/Percentages based on number responding to question and includes multiple responses.

SOURCE: Carter, et al. Seconiary Analysis: 1981 lational Survey of Physician Assistants. DHHS, ROCkville, MD, June 1984.

Table 4-2. Medical Specialty for Civilian PAs by Gender, 1981

	Percent	Percent	Percent
	Males	Females	Total
Specialty	$(\mathrm{N}=2,078)$	$(\mathrm{N}=946)$	$(\mathrm{N}=3,024)$


Famıly Medicine	55.5	45.1	50.9
Internal Medıcine	11.0	18.1	13.2
Surgery	15.1	10.2	13.5
Pediatrics	2.2	8.2	4.1
Obstetrics/Gynecology	0.5	6.4	2.4
Psychiatry	0.9	1.0	0.9
All Others	$\underline{16.8}$	$\underline{11.0}$	$\underline{15.0}$
$\quad$ Total	100.0		

SOURCE: Oliver, et al. "Practice Characteristics of Male and Female Physician Assistants." American Journal of Public Health December 1984.

Taple 4-3. Gender, Race, and Age of pas
Responding to 1976, 1978, and 1981 Graduate and Student National Surveys, by year of Graduation

Year ot Graduation	Number	Sex Percent		Number	Race Percent		Average Age at Graduation	
		Male	Female		White	Nonwhite	Number	Age
1972	376	82.2	17.8	375	86.4	13.6	354	29.0
1973	566	79.3	20.7	568	85.4	13.6	532	30.0
1974	897	77.6	22.4	899	81.9	18.1	839	29.9
1975	1,215	67.9	32.1	1,216	85.9	14.1	1,140	29.7
1976	1,369	65.3	34.7	1,382	87.3	12.7	1,285	29.3
1977	1,251	63.0	37.0	1,259	89.1	10.9	1,234	29.0
1978	1,093	58.1	41.9	1,093	91.0	9.0	1,074	28.2
1979	1,131	54.0	46.0	1,134	90.5	9.5	1,109	28.5
1980	894	52.8	47.2	899	91.1	8.9	882	27.8
1981	835	49.8	50.2	836	87.6	12.4	825	27.9
1982	810	48.8	51.3	811	88.7	11.3	800	28.0
Total	10,443	62.2	37.8	10,478	87.9	12.1	10,074	28.8

SOURCE: Carter, et al. Secondary Analysis: 1981 National Survey of Physician Assistants. DHHS, Rockville, MD, June 1984.

Table 4-4. Number of PAs per 100,000 Population by Geographic Region and State for Estimated U.S. Population, 1985

	Estima of P	Number	Estimated Number of PAs pitr 100,00
UNITED STATES		16,962	7.1
NORTHEAST NEW ENGLAND		1,052	8.4
Connecticut		346	11.1
Maine		158	13.4
Massachusetts		379	6.6
New Hampshire		72	7.0
Rhode Island		52	5.5
Vermont		45	8.3
MIddLe AtLANTIC		3,376	9.3
New Jersey		211	2.8
New York		2,240	13.0
pennsylvania		961	8.1
NORTH CENI'RAL/EAST NORTH	CENTRAL	1,886	4.5
Illinois		210	1.8
Indiana		145	2.6
Michıgan		585	6.3
Ohio		621	5.8
Wisconsin		325	6.8
WEST NORTH CENTRAL		1,116	6.4
Iowa		223	7.6
Kansas		208	8.6
Minnesota		140	3.3
Missouri		156	3.1
Nebraske		161	10.0
North Dakota		114	17.1
South Dakota		114	16.4
SOUTH/SOUTH ATLANTIC		3,171	7.9
Delaware		22	3.6
District of Columbia		87	15.3
Florida		691	6.0
Georgia		540	9.3
Maryland		630	14.5
North Carolina		771	12.5
South Carolina		201	6.0
Virginia		289	5.1
West Virginia		192	9.6
EAST SOUTH CENTRAL		597	3.9
Alabama		162	4.0
Kentucky		205	5.3
Mrssissippi		34	1.3
Tennessee		196	4.1

Table 4-4. Number of PAs per 100,000 pofulation by Geographic Region and State for Estimated U.S. Population, 1985

	Estimated Number of PAsa/ $\qquad$	Estimated Number of PAs per 100,000
WEST SOUTH CENTRAL	1,423	5.5
Arkansas	41	1.7
Louisiana	95	2.1
Oklanoma	333	10.2
Texas	954	6.0
,EST MOUN'SAIN	1,013	7.6
Arizona	222	6.6
colorado	339	10.2
Idaho	51	4.7
Montand	4.	4.9
Nevada	72	6.9
New Mexico	230	16.2
utah	112	6.4
1. 3 ming	45	7.7
PAC: ITC	2,918	8.4
E.i.sska	156	33.8
Ca-ifornia	2,167	8.5
Hawidi	59	5.6
Orecn	117	3.9
Washington	419	9.2

a/The tr,tal estimated number of pAs $1 n$ the U.S.; it does not represent the number wo are involved in patient care.

SOURCES: Health Resources and Services Adminıstration, Bureru of Health Professiuns, Rockville, MD, and AAPA Membership Division, Arlington, VA, March 1985.

Table 4-5. Patient Care PAs Responding to the 1981 and 1984 National Surveys by Major Practice Setting

Practice Setting	1981		1984	
	Number	Percent	Number	Percent
Office-Based Practice				
Solo	878	18.0	795	15.2
Single-Specialty Group	449	9.2	642	12.2
Multispecialty Group	298	6.1	377	7.2
Unspecified	126	2.6	--	--
Subtotal	1,751	35.9	1,814	34.6
Hospital-Based Practice				
Federal	287	5.9	299	5.7
State	105	2.2	133	2.5
City/County	245	5.0	227	4.3
Private, Nonprofit	498	10.2	726	13.8
Pr ivate, For Profit	229	4.7	256	4.9
Unspecified	36	0.7	--	--
Subtotal	1,400	28.7	1,641	31.2
Clinic-Based Practice				
Prepaid (HMO) Group	214	4.4	358	6.8
Public	286	5.9	317	6.0
Drug and Alcohol Renabilitation	31	0.6	39	. 7
Industrial	142	3.0	153	2.9
Other	164	3.4	63	1.29/
Subtotal	887	17.3	930	17.6
Institutional-Based Practice				
Nursing Homes or Extended Care	44	0.9	47	. 9
Federal Prison	50	1.0	52	1.0
State/County/City Prison	57	1.2	137	2.6
Military	450	2?	612	7.1
Subtotal	601	100.0	5,246	100.0
Other	195	4.0	249	5.0
Unspecified	89	1.8	--	--
Total	4,873	100.0	5,246	100.0

a/Minor emergency center.
SOURCE: Carter, et al. Secondary Analysis: 1981 National Survey of
Physician Assistants. DHHS, Rockville, MD, June 1984. AAPA. 1985 Master
File Survey. Arlington, VA, Feb. 1985.

Table 4-6. Comparison of Patient Characteristics and Visits Between Minority and White Fatient Care PAs Responding to 1981 Survey

Patients	Minority PAs   $(N=313)$	White PAs   $(N=3507)$
Percent Male		
Percent Nonwhite	52.2	50.8
Percent Over Age 65	60.3	31.5
Percent Poor	19.6	25.3
Visits in Complete Week	35.8	21.3
	$(N=300)$	$(N=3609)$
Office		
Hosplial	63.8	29.0
Other l'acility	19.0	4.8

SOURCE: Carter, et al, Secondary Analysis: 1981 National Survey of Physician Assistants, DHHS, Rockville, MD, June 1984.

Table 4-7. Patients by Principal Type of Health Insurance Coverage for Minority and white PAs Responding to 1981 Survey

	Percent   Minority PAs   $(N=304)$	Percent   White PAs   $(N=3)$
Source of Coverage		
Medicare	20.8	19.2
Medicaid	21.1	16.8
Blue Cross/Blue Shield	14.1	24.7
Prepayment or HMO	9.3	8.2
Other Insurance	22.9	23.3

SOUR`E: Carter, et al, Secondary Analysis: 1981 National Survey of physician Assistants, DHHS, Rockville, MD, June 1984.

Table 4-8. Comparison of Distribution of Practice Settiny and Medical Specialty Between Minority and vinite PAs Responding to 1981 Survey

Practice Setting	$\begin{gathered} \text { Minority PA } \\ \text { (N }=353 \text { ) } \\ \text { Number Percent } \end{gathered}$		White PA $(N=3,898)$   Number Percent	
Office	120	34.0	1,586	40.7
Hospital	97	27.5	1,287	33.0
Other Facılity	136	38.5	1,025	26.3
Total	353	100.0	3,898	100.0
Medical Specialty	Number	Percent	Number	Percent
Famaly Medicine	180	58.3	1,744	48.7
Other Primary Care	77	24.9	925	25.9
Medical Subspecialties	5	1.6	124	3.5
Surgery	21	6.8	542	15.1
Other	26	8.4	244	6.8
Total	309	100.0	3,579	100.0

SOURCE: Carter, et al., Secondary Analysis: 1981 National Survey of Physician Assistants, DHHS, Rockville, MD, June 1984.

Table 4-9. Salaries for PAs by Primary Specialty, 1980


SOURCE: APAP/AAPA. National Physician Assistant Survey. Arlington, VA, May 1982.
$\left.\begin{array}{ccc}\hline \text { Table 4-10. Health Resources and Services Administration/ } \\ \text { Support for PA Programs, } \\ \text { FY 1972-1985 }\end{array}\right]$
a/Formerly Health Resources Administration
SOURCE: U.S. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health professions Program files, Rockville, MD., May 1985.


SOURCE: Carter, et al. Secondary Analysis: 1981 National Survey of Physician Assistants, DHHS, Rockville, HD. June 1984.

## Chapter 5

## DEMISTRX

## Developments in Supply

There were approximately $1: 7,950$ active dentists in the United States at the end of 1984, of whom 132,750 were civilian dentists in the 50 states and the District of Columbia and 5,200 were in the Armed Forces (Table 5-i). While the number of dentists has increased cont anously over the past several decades, the laryest increases have occuired ince 1970. The 137,950 dentists in 1984 represent a 35 percent increase over the 1970 level of 102,220.

In 1950 there were about 75,000 activa elvilian dentists, providing a ratio of 49.8 dentists per 100,000 civilian population. Although the supply of dentists increased in subsequent years, it was outpaced by the rapid population growth of the 1950 s and 1960 s , and the dentist-to-population ratio actually declined. By 1965 there were 46.5 dentists per 100,000 population. After 1965 the trend of declining ratios of active civilian dentists to civilian population was reversed, and in 1984 the ratio for the entire Nation reached a level of 56.3 per 100,000 , the highest it has ever been.

The overwhelming majority, approximately 88 percent, of the Nation's active dentis: s are in private practice (Table 5-21. The largest proportion of the remaining dentists, 4 percent, are in the Armed Forces. Faculty of dental schools account for about 3 percent, and 2 percent are in advanced training as interns or residents. There are differences in the employment patterns of active male and female dentists; for example, women dentists iend more of ten to be on the faculty of dental schools.

The number and proportion of women dentists professionally active in the United States continues to grow. In $1>80$ there were 3,500 active women dentists representing less than 3 percent of the tc.al dentist supply. In 1984 there were 6,980 or 5.1 percent of the total. Au the proportion of women enrolled in dental schools continues to increase, it is anticipated that female representation in the work force will grow at an accelerated pace. The number of active women dentists is expected to more than triple by the year 2000.

In 1980 the Bureau of Hea!th Professions reported that there were an estimated 3,630 black dentists representing approximately 2.9 percent of the total active dentist supply. While first-year minority enrollments in dental schools increased steadily between 1971-72 and 1984-85, the proportion of first-year black students remained relatively steady during the period. Nevertheless, the absolute number of black dentists has continued to increase slowly, and is expected to double by the year 2000 if the present rate of enrollment is sustained.

Geographic Distribution. Wide variations in dentist-to-population ratios among regions and States continue to exist (Table 5-3). In 1984 the Northeast
had 67.5 active civilian dentists per 100,000 population, the highest ratio among the regions. The West and the Midwest followed, with 61.5 and 57.5 respectively. The South was significantly lower with 45.5. Projections of dentist supply and distribution indicate a continued increase in the dentist-to-population ratio for all regions, with the South expected to achieve the greatest relative change.

As of June 1985, there were 777 sites designated as dental health manpower shortage areas by the Bureau of Health Professions. Through the National Health Service Corps, approximately 400 dentists were serving the designated sites. The most recent study, based on a review started in 1983, shows a decrease in both the number of dental health mande wen shortage areas and the number of dentists ( 1,715 ) needed in those areas. The number of sites may continue to decline if recent dental graduates select practice locations in less urbanized and more rural areas, and if National Health Service Corps dentists completing their obligations elect to remain in the area where they served their assignment.

Specialization. Approximately 14 percent of active dentists are specialists, with the proportion expected to increase to 1.7 percent by the end of the century. The number of dental specialists more than doubled from 1970 to 1984, from 9,322 to 19,847 (Table 5-4). This increase was proportionately much higher than the 27 percent increase in general practitioners over the same period.

Orthodontists sonstitute 35 percent of all dental specialists, numbering more than 6,900 practitioners. Oral and maxillofacial surgery is the next largest specialty with nearly 4,500 practitioners, or 23 percent of the dental specialists. Periodontics and pedodontics have an estimated 2,762 and 2,398 practitioners respectively, followed by 1,567 endodontists and 1,317 prosthodontists. Oral pathology and public health dentistry, although continuing to experience growth, constitute but a small fraction of total dental specialists. Approximately 2 percent of all dental specialists are women, with the largest numbers in pedudontics and orthodontics.

## Characteristics of Dental Practice

The American Dental Association conducts a survey of dental practice every 2 or 3 years. The survey provides Information on selected characteristics of the private practice of dentistry in the United States. The results of the 1984 survey are based on survey instruments sent to ,stratified random sample representing about 4 percent of private practitioners. The survey conducted in March 1984 reflects conditions and characteristics in 1983.

Ownership. Results of the 1984 survey indicate that almost 95 percent of all dentists who worked in private practice either owned or shared in the ownership of their current primary practice (for the purpose of the survey, these dentists are categorized as independent dentists). The remaining 5-plus percent of private practitioners were employed on a salary, commission, or
percentage basis. Seventy-four percent of the Nation's private practitioners were in solo private practice; 17 percent practiced with one other dentist; and 9 percent practiced with more than one other dentist. These figures reflect little change over the past 3 years in practice ownership and size.

Alternative forms and settings of practice including health maintenance orgarizations, franchise/retail practices, and hospital-based dental care began to expand in the early 1980s. However, the traditional private practice of dentistry remains the predominant means for the delivery of dental services.

Selected Characteristics. According to the 1984 survey, dentists spent an average of 42.2 hours per week in the dental office. The average number of weeks worked per year was 47.3, essentially unchanged from 1981.

The average number of patient visits per week was 61.2. The average annual number of patient visits was estimated at $2,8 \% 5$ per dentist in 1983, a slight increase of 2 percent over 1981.

Tie 1984 survey of dental practice found that direct payment by dental patients accounted for about half of the income of dentists. Private dental insurance made up 44.8 percent of gross income, and government programs made up 4.6 percent. Only 4.7 percent of all independent dentists received no payment from private dental insurance; in contrast, about half of all independent dentists received no payment from government programs.

Many national, State, and local dental organizations as well as individual dentists have begun advertising in the past few years, either as an effort to stimulate the public's awareness of the need for care or to specifically at.tract new patients. According to the American Dental Association's 1982 Survey of Dental Practice, 30 percent of independent general practitioners were in practices that advertised. The mean advertising expense per year for independent general practitioners who advertised was $\$ 2,037$.

Income. In 1983 the mean net income for all independent dentists from their primary practices was $\$ 61,200$. General practitioners had a mean net income of $\$ 55,750$, , employed dentists was $\$ 43,120$. Total practice expenses for independent dentists was approximately 60 percent of their practice gross incomes.

Eetween 1981 and 1983 the mear net income of general practitioners increased 10.4 percent; for specialists, 13.9 percent. While the Consumer Price Index (CPI) rose 9.5 percent, the dental component of the CPI rose 14.9 percent. Nevertheless, dental fees relative to the All Items Index of the CPI continue to remain fairly stable, moving from a relative value of 0.97 in 1981 to 1.01 in 1983.

## Dental Applicanes, Students, and Graduates

Dental Applicants. The number of applicants to dental schools increased 157. percent between 1960 and 1975, growing from 6,119 to 15,734 (Table 5-5). Since 1975-76, applicant numbers declined each year to the 1984-85 level of 6,499, a drop of about 9,200 from the 1975-76 peak. The declining trend in applicants since 1975-75, despite a decrease in first-year places since 197879, has resulted in a steady increase in the percentage of applicants who actually were enrolled. While 37 percent of all applicants were enrclled in 1975-76, 78 percent of all dental school applicants were enrolleत in 1984-85.

Inrollments. First-year enrollments, which were 3,226 in 1950 and 3,806 in 1965-65, stoor at 5,047 in 1984-85 (Table 5-6). As a result, total dental school enrollments were 20,588 in 1984-85, a 73 percent increase over the 1950-51 level of 11,981 students. However, dental school enrollments are now well below the peaks reacher a few years ago. First-year enrollments peaked at 6,301 in 1978-79 but have since declined steadily every year. Total er.:ollments continued to grow to $22,84 \%$ in 1980-81 but have declined in each of the last 4 years.

The total numbe. of dental schools grew from 42 in 1950 to 60 in 1978, with more than half of the increase occurring since 1965. The number remains at 60, although two dental schools have announced plans to close.

Minorities and Women. The enrollment of minority students in dental schools rose throughout the 1970 s and 1930 s . First-year minority enrollments increased from 412 ( 8.8 percent of the total) in 1971-72 to 98.1 ( 19.7 percent) in 1984-85 (Table 5-7). The numbers of Asian-American, Hispanic, and American Indian students and their proportion in entering classes showed steady increases throughout the period. First-year Asian-American students increased from 112 to 465 and from 2.4 to 9.3 percent of entering classes. First-year Hispanic students (excluding the University of Puerto Rico) grew from 40 to 200 and from 0.9 to 4.0 percent of entering classes. Although the numbers are small. American Indian students increased from 4 to 17. Recruitment of black students has been relatively less successful. In 1971-72 the 245 first-year black students constituted 5.2 percent of the entering class, while in 198485, 299 first-year black students accounted for 6.0 percent. In the intervening years, the proportion of black students in enterinq classes remained very stable and never exceeded 5.3 percent.

The enrollment of women in dental schools increased dramatically throughout the 1970s and 1980s. Between 1970-71 and 1984-85, women enrolled in dental school increased from 231 to 4,899 and from 1 to 24 percent of total enrollments. The 1,369 women in first-year dental scnool classes in 1984-85 accounted for 27.1 percent of total first-year enrollment, up from 94 firstyear students and 2.1 percent of the entering class in 1970-71 (Table 5-8).

Graduates. During most of the 1950 s and 1960 s the number of dental graduates remained fairly steady, ranging from about 2,800 to approximately 3,400 a
year. By the early 1970 s the number of graduates began to rise very noticeably, with 5,336 dentists graduating in 1976. Thereafter, the annual number of dental graduates has fluctuated somewhat, reaching a high of 5,756 in 1983, followed by a decrease to 5,337 in 1984. Nevertheless, the 1984 level of dental graduates represents an increase of 42 percent over the 1970 level. Graduating classes over the next few years will decline in size, reflecting the recent steady decrease in first-year enrollments.

Student Attrition. The freshman attrition rate consistently held to approximately 3.5 percent during the 1970 s , but has increased the last few years reaching 6.8 percent in 1983-84. The first-year attrition rate for women is virtually the same as for men. The attrition rate is higher for blacks than for all other freshmen; in 1983-84, blac'.3 made up 5.3 percent of the freshman class but 14.3 percent of freshman attrition. According to the ADA annual report 1534-85 in Dental Education Supplement 5, the greatest proportion of the 1983-84 freshmen withdrawals of black students were for scholastic reasons related to coursework.

The total attrition rate during four years of dental school has been increasing gradusily. If one takes the 1983-84 rate of attrition as a base, the national dental school entering class can be expected to experience approximately an 11 percent attrition rate by the time of graduation. The comparable 1980-81 attrition rate was 8.4 percent.

Student Indebtedness. Significant changes have occurred over recent years in the level of dental student indebtedness. Student indebtedness upon graduation increased from an average of $\$ 12,7 C 0$ in 1978 to $\$ 32,000$ in 1984. When these figures are adjusted for inflation, student indebtedness increased by 58 percent between 1978 and 1984. Over this 6 -year period, there has been more than a threefold increase in the proportion of seniors graduating with $\$ 20,000$ or more debt. In 1984, 81 percent of the seniors had a graduating debt of at least $\$ 20,000$, and 30 percent of the seniors had indebtedness of $\$ 40,000$ or more. The increase in indebtedness correlates with increases in the costs to students of dental education since the mid-1970s. Other contributing factors include higher cost of living, higher interest rates, and reduced availability of scholarships and low-cost loans. If tuitions continue to increase, it is likely that the levels of indebtedness will also continue to rise.

Practice Plans of Senior Students. The American Association of Dental Schools (AADS) 1984 survey of dental school seniors indicated that the immediate postgraduate plans for 24.8 percent of the seniors was to enter private practice as an independent dentist. This figure is about 9 percent lower than the 33.7 percent figure for the 1979 senior class. In 1979. 21.3 percent of seniors planned to be employed in a practice. This increased to 34.3 percent in 1984. The number of sentors planning to attend advanced education increased siqnificantly between 1979 and 1984, from 16.8 percent to 23.3 percent.

When queried about their 5-Year postgraduate plans, 83.7 percent of 1984 seniors reported that they planned some form of self-employed practice, up from 81.4 percent in 198C. Thus, in the long run, private practice ownership remains the most important career goal of most graduating seniors.

The imediate and 5 -year plans of men and women were very similar. The one notable difference was in type of practice ownership. Women appeared more interested in some type of partnership or groip arrangement than men. Men appeared more interested in solo ownership. As women begin to comprise a larger percentage of active dentists, it will be necessary to specifically analyze dental survey data by gender to determine what, if any, practice characteristics differ between men and women dentists.

## Educational Institutions and Prograns

Educational Costs and Revenues. Total institutional expenditures for training students at all dental schools rose from $\$ 635.5 \mathrm{milli}$ in in 1981 to $\$ 758.4$ million in 1984; when adjusted for inflation, this represented a 4.5 percent increase during the period. However, since the number of dental students has declined since 1981 ( 8.9 percent at public schools; 2.8 percent at private schools), the annualized per student institutional expenditure increased even more, particularly in public schools. In public dental schools, per student costs rose from $\$ 31,700$ to $\$ 41,200$; private school per student costs rose from $\$<3,100$ to $\$ 28,500$ (Table 5-9). When adjusted for inflation, these changes represent a 13.8 and an 8.0 percent increase at public and private schools, respectively.

Between 1981 and 1984, several changes occurred affecting major sources of revenue to support dental education: student tuition and fees increased 49 percent; Federal support decreased 17 percent; state and local support increased 22 percent; and clinic income increased 34 percent.

For 1984, as a percentage of total revenues to support dental eaucation, student tuition and fees amounted to 45 percent at private schools, but only 9 percent at public schools. The Federal revenue percentage was 10 percent at private schools, and 8 percent at public schools. The state revenue percentage was only 17 percent for private schools, but 64 percent for public schools. The percentage of total revenues from clinic incomes represented another 17 percent in private schools and 12 percent in public schools.

Tuition. As previously mentioned, student tuition and fees have continued to increase. For academic year 1984-85 the average tuition for first-year students was $\$ 6,703$ for residents and $\$ 8,954$ for nonresidents. In 1981-82 the average tuition was $\$ 4,742$ for residents and $\$ 6,721$ for nonresidents. When adjusted for inflation, the resident and nonresident tuitions increased by 24 percent and 3.7 percent, respectively, between 1981 and 1984. The average total undergraduate cost (tuition and fees) for all years of dental school was \$34,640 for residents and \$44,630 for nonresidents.

There are significant differences in average total undergraduate cost at


#### Abstract

public, private, and private State-related schools. The average trtal undergraduate cost for resident students in public schools was $\$ 21,171$; for private schools, $\$ 56,949$; and for private state-related schools, $\$ 49,100$. For nonresinents, the total undergraduate cost average was $\$ 36,190$ at puhlic schools; $\$ 56,949$ at private schools; and $\$ 55,803$ at private State-related schools.


Number of Dental Schools. Currently there are 60 U.S. dental schools. of 18 States that do not have dental schools, 14 have compact agreements with one or more dental schools through which a specified number of students from a state will be educated in exchange for an agreed renuneration by that state. Nine States containing dental schools also have compacts with dental schools in other states. The number of students attending schools through compact agreements fell 30 percent between 1980 and 1982.

In response to increasing institutional costs of dental education, the decreasing size of the applicant pool, and questions as to the needed supply of dentists, several private universities and state legislatures have assessed their resources, capabilities, options and obligations for maintaining their dental schools. Emory University has announced its intention to close its school of dentistry by 1988. Oral Roberts University plans to close its dental school with the graduation of the 1986 class. The State of Kentucky is still considering its options in planning future funding of its two dental schools and dental education in the state. A bill to close the dental school at the University of Colorado was prefiled with the Colorado Senate Committee on Health, Enviromment, Welfare and Institutions in December 1984 (subsequently defeated in February 1985).

While accurate predictions of future dental school closures or reductions in compact agreements are not possible at this time, it is evident that controlling costs of dental education, increasing revenues, and attracting qualified applicants continue to be critical matters confronting dental education.

Faculty In academic year $1981-82$ the ratio of students to clinical faculty was 5.3; to 1 , the mean number of full-time equivalent biomedical and clinical faculty was 121 per school, and 45 percent of the faculty were full-time. In a=arne.ic year 1983-84 the ratio of students to clinical faculty was 5.07 to 1 , the mean number of full-time-equivalent biomedical and clinical faculty was 124 per school, and 44 percent of the faculty were full-time. The decrease in student to faculty ratio was a result of decreased enrollments in dental schools as well as the slight increase in faculty. The increase in faculty was within the clinical faculty, both full- and part-time. Biomsdical faculty, both fill-time and part-time, actually decreased.

Graduate Education/Specialization. The number of dental specialty education programs and the number of siudents trained have changed very little since 1981. If the current numbers of specialty programs and students are retained, and if the decrease in first-year pestdoctoral enrollments continues, the
result will he a proportionally greater number of specialty trained individuals is the dentist population. By the end of the century, the ratio of specialists to active dentists is expected to rise to 17.4 per 200 , up from the current level of approximately 14 per 100.

In 1983 or thodontics and oral and maxillofacial surgery continued to attract the most first-year students among the specialty training programs. The number of pedofontic students decreased 22 percent since 1981, while prosthodontic students increased 16 percent, reflecting changing disease patterns and demographic shifts. Endodontics had a slight increase in the number of students, while periodontics had a slight decrease. Dental public heaith declined by 2 students to 20; oral pathology by 4 students to 19.

From 1973 to 1983 there was a noteworthy increase in the number of graduates from dental general practice residency programs and a concurrent very slight fluctuation in the number of dental srecialty qraduates. In 1973 there were 532 graduates from general practice residencies, increasing to 989 by 1983, a gain of 85 percent (Table 5-10). The graduates from the specialty programs have held at about the same numbers over the same period, with 1,272 in 1973 and 1,244 in 1983.

The American Dental Association, in its 1983 report on the future of dentistry, recommended a decrease in first-year clinical dental specialty positions in order to maintain the present ratis of specialists tc generalists. In addition the ADA House of Delegates has approved new requirements for recognition of dental specialties, and imposed several moratoriums on the recognition of new specialties. During the next 10 years, the ADA will conduct a review of each dental specialty to aid in identifying the numbers and types of specialties needed to meet the oral health needs of the public most effectively.

The ADA report also recommended that all dental granuates take a l-year postdoctoral program that includes hospital experience. Such a program would expose young dental graduates to an enriching interface with medicine and would provide a transitional clinical experience between dental school and private practice.

The existing postdoctoral program most closely meeting this recr amendation is the hospital-based dental general practice residency program. Currently there are 917 first-year general practice residency positions; a three percent decline since 1981. It is postulated that this slight decline in first-year general practice residency positions is related to hospitals' reductions in support to dental programs in response to planned implementation of prospective payment systems.

A 1981 AADS survey of dental seniors reported that 57 percent of the graduating students indicated a need for additional training. Approximately 75 percent of the respondents thought the present general practice residency could provide the additional experience. Applying those percentages to the class of 1983 (5,756 graduates) a need for 2,460 positions for residency training could be inferred. Meeting such a need would require the creation of 1,543 additional positions in hospital residency programs or similar
postgraduate education programs.

## Dental Ausiliaries

About 26.4 percent of dentists who own or share in the ownership of a dental practice (independent dentists) employed at least some dental auxiliary personnel on a full- or part-time basis (Table 5-1l). Of these dentists, 53.9 percent employed at least one full- or part-time cental hygienist, a 3.2 percent increase since 1981. About 88.2 percent employed at least one chairside assistant full- or part-time, a 1.0 percent increase since 198 l. Only a few dentists, 7.5 percent, directly employ a dental laboratory technician.

Dental Eygienists. Since the last Report to Congress on the Status of the Health Professions the number of dental hygiene programs has remained at 201. However, the number of first-year students has continued to fall, continuing the downward trend that began in 1977. Overall there has been an 8.5 percent decline in dental hygienist first-year enrollment since 1977. For academic year 1983/84 first-year enrollment $\sim$ f dental hygienists was 5, ll7. This maintains an approximate one-to-one ratio with first-year enrolled dental students. As of the end of 1984, there were an estimated 45,800 active dental hygienists and the number per 100 active dentists was 33.2 (Table 5-12).

Only a small percentage ( 7.2 percent) of dental hygienists work outside traditional private practice settings. There appears to be increasing interest within the dental hygiene profession for additional practice opportunities and roles in the delivery of care to special populations, such as the homebound, hospitalized patients, and individuals in nursing homes, day care centers, and elementary and secondary schools.

Dental Assistants. The number of dental assisting programs accredited by the Commission on Dental Accreditation was 281 in 1983 r a decrease of 12 since 1981. In 1983 the procedure for reporting the number of first-year enrollments in dental auxiliary programs was changed with regard to persons trained in the Armed Forces. This change resulted in an increase in enrollment. Otherwise first-year dental assistant enrollments would have continued their downward trend. The 1983 enrollment of 7,912 students is 5.6 percent less than the 1979 enrollment high of 8,386 .

A large proportion of dental assistants have been trained on the job by their dentist-employers. The number of active dental assistants in 1984 (including both graduates of accredited programs and those trained on the job) is estimated to be 168,300 , for a ratio of active assistants to active dentists of 122 per 100 (Table 5-13).

Dental Laboratory Technicians. The number of accredited dental laboratory technician trainirg programs remains unchanged at 58. However, first-year enrollment has declined over 9 percent since 1981 to the 1983 level of

1,508. Traditionally, dental laboratory technicians have been trained on the job, and this form of training remains the predominant method.

Most laboratory technicians are employed in comercial dental laboratories and work in response to a written prescription or work order from a licensed dentist. The estimated number of dental technicians is 59,200, yielding a ratio of 43 technicians per 100 dentists (Table 5-14).

Six States allow denturists to provide denture service directly to the public. Maine, Colorado, and Arizona require that the denturist work under the supervision of a dentist; in Oregon, Idaho, and Montana denturists can work independently. According to the American Dental Association in 1984, there were 29 licensed denturists in Arizona, 39 in Idaho, and 115 in Oregon. Montana has licensed 12 denturists since its law was passed in 1984 and Maine has no licensed denturist. The State of Col'srado statute does not require the licensure of denturists.

## Dentist Supply Forecasts

The number of active dentists is expected to rise substantially in the coming years. Because future levels of supply depend mainly on future enrollment levels in the dental schools and because of the uncertainties surrounding future enrollments, this report presents three difierent projections of the supply of active dentists to the year 2000, using different assumptions about the number of new graduates over the projection period.

Each projection series assumes that the proportion of female students will continue to increase steadily during the next 10 years, but at about half the rate of the last 5 years. First-year enicllment of women in dental schools, which amounted to 27 percent of all first-year enrollment in 1984-85, is projected to increase gradually to 37 percent by 1994-95 and remain at that level for the rest of the projection period.

Basic Series. Decreases in first-year enrollments have been observed in dental schnols for the last several academic years. The basic (or most likely) estimate of the future suppl; of dentists assumes that the number of first-year students will continue to decrease during the next 5 years at slightly more than half the rate of the last 5 yoars. Under this assumption, first-year students are projected to drop irom the 5,047 in 1984-85 to 4,420 in 1989-90 and continue at that level through the rest of the century (Table 5-15). This decline would occur primarily but not exclusively as a result of a continued drop in the number of applicants to dental schools, the increasing costs to the student for a dental education, increasing national emphasis on alternative occupations within other science based occupations and reductions in the size of post baby boom cohorts.

Accordingly, the number of active dentists is projected to grow from 137,950 in 1984 to 161,180 in 2000, a net increase of approximately 23,000 dentists (Table 5-16). The growth in fentist supply relative to population is expected to continue during the remainder of the 1980 s , then stabilize during the following decaie. The ratio of active dentists to population would thus
increase from 58 per 100,000 in 1984 to 60 in 1990, and remain at that level to the end of the century.

Because of the relatively few female dentists in the present supply, losses during the projection period due to death and retirement will consist largely of males, and future male graduates will be primarily replacing those losses. :Jew female graduates are expected to contribute heavily to the increase in dentist supply accounting for 80 percent of the projected growth between 1984 and 2000. In the hasic projection series, the number of women active in dentistry is projer:ted to grow from about 7,000 in 1984, to 13,600 in 1990, and to 25,500 in 2000 (Table $5-17$ ). The number of men active in the field is expected to grow more modestly, from 131,000 in 1984 to 135,700 by 2000. In 1984 women constituted only 5 percent of the active dentist supply, a figure that would grow to 9 percent in 1990 and 16 percent in 2000 .

Low Alternative Series. A low alternative forecast of dentist supply has also been developed. In this projection, it is assumed that the number of firstyear students will drop to 4,420 in 1989-90, as in the basic projection. But instead of assuming that first-year enrollments would stabilize as does the basic projection, the low projection assumes that the number of first-year students will continue to drop at a similar but slightly lower rate for another 5 years before stabilizing at 3,930 in 1994-95. In this projection, the dropping rate of return for a rental education, the rapidly increasing opportunities in other scientific fields, and the increasing cost of a dental education are potentiated by an effective implementation of Recommendation IV of the Strategic plan of the Report of the ADA's Special Committee on the Future of Dentistry which calls for influencing the quality and quantity of the manpower supply.

In the low series the number of active dentists would rise to 158,900 in the year 2000, a ratio of 59 active dentists per 100,000 population (Table 518). Between 1984 and 1990 the projected increase in active dentists would slightly exceed the projected rate of increase in the population, yielding a dentist-to-population ratio of 60 ir 1990. From 1990 to the end of the century, the growth in dentist supply is projected to be slightly below that of the population, yielding a lower dentist-to-population ratio of 59 in the year 2000. Nevertheless, this ratio in 2000 slightly exceeds the 1984 level of 58. In this low series, the number of active dentists by the end of the century would be 2,300 fewer or 1.4 percent less than the basic estimate.

High Alternative Series. The high alternative forecast of dentist supply simply assumes that the number of first-year students will remain constant at the 1984-85 level of about 5,050 throughout the projection period. This projection is predicated upon successful efforts by dental schools to attract, recruit and maintain present enrollment levels. On this basis the number of active dentists would reach 157,000 in the year 2000, achieving a ratio of 62 active dentists per 100,000 population. At the end of the projection period, the number of active dentists in this high alternative series exceeds the number in the basic series by 5,800 or 3.6 percent.

## Econonic Outlook for the Dental Sector, 1985-2000

The last long-range forecast of economic activity in the dental sector published by the U.S. Public Health service in the previous edition of this report (DHHS, BHPr, 1984) predicted a reversal of the historical trends in the growth of dental service supply relative to demand. Historically, the aggregate supply of dental services has grown faster than the aggregate demand for dental services, producing a relatively stable, or slightly declining, real price level. The previous report noted, however, that if the decline in dental school enrollment that began in 1979 were to continue in the foreseeable future, and if the rate of economic growth were to continue at a relatively slow pace compared with the trend established in the 1960s, the growth in supply would slow and fall behind the growth in demand late in the 1980s.

In revising the forecast of dental activity for the present report, account has been taken of updated long-range economic forecasts that are generally more optimistic than those that existed at the time of the previous dental forecast. Consequently, an improvement in the economin outlook for the dent. 1 sector is reported in this document. The dental sector is predicted to share in the generall:: improved economic outlook forecast for the Nation as a whole. The passage of time since the previous report has increased the uncertainty surrounding the emergence of trends and events that could dampen the demand for dental services in the future. Among these trends and events are the significant declines in the incidence and prevalence of dental decay in children, the increasingly encouraging reports of research findings that may eventually lead to prevention of some significant dental diseases and the uncertain impact of the rapidly expanding elderly segment of the population.

## Forecast Assuptions

The economic forecasts presented below were made with the Bureau of Health Professions' Econometric Model of the Dental Sector (EMODS). The EMODS is a comprehensive representation of economic activity in the dental industry which has been described in detail elsewhere (DHEW, March 1980; Hixson, 1981). For the model to generate a forecast, it must be supplied with projected values of several explanatory (input) variables for each year of the forecast period. These variables are determined independently and are not influenced by the causal forces that are represented within the model.

Explanatory variables of the demand for dental services that must be provided are total U.S. population and the level of real per capita income for the nation. Explaratory variables of the supply of the dental services that must be provided are the rate of technological progress in the $\varepsilon$ erage dental pracife and the number of the first-year enrullments in dental echools over the forecast period.

For the current forecast, both of the demand variabies are predicted to experience moderate growth over the forecast years. The population is projected by the U.S. Bureau of the Census to grow from 230 million in 1983 to

264 million in 2000; however, the rate of growth will decline by about onehalf, from 1 percent to 0.6 percent annually, during the same period.

Two scenerios for the annual growth of real income are projected. The first scenerio projects a decline from a peak of 6.9 percent in 1984 to a level of 3.0 percent in 1989, and remain at that level through the end of the century. The near-term real income projection through 1989 is based on the 1984 economic assumptions of the Congressional Budget Office. The long-term assumption about the real rate of economic growth from 1990 through the year 2000 is the current consensus of the long-range economic forecasters and is also consistent with the most recent long-range economic projections published by the U.S. Department of Commerce (Johnson and Friedenberg, 1985). The assumptions for scenerio number one differs from the assumptions made in 1984 in which real income was predicted to grow at 2 percent annually throughout the forecast period. The 1984 growth assumption was based on that issued in 1980 by the Joint Economic Comittee of the U.S. Congress. The upward revision in the projected long-term economic growth rate in scenerio number one reflects a general revision of expectations about the future gruwth potential of the u.s. economy compared to the views that prevailed in the late 1970s.

A second scenerio was developed to demonstrate the effect on the forecast of changing the long-term economic growth assumption. The model was run using the Alternative III "ressimistic" economic assumption employed by the Board of Trustees of the Old-Age, Survivors, and Disability Insurance (OASDI) Program in its 1985 Annual Report. This pessimistic assumption is that the annual real economic growth rate will fall continuously after 1990 to 1.9 percent in the year 2000 .

According to che research conducted to reestimate and refine the model, the rate of technological progress (i.e., growti/ in dentist productivity) has been slowing over the last few years from levels that were experienced during the 1960s and early 1970s (between 1.5 and 2.0 percent annually). A likely explanation for thia trend is that dramatic breakthroughs in basic knowledge have not occurred recently, and much of the increases in productivity due to high-speed equipment and better use of traditional dental assistants have already been realized. This deciining trend is continued for the present forecasts; the grosth in productivity is allowed to decline to 0.5 percent annually where it is stabilized for the remainder of the forecast period. In the 1984 forecast, the rate of technological change was held constant after it declined to 1.0 percent annually. The new assumption therefore produces a slower rate of expansion of dental service supply capacity than the assumption of the previous forecast did.

## Forecast Results

The forecasts produced by the model under both scenerios discussed above are presented in Table 5-19, which shows the near-term forecast through 1989 based on the Congressional Budget Office economic assumptions, and which contrasts the results of the two long-term forecasts for the period 1990-2000 based on the alternative long-run economic growth trends.

These forecasts should be viewed in terms of the predicted trends and turning points of important variables over the forecast period, rather than a prediction of the actual values that will be realized for those variables each vear. Table 5-19 shows the forecast nf total dental care spending in the economv, the forecast path of the dental care component of the consumer price index, and the average spending per dentist. All measures are in "real" terms, l.e., annual data have been adjusted for inflation by dividing by the overall consumer price index. Also, all of the forecasted variables are presented as in exes with a base year of 1974, i.e., all values equal 100.00 for the year 1974.

Total real expenditure on dental services is a direct measure of the level of economic activity in the industry, and its rate of growth is indicative of the health of the industry (Gotowka, 2985). Forecasts of the explanatory demand variables (per capita income and population) indicate that the demand for dental care will in both scenerios show a steady increase over the forecast period. The combined CBO near-term and economic forecasters long-run consensus economic assumptions contained in scenerio number one produces a long-run growth trend that is a continuation of the historical trend that has prevailed since the mid-1950s. The table below corpares the forecast growth of real dental care expenditures for the period 1985-1995 with historical growth over comparable periods of time:

Period	Percent   growth
$1955-1965$	54.93
$1965-1975$	58.03
$1975-1985$	58.27
$1985-1995$ forecast *	56.44
$1985-1995$ forecast *	48.00

[^8]Scenerio number two, i.e., the combined CBO near-term and OASDI "pessimistic" long-term assumptions, produce a 48 percent increase in dental care spending over the 1985-1995 period, which is 10 percent below the growth observed by the industry over the last ten years.

The real price of dental care is a direct indicator of how the demand for dental care will grow relative to the supply. The decade of the 1970 s was characterized by a general decline in the real price of dental services. This extended downward trend in real dent: 1 prices during the 1970's indicated that the supply of dental services (and of dentists) was growing, on the average, faster than the demand for those services over the decade. A reversal of the trend of declining real dental prices occurred in 1981, and the dental component of the consumer price index has continued to increase at about iwice
the rate of the overall index ever since. The forecast resulting from scener io number one, if its assumptions prove to be reasonably accurate, indicates that the increase in relative prices will continue as the demand for dental services grows relative to the supply for the remainder of the century. Under scenerio number two, the OASDI "pessimistic" long-run assumption, a deceleration of the increase of dental prices will be seen during the decade of the 1990 s .

The prediction that the future growth of total demand for dental services will exceed the growth of total supply rests on two key assumptions discussed above. These are the assumption about economic gruwth, which is the key ingredient in the prosperity of the dental sector, and the assumption that growth in dentist productivity has slowed from the high historical levels of the 1970 s to a rate which will average 0.5 per cent annuilly, Variation of the other assumptions (i.e., those regarding the rate of population growth, changes in dencal school enrollments, and the growth of third-party coverage for dental care) within reasonable limits do not significantly affect the forecasts either quantitatively or qualitatively.

The implication of the lonq-run economic outlook for the dental sector from the viewpoint of practicing dentists is shown in Table 5-19 by the forecast trend of real expenditure per dentist, which increase under both the optimistic economic 20 ecasters consensus forecast and the OASDI "pessimistic" assumption.

## Oncertainties Onderlying the Forecast

Under both scenerios the forecast is for relatively faster growth of the demand for dental services than the productive capacity of the dental sector over the remainder of the century, resulting in an upward trend in real expenditures per dent!st. In assessing these forecasts, however, the reader must be cognizant of the uncertainties of the forecasts' basic assumption of sustained economic growth throughout the remainder of the century, as well as the uncertainty of its implicit assump' on that the environmental conditions sustaining the dental industry will continue unchanged.

Earlier and more $r$ cent studies, including those by De Paola et al. (1981) in Massachusetts, the North Carolina Dental Manpower Project (Bowden and De Friese, 1981), and the National Institute of Dental Research (1981), have demonstrated significant reduction in dental caries in children in the United States. Although variations still exist by age, sex, race, and location, the prevalence of decay is lower by as much as 50 percent. In a study of a large sample of children perfnrmed by the National Institute of Dental Research, 36.6 percent of children ages $6-17$ were reported to be free of caries in their permanent dentition in 1979-1980. This represents slightly more than an 8 percent improvement over a similar survey performed by the National Center for Health Statistics in 1971-1974. Reductions have also been cited in England, Ireland, Scotland, Denmark, Norway, Sweden, the Netherlands, and New Zealand.

Despite these encouraging trends, however, dental caries is still present in a significant proportion of the population, increases with age, and continues to
be highly prevalent among the Nation's minorities. While the dental caries status of children can be discussed with reasonable assurance of accuracy, the same cannot be said about the dental zondition of adults at this time.

Major epidemiologic studies of adult populations have not been performed on a national basis in over a decade, thereby making inferences about their present conditions tenuoc at best. Presently, the National Institute of Dental Research is fielding a national study of adult oral health. Results of this study are antiripated withir several years. Although presently unmeasured, it can be postulatєd that the current middle aged cohort of Americans, who have had the benefits of modern dentistry and preventive technology, have retained more teeth in better condition than previous generations. How that generations' improved oral health will translate into need for dental care is still a matter of speculation. Perhaps even more important is the lack of knowledge about the effect of observed changes in dental disease rates on dental demand and ultimately on dental manpower requirements.

Unfortunately, the data necessary to estimate relationships between prevalence of dental disease and economic demand for dental services are not presently available. Nor is it possible at tinis time to quantify assumptions about the impact of reductions in disease rates on the economic demand for dental services. Consequently, considerations of possible changes in the epidemiologic environment of dentistrv have not been incorporated into the dental forecasting model.

The economic model used in the current forecast iemonstrates the sensitivity of the level of economic activity in the dental sector to the economic demand for dental service but not the implications for changing disease patterns. The accuracy of the forecasts is dependent on the accuracy of the prediction of demand. With underlying epidemiology unchanged, demand has, historically, been very closely related to population and income. Changing dental disease prevalence may, however, alter the historical demand relationship. Thus the lack of evidence on the question of the relation of dental demand to changing dental disease rates has created a climate of uncertainty and increasing debate about the future of the dental sector. Resolution of the issues regarding this important development must await the completion of epidemiologic, economic and behavioral research.

## 8u-ary

- The Nation's supply of active dentists has continued its upward trend to attain an all-sime high of 137,950 , an increase of 35 percent between 1970 and 2984. Nearly 90 percent of active dentists are in private practice.
- The number of women in the dental work force is increasing at an accelerated pace, doubling from 3,500 in 1980 to 6,980 in 1984.
- The geographic distribution of dentists continues to vary widely among States and regions. As of June 1985, there were 777 designated shortage areas for dentists. However, there has been a decrease in
both the number of dental shortage areas and the number of dentists needed in those areas.
o There were an estimated 19,847 dental specialists as of the end of 1984, nearly three-fifths of whcm were orthodontists or oral and maxillofacial surgeons.
- In 1983 nearly three-fourths of the Nation's private practitioners were in solo practice, 17 percent worked with one other dentist, and 9 percent practiced with more than one other dentist.

0 The average lumber of dental patient visits per week was 61, or an annual average of atout 2,900. Private dental insurance made up 45 percent of gross practice income, while government programs made up less than 5 percent. The mean ret income for all independent dentists from their primary practices was $\$ 61,200$.

- The number of dental school applicants has dropped drastically from 15,734 in 1975-76 to 6,499 in 1984-85. Concurrently, the percentage of applicants enrolied has increased from 37 percent to 78 percent.
- Larse increases in the number of first-year dental students beginning in thie 1960 s peaked at 5,301 in 1978-79. Since then the number has decreased steadily every year to 5,047 in 1984-85. Total dental enrollment has decreased over the last 4 years to the present level of 20,588 .
- First-year minority enrollment has more than doubled from $\mathbf{8 . 8}$ percent in 1971-72 to 19.7 percent in 1984-85. However, enrollment of black students has shown virtually no increase over the same period of time.
- The enrollment of women in dental schools has increased dramatically from only 2 percent of first-year enrollment in 1970-71 to 27 percent in 1984-85.
- The 5,337 dental graduates in 1984 represent an increase of 42 percent over the 1970 level. The number of araduates will decrease in the coming years because of the recent sharp drop in first-year enrollments.
o Dental student indebtedness upon graduation has increased sharply from an average of $\$ 12,700$ in 1978 to $\$ 32,000$ in 1984.
- Annual institutional expenditures per dental student have risen to an average of $\$ 35,400$ in 1984 , an increase of 27 percent since 1981 .
o The estimated active supply of dental auxiliaries in 1984 includes 45,800 dental hygienists, 268,300 dental assistants, and 59,200 dental laboratory technicians.
- Under the basic projection, first-year dental students are projected
to drop from the 5,047 in 1984-85 to $4,4 \% 0$ in 1989-90, and continue at that level through the rest of the century.
- Despite the projected decrease in first-year students, the number of active dentists is expected to grow to 161,180 in 2000, a net increase of approximately 23,000 dentisics. The 1 atio of active dentists to population would increase from the current 58 per 100,000 to 60 by 1990 and remain at that level through 2000.
o The number of women active in dentistry is projectrd to reach 25,500 in 2000, more than three times the present level.
o The present forecast is for relatively faster growth of demand for de:ital services than the productive capacity of dental sectors over the remainder of the century.
- Significant reduct:ons of dental caries in children have been observed over the past decade. New research. is needed to assess the status of the adult population and to translate the findings into information useful for manpower planning.

Table 5-1. TOTAL AND ACTIVE DENTISTS AND
DENTIST-TO-POPULATION RATIOS: SLLLECTED YEARS, DECEMBER 31, 1950-1984

Year	Number of dentists $1 /$		Total population (thousands)	Dentists per 100,000 population		Active civilian dentists 2/	Civilian population (thousands)	Activeciviliandentistsper 100,000civilianpopulation
	Total	Active		Total	Active			
1950	89,730	79,190	153,622	58.4	51.5	75,310	151,238	49.8
1955	97,960	84,370	167,513	58.5	50.4	78,270	164,597	47.6
1960	105,200	90,120	182,287	57.7	49.4	84,500	179,742	47.0
1965	112,450	95,990	195,539	57.5	49.0	89,640	192,633	46.5
1970	116,250	102,220	206,466	56.3	49.5	95,680	203,499	47.0
1975	126,590	112,020	217:095	58.3	51.6	106,740	214,957	49.7
1976	129,660	115,000	219,179	59.2	52.5	110,000	217,046	50.7
1977	132,670	117,890	221,477	59.9	53.2	112,720	219,358	51.4
1978	135,500	120,620	223,880	60.5	53.9	115,450	221,783	52.1
1979	138,450	123,500	226,444	61.1	54.5	118,330	224,367	52.7
1980	141,280	126,240	228,976	61.7	55.1	121,240	226,861	53.4
1981	144,380	129,180	231,271	62.4	55.9	124,080	229,114	54.2
1982	147,250	132,010	233,529	C.3.1	56.5	126,810	231,344	54.8
1983	150,320	135,120	235,671	63.8	57.3	129,920	233,473	55.6
1984	152,950	137,950	237,839	64.3	58.0	132,750	235,021	56.3

1/ Includes dentists in Federal service.
2/ Dentists 'ih' the Veterans Administration and U.S. Public Health Service are counted as civilian dentists.
SOURCE: Bstimated by Health Resources and Services Administration, Bureau of Health Professions, Division of Associated and Dental Health Professions, based on data from the American Dental Association, Bureau of.Economic and Behavioral Research.
0.s. Bureau of the Census. Current Population Report P-25, Nos. 438, 542, 812, and 966.

223

Table 5-2. PRIMARY TYPE OF DENTAL EMPLOYMENT OF ACTIVE DENTISTS, BY SEX: DECEMBER 31, 1984

Primary type of dental emeloyment	All active dentists		Male		Female	
	Number	Percent distribution	Number	Percent distribution	Number	Percent distribution
All active	137,950	100.0	130,970	200.0	6,980	100.0
Practicinq dentist   (30 or more hours per week)	106,367	77.1	102,484	78.3	3,883	55.6
Practicing dentist   (Less than 30 houis per week)	15,161.	11.0	13,942	10.5	1,219	17.5
On faculty or staff of dental school	3,577	2.6	3,210	2.5	36\%	5.2
Armed Forces dertist	5,200	3.8	4,840	3.7	360	5.2
Other Federal dentist	2,000	1.4	1,800	1.4	. 00	2.9
rantist in State or local government	1,247	0.9	1,097	0.8	150	2.1
Hospital staff dentist	497	0.3	435	0.3	62	0.9
Intern or resident	2,454	1.8	1,940	1.5	514	7.4
Other stunient	655	0.5	540	0.4	115	1.6
Staff member of health or dental organization	792	0.6	682	0.5	110	1.6

SOURCE: Estimated by Health Resources and Services Administration, Bureau of Health Professions, Division of Associated and Dental Health Professions, based on data from the American Dental Association, Bureau of Economic and Behavioral Research.

224

Table 5-3. mager or active civilian dentists and dentigy-to-popilation mation,


Cerographle arae	1970		1900		1984	
	Active clvilian dentlata	Active clvilian entiata per 100,000 civilian population	Active civillan Sentiata	Metive civilian Gentiata per 100,000 civilian population	Active civilian Centiata	Active clullien dantiate per 100,000 clvilian population
Dinito etatis	95,620	47.0	121,240	53.5	132,750	56.3
monthrat	20,601	50.9	12,536	66.2	13,675	67.5
Mew England	6,117	51.9	0,171	66.1	0,667	60.0
Connecticut	1,035	61.0	2,290	73.6	2,400	76.1
Malne	350	36.2	505	41.1	565	49.0
Mananchusetta	3,024	52.9	4,079	71.0	4,319	74.3
Kev Eamphite	111	11.5	102	52.3	541	55.1
Thode Ieland	425	46.9	522	55.1	512	53.2
Varzont	172	38.5	293	57.2	330	61.9
Gloale Ationtic	22,404	61.1	24,365	66.2	25,000	57.1
Mew Jaraey	4,056	57.3	4, 060	65.9	5,061	67.2
Now zorit	12,391	60.9	12,041	73.1	12,963	72.9
Pannaylvania	6,031	51.6	6,664	56.1	6,904	50.5
HIDNRES	26,129	16.3	31.036	52.7	34,061	59.5
East morth Contral	10,423	15.9	21,056	52.1	23,073	57.2
2111nota	5,503	50.0	6.214	54.4	6,603	50.0
Indiana	2,045	19.2	2,370	43.1	2,557	46.3
michlgan	4,205	48.1	5,005	54.9	5,503	61.3
Onlo	4,405	41.5	5,317	49.4	5,043	54.1
wicconaln	2,103	49.6	2,850	60.5	3,207	67.0
Ment Morth Contral	7, 706	17.1	9,100	53.1	10.100	50.1
Iow	1,306	16.7	1,497	51.3	1,643	56.2
Ranama	924	41.6	1,095	46.3	1,219	50.3
Minnesota	2.282	51.1	2,500	63.4	2.050	68.4
Mlasour 1	1,903	42.3	2,604	48.1	2,617	53.4
Webranke	109	55.0	985	62.7	1,075	67.1
North Dakota	238	31.0	302	46.2	351	51.1
South Dakota	230	34.1	309	14.7	365	52.0
30072	$\frac{22,025}{10,085}$	35.3	32,095	42.6	36,470	45.9
gouth atloricic	10,065	35.8	16,630	45.0	10,759	10.9
Delamara	213	30.6	261	43.8	204	46.5
Diatrict of Columble	655	08.3	562	08.1	568	91.6
Florida	2,564	30.2	4,570	47.0	4,927	45.1
ceorgia	1,351	29.4	2,142	19.2	2,492	43.0
Marylad	1,516	40.3	2,500	59.2	2,836	65.6
North Carolina	1,414	29.1	2,203	37.5	2,549	41.9
South Carolina	648	25.4	1,006	34.8	1,335	41.1
Vireinla	1,770	39.4	2,549	47.6	2,905	52.8
Weat virginde	594	34.0	753	34.6	059	43.1
Pant South Cantrol	4,175	32.6	5,914	40.1	6,005	45.4
Alabañ	1,009	29.4	1,300	35.4	1,560	19.2
Rentucky	1,129	35.2	1,504	43.2	1,863	50.5
Mianlalppl	604	27.9	716	11.2	066	33.1
Tanneacee	1,429	36.0	2,164	47.1	2,516	53.3
Meat south Contral	6.985	36.2	2,547	10.2	10,910	48.0
Arkanaes	597	31.4	793	34.7	093	30.0
coulatane	1,256	14.1	1.669	39.7	1.046	41.5
Onlahom	932	36.6	1,237	10.9	1,403	42.1
Texae	4,200	37.4	5,141	41.1	6,761	42.5
Mest	10,925	54.9	25,573	59.2	20,544	61.5
Mountaln	3,700	45.5	5,952	52.3	6,051	59.0
Arisona	699	30.1	1,212	44.5	1,301	45.4
Coloredo	1,136	51.9	1,743	60.3	2,025	64.2
Iaho	325	41.9	476	50.4	530	53.8
Montana	311	44.3	467	59.3	517	62.1
Mevate	209	41.4	353	14.1	400	45.8
Wer Mexico	364	36.4	558	42.9	665	47.0
Otah	502	54.1	917	62.7	1,054	63.6
Wrowing	154	46.2	226	48.0	263	31.6
Pectelc	15,145	57.9	19,621	[1.7	21,693	63.9
Alack	18	27.1	214	53.1	276	57.5
california	11,310	57.1	14,346	60.6	15,029	62.2
tevall	450	63.1	599	62.0	636	64.3
Oragon	1,316	65.2	1,779	67.5	1,959	73.0
Weahington	1,914	51.0	2,613	64.9	2,993	69.4

souncsi Eatinated by faalth Remourcae and sarvicet Adniniatration, fureau of facith Profealona, Divialon of Aseciated and Dental health Profeasiona, based on fata fiom the dmerlean Dental Association, Uuraeu of Economie and Behavioral Raeearch.

Table 5-4. NUMBER OF ACTIVE DENTISTS AND DENTIST-TO-POPULATION RATIOS, BY GENERAL AND SPECIALTY PRACTICE: DECEMBER 31, 1970, 1980, AND 1984 1,2/

Type of practice	1970		1980		1984	
	Number	Dentists per 100,000 population	Number	Dentists per 100,000 population	Number	Dentists per 100,000 population
All active	102,220	49.5	126,240	55.2	137,950	58.0
General practice	92,898	45.0	109,080	47.7	118,103	49.7
All specialties	9,322	4.5	17,160	7.5	19,847	8.3
Orthodontics Oral and maxillo-	3,901	1.9	6,563	2.9	6,934	2.9
facial surgery	2,189	1.1	3,960	1.7	4,480	1.9
Periodontics	932	0.5	2,242	1.0	2,762	1.1
Pedodontics	1,076	0.5	2,063	0.9	2,398	1.0
Endodontics	457	0.2	1,174	0.5	1,667	0.7
Prosthodontics	593	0.3	949	0.4	1,317	0.5
Public health dentistry	88	3/	110	0.1	146	0.1
Oral pathology	86	3/	99	3/	143	0.1

1/ Includes dentists in Federal service.
2/ All ratios are based on total population.
3/ Ratio is less than 0.05 per 100,000 population.
SOURCE: Estimated by Health Resources and Services Administration, Bureau of Health Professions, Division of Associated and Dental Health Professions, based on data from the American Dental Association, Bureau of Economic and Behavioral Research.
U.S. Bureau of the Census. Current Population Report P-25, No. 966.

Table 5-5. NUMBER OF DENTAL SCHOOL APPLICANTS IN RELATION TO NUMBER OF FIRST-YEAR DENTAL STUDENTS: ACADEMIC YEARS 1960-61 THROUGH 1984-85


SOURCE: Data compiled by Health Resources and Services Adr:inistration, Bureau of Health Professions, Division of Associated and Dental Health Professions, based on data from American Association of Dental Schools. Applicant Analysis, 1984 Entering Class. Also prior reports for 1975 through 1983.

American Dental Association, Council on Dental Education. Analysis of Applicants to Dental School and First-Year Enrollment 1974. Supplement 7 to Annual Report on Dental Education 1974-75. Also prior annual reports.

Table 5-6. NUMBER OF DENTTAL SCHOOLS, STUDENTS, AND GRADUATES: SELECTED ACADEMIC YEARS 1950-5l THROUGH 1984-85

Academic year	Number of schools	Number of students		$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { qraduates } \end{aligned}$
		Total	First year	
1950-51	42	11.891	3,226	2.830
1955-56	43	12,730	3,445	3,038
1960-61	47	13,580	3,616	3.290
1961-62	47	13,513	3,605	3,207
1962-63	48	13,576	3,680	3,233
1963-64	48	13,691	3,770	3.213
1964-65	49	13,876	3,836	3,181
1965-66	49	14,020	3,806	3,198
1966-67	49	14,421	3,942	3,360
1967-68	50	14,955	4,200	3,457
1968-69	52	15,408	4,203	3,433
1969-70	53	16,008	4,355	3,749
1970-71	53	16,553	4,565	3,775
1971-72	52	17,305	4,745	3,961
1972-73	56	18,376	5,337	4,230
1973-74	58	19,369	5,445	4,515
1974-75	58	20,146	5,617	4,969
1975-76	59	20,767	5,763	5,336
1976-77	59	21,013	5,935	5,177
1977-78	59	21.510	5,954	5,324
1978-79	60	22,179	6,301	5,424
1979-80	60	22,482	6,132	5,256
1980-81	60	22,842	6,030	5,550
1981.82	60	22,621	5,855	5,371
1982-83	60	22,235	5,498	5,756
1983-84	60	21,428	5,274	$5.3371 /$
1984-85	60	20,588	5,047	--- 1

1/ Data are not available at this time.
SOURCE: American Dental Association, Council on Dental Education. Dental Students' Register for each selected academic year from 1950-51 through 1966-67. Annual Report on Dental Education for all subsequent academic years.

Table 5-7. FIRST-YEAR ENROLLMENT IN SCHOOLS OF DENTISTRY IN THE UNITED STATES, BY RACIAL/ETHNIC CATEGORY: ACADEMIC YEARS 1971-72 THROUGH 1984-85 1 //

Academic year	Total first-vear enrollment	Racial/ethnic category					
		First-year minority enrollment	Black	Hispanic	American Indian	Asian	Other minority
	Number of students						
1971-72	4,705	$4: 2$	245	40	4	112	11
1972-73	5,287	475	266	56	5	138	10
1973-74	5,389	529	273	69	12	141	34
1974-75	5,555	551	279	75	12	142	43
1975-76	5,697	637	298	75	22	186	56
1976-77	5,869	645	290	96	19	174	66
1977-78	5,890	641	296	110	10	225	2/
1978-79	6,235	681.	280	122	15	263	2/
1979-80	6,066	745	274	163	19	289	$2 /$
1980-81	5,964	772	283	150	12	317	2/
1981-82	5,789	876	299	183	21	373	$2 /$
1982-83	5,433	879	289	187	16	387	$2 /$
1983-84	5,207	873	276	172	19	406	2/
1984-85	4,983	981	299	200	17	465	$\underline{2 /}$
	Percent						
1971-72	100.0	8.8	5.2	0.9	0.1	2.4	0.2
1972-73	100.0	9.0	5.0	1.1	0.1	2.6	0.2
1973-74	100.0	9.8	5.1	1.3	0.2	2.6	0.6
1974-75	100.0	9.9	5.0	1.4	0.2	2.6	0.8
1975-76	100.0	11.2	5.2	1.3	0.4	3.3	1.0
1976-77	100.0	11.0	4.9	1.6	0.3	3.0	1.1
1977-78	100.0	10.9	5.0	1.9	0.2	3.8	$2 /$
1978-79	100.0	10.9	4.5	2.0	0.3	4.2	2/
1979-80	100.0	12.3	4.5	2.7	0.3	4.8	2/
1980-81	100.0	12.9	4.7	2.7	0.2	5.3	2/
1981-82	100.0	15.1	5.2	3.1	0.4	6.4	2/
1982-83	100.0	16.2	5.3	3.4	0.3	7.1	$2 /$
1983-84	100.0	16.8	5.3	3.3	0.4	7.8	2/
1984-85	100.0	19.7	6.0	4.0	0.3	9.3	$\underline{2 /}$

1/ Excludes students at University of Puerto Rico.
2/ The category of "Other minority" was eliminated from first-year student data for 1977-78 and subsequent years.

SOURCE: American Dental Association, Council on Dental Education. Minority Student Enrollment and Opportunities in U.S. Dental Schools, for 1971-72 and for 1972-73. Minority Report; Supplement of Annual Report on Dental Education 1973-74 through 1983-84. Annual Report on Dental Education 1984-85.

Table 5-8. FIRST-YEAR ENROLLMENT IN SCHOOLS
OF DENTISTRY IN THE UNITED STATES, BY SEX:
ACADEMIC YEARS 1968-69 THROUGH 1984-85

Academic year	Both sexes	Male	Female
	Number of students		
1958-69	4,203	4,157	46
1969-70	4,355	4,299	56
1970-71	4,565	4,471	94
1971-72	4,745	4,598	147
1.972-73	5,337	5,113	224
1.973-74	5,445	5,054	391
1974-75	5,617	4,986	631
1975-76	5,763	5,056	707
1976-77	5,935	5,133	802
1977-78	5,954	5,074	880
1978-79	6,301	5,301	1,000
1979-80	6,132	5,056	1,076
1980-81	6,030	4,836	1,194
1981-82	5,855	4,587	1,268
1982-83	5,498	4,275	1,223
1983-84	5,274	3,961	1,313
1984-85	5,047	3,678	1,369
	Percent		
1968-69	100.0	98.9	1.1
1969-70	100.0	98.7	1.3
1970-71	100.0	97.9	2.1
1971-72	100.0	96.9	3.1
1972-73	100.0	95.8	4.2
1973-74	100.0	92.8	7.2
1974-75	100.0	88.8	11.2
1975-76	100.0	87.7	12.3
1976-77	100.0	86.5	13.5
1977-78	100.0	85.2	14.8
1978-79	100.0	84.1	15.9
1979-80	100.0	82.5	17.5
1980-81	100.0	80.2	19.8
1981-82	100.0	78.3	21.7
1982-83	100.0	77.8	22.2
1983-84	100.0	75.1	24.9
1984-85	100.0	72.9	27.1

[^9]Tat'e 5-9. AVERAGE ANNUAL COST TO PUBLIC AND PRIVATE DENTAL SCHOOLS PER DFNTAL STUDENT: ACADEMIC ' $\operatorname{\text {ARS}}$ 1967-68 THROUGH 1983-84

Academic year	$\begin{gathered} \text { All } \\ \text { schools } \end{gathered}$	Public schools	Private schools
	(In thousands)		
1967-68	\$ 7.3	\$ 8.9	\$ 5.9
1968-69	8.5	10.1	6.8
1969-70	9.5	31.1	8.0
1970-71	10.3	11.7,	8.8
1971-7?	12.0	- 1	- 1
1972-73	13.4	15.9	10.9
1973-74	14.7	17.4	11.7
1.974-75	16.4	19.4	13.0
1975-76	17.8	20.7	14.5
1976-77	19.8	23.1	15.9
1977-78	21.2	24.5	17.1
1978-79	22.7	$26 . ?$	18.3
1979-80	24.9	28.5	26. 3
1980-81	27.9	31.7	23.1
1981-82.	30.4	34.6	25.1
1982-83	32.2	36.5	26.8
1983-84	35.4	41.2	28.5

1/ Further breakdown of school costs are not available.
SOURCF: American Dental Association, Council on Dental Education. Financial Report, Fiscal Year Ending June 30, 1984; Supplement 4 to the Annual Report on Dental Education 1984-85. Also prior annual reports.

Table 5-10. GRADUATES OF DENTAL GENERAL PRACTICE PESIDENCIES
AND DENTAL SPECIALTY PROGRAMS: SELECTED YEARS, 1973-1983

Type of graduate	Year of graduation						
	1973	1975	1977	1979	1981	1982	1983
All graduates	1,804	1,886	1,910	1,931	2,169	2,158	2,233
General practict graduates	532	641	695	817	955	946	989
Specialty graduates, total	1,272	1,245	1,224	1,114	1,214	1,212	1,244
Orthodontics	348	356	287	277	284	283	281
Oral surgery	233	216	217	213	199	224	207
Periodontics	196	192	206	159	200	199	198
Pedodontics	179	172	169	155	174	171	1.68
Endodontics	130	134	144	121	160	139	145
Prosthodontics	143	141	161	156	168	156	184
Oral pathology	19	17	21	26	20	25	37
Public health dentistrv	24	17	1.9	7	9	25	21

1/ Total includes three graduates of a combined orthodontics/pedodontics program.
SOURCE: American Dental Association, Council on Dental Education. Annual Report on Advanced Dental Education, 1983-84. Also prior annual issues.

Table 5-11. PERCENT OF INDEPENDENT DENTISTS WHO EM' nY AUXILIARIES: SELECTED YEARS 1955-1983

	Percent of dentists   employing auxiliaries 1/		
	Dental   hygienists	Dental   assistants	Anv type of   auxiliaries 2/
1955	10.3	70.7	77.1
1961	15.0	76.7	82.6
1967	25.2	86.6	92.4
1972	36.9	90.2	93.6
1979	48.2	87.7	94.5
1981	50.7	87.2	95.5
1983	53.9	88.2	96.4

1/ Any of these employees may be either full-time or part-time.

2/ Includes dental laboratorv technicians and secretaryreceptionists, as well as dental hygienists and dental assistants.

SOURCE: American Dental Association, Bureau of Economic and Behavioral Research. The 1984 Survey of Dental Practice. Also prior reports of this series.

Table 5-12. ESTIMATED NUMBER OF ACTIVE DENTAL HYGIENISTS AND NUMBER PER 100 ACTIVE DENTISTS: SELECTED YEARS 1950-1984

Year	Number   of active   hygienists	Number per   100 active   dentists
1950	3,190	4.0
1955	4,160	4.9
1960	3,800	9.8
1965	11,600	12.1
1970	15,100	14.8
1975	26,900	24.0
1976	29,740	25.9
1977	32,200	27.3
1978	33,500	29.1
1979	35,900	30.4
1980	38,400	31.5
1981	40,700	32.6
1982	43,100	32.8
1983	44,300	33.2
1984	45,800	

SOURCE: Health Resources and Services Adiinistration, Bureau of Health Professions, Division of Associated and Dental Health Professions.

Year	Number of active assistants	Number per 100 active dentists
1950	55,200	70
1955	63,250	75
1960	74,000	82
1965	87,350	91
1.970	1.12,000	310
1975	134,400	120
1975	140,300	122
1977	144,700	123
1978	143,300	1.23
1979	152,000	1.23
1980	155,500	123
1981	158,200	122
1.982	161,800	123
1983	164,700	122
1984	168,300	122

SOURCE: Health Resources and Services Administration, Bureau of Health Professions, Division of Associated and Dental Health Professions.

Table 5-14. ESTIMATED NUMBER OF ACTIVE DENTAL LABORATORY TECHNICIANS AND NUMBER PER 1.00 ACTIVE DENTISTS: SELECTED YFARS 1950-1984

Year	Nunher   of active   technicians	Number per   100 active   dentists
1950	15,000	18.9
$19 ; 5$	16,870	20.0
1960	19,000	21.1
1965	24,250	25.3
1970	30,570	30.0
1975	41,600	37.1
1980	52,500	40.7
1984	55,300	41.9

SOURCE: Health Resources and Services Administration, Bureau of Health Professions, Division of Associated and Dental Health Professions.

Table 5-15. NUMBER OF FIRST-YEAR DENTAL STUDENTS AND NUMBER OF DENTAL GRADUATES, BY SEX: PROJECTED FOR ACADEMIC YEARS 1984-85 THROUGR 1999-2000 l/

Academic year	Number of first-year students			Number of graduates		
	Total	Male	Female	Total	Male	Female
1984-85 ${ }^{\text {/ }}$	5,047	3,678	1,369	5,410	4,243	1,167
1985-86	4,870	3,500	1,370	5,080	3,950	1,130
1986-87	4,750	3,370	1,380	4,870	3,66C	1,210
1987-88	4,640	3,250	1,390	4,660	3,400	1,260
1988-89	4,530	3,130	1,400	4,500	3,240	1,260
1989-90	4,420	3,010	1,410	4,390	3,1.20	1,270
1990-91	4,420	2,970	1,450	4,290	3,010	1,280
1991-92	4,420	2,930	1.490	4,180	2,890	1,290
1992-93	4,420	2,880	1,540	4,080	2,780	1,300
1993-94	4,420	2,840	1,580	4,080	2,750	1,330
1994-95	4,420	2,800	1,620	4,080	2,710	1,370
1995-96	4,420	2,800	1,620	4,080	2,660	1,420
1996-97	4,420	2,800	1,623	4,080	2,630	1,450
1997-98	4,420	2,800	1,620	4,080	2,590	1,490
1998-99	4,420	2,800	1,620	4,080	2,590	1,490
1999-2000	4,420	2,800	1,620	4,080	2,590	1,490

I/ The basic methodology was used for all of these projections. It is assumed that the $n$ unher of first-year students will continue to decrease during the next five years at slightly more than one half the rate of the last five years, and then stabilize. It is also assumed that the proportion of female students will continue to increase gradually during the next ten years at about one half the rate of the last five vears.

2/ First-year students for 1984-85 are actual figures.
SOURCE: Health Resources and Services Administration, Bureau of Health Professions, Division of Associated and Dental Health Professions.

Table 5-16. ANNUAL ADDITIUNS AND LOSSES TO THE SUPPLY OF ACTIVE DENTISTS AND DENTIST-TO-POPULATION RATIOS: ESTIMATED 1984, AND PROJECTED 1985 THROUGH 2000

Year	Change in supply   January 1 - December 31		Active dentists $2 /$	
	Graduate anditions	Losses from deaths and retirements	Number as of December 31	Ratio per 100,000 total population
1984	5,280	2,450	137,950	58.0
1985	5,350	2,530	140,770	58.7
1986	5,020			
1.987	4,810			
1988	4,500	13,210		
1989	4,440			
1990	4,330		150,760	60.1
1991	4,230			
1992	4,120			
1993	4,020	14,370		
1994	4,020			
1.995	4,020		156,800	60.2
1996	4,020			
1997	4,020			
1998	4,020	15,720		
1999	4,020			
2000	4,020		151,180	60.0

1/ Exclunes graduates of the University of Puerto Rico.
2/ Includes dentists in Federal service; excludes dentists in U.S. Possessions.
SOURCE: Health Resources and Services Administration, Bureau of Health Professions, Division of Associated and Dental Health Professions.

Table 5-17. NUMBER OF ACTIVE DENTISTS, BY SEX: ESTIMATED 1984, AND PROJECTED FOR SELECTED YEARS, 1985-2.000

Year	Number   ot active   dentists	Male   fentists	Female   dentists	Percent   female   of all   dentists
1984	137,950	130,970	6,980	5.1
1985	140,770	132,770	8,070	5.7
1990	150,760	137,130	$-3,630$	9.0
2000	156,800	137,450	19,350	12.3
161,180	135,660	25,520	15.8	

1/ The basic methodology was used for all of these projections. Includes dentists in Federal service.

SOURCR: Health Resources and Services Administration, Bureau of Health Professions, Division of Associated and Dental Health Professions.

Table 5-18. NUMBER OF ACTIVE DENTISTS AND DENTIST-TO-POPULATION RATIOS: ESTIMATED 1984, AND PROJECTED FOR SELECTED YEARS, 1985-2000-/

Year and   alternative   projection	Number of   active   dentists	Active dentists   per 100,000   total population
1984	137,950	58.0
1985	140,770	58.7
Low	140,770	58.7
Hiqh	140,770	58.7
1.990	150,760	60.1
Low	150,760	60.1
Hiqh	151,200	60.3
1995	156,800	60.2
Low	156,500	60.1
High	159,820	61.4
2000	161,180	60.0
Low	158,900	59.1
High	167,020	62.2

1/ The basic methodoloay was used for the projections shown for the years 1985 through 2000; alternative assumptions were used for the low and high projections. Includes dentists in Federal service.

SOUPCE: Health Resources and Services Administration, Bureau of Health Professions, Division of Associated and Dental Health Professions.

$$
240
$$

Table 5-19. FORECAST OF ECONOMIC ACTIVITY IN THE DENTAL SECTOR, 1985-2000 1

YEAR
CONGRESSIONAL BUDGET OFPICE 1985-1989
Economic Assumptions

	Annual   Growth Rate of GNP   (\%)	Real Price	Real   Exp	Exp/   Dentist
1985	3.6	99.9	163	122
Y 1986	3.1	101.0	170	125
- 1987	3.3	102.0	178	129
1988	3.1	103.0	187	132
1989	3.0	105.0	195	137
1990				
1991				
1992				
1993				
1994				
1995				
1996				
1997				
1998				
1999				
2000				

LONG-RUN ECONOMIC FORECASTERS
Consensus Forecast
Scenerio Number One

Annual   Growth   Rate   of GNP   (8)	Real   Price	Real   Exp	Exp/   Dentist
3.0	106	204	141
$n$	107	213	145
$n$	108	223	149
$n$	110	233	154
$n$	111	244	160
$n$	112	255	163
$n$	114	267	169
$n$	115	278	174
$n$	117	292	180
$n$	118	305	186
$n$	120	319	192

1985 OASDI TRUSTEES Alternative III "Pessimistic" Assumption Scenerio Number Two

Annual   Growth   Rate   of GNP   (\%)	Real   Price	Real   Exp.	Exp/   Dentist
2.9	106	203	141
28	107	211	145
2.7	108	220	148
2.6	109	228	151
2.5	109	236	154
2.4	110	243	157
2.3	111	251	160
2.2	111	258	162
2.1	112	265	164
2.0	113	271	166
1.9	113	277	168

1/ Real price, real expenditures, and real expenditure/dentist are presented as indexes with base year 1974 (i.e., $1974=100$ ). "Real" denotes that the fiqures have been adjusted for inflation. Real dental expenditures in 1974 were $\$ 7.387$ billion dollars. Real price is defined as the ratio of the dental component of the consumer price index to the overall level of the consumer price index; for the purpose of this report, the real price was standardized at 100.0 in 1974 .
2.42

## References

American Association of Dental Schools. "The 1984 Survey of Dental Seniors." AADS, Washington, D.C., 1984. Also prior annual survevs.

American Dental Association. "Strateqic Plan, Report of the American Dental Association's Special Committee on the Future of Dentistry: Issue Papers on Dental Research, Manpower, Education, Practice and Public and Professional Concerns and Recommendations for Action." American Dental Association, Chicago, Ill., 1983.

Amer ican Dental Association. "Changes in the P:evalence of Dental Disease." Journal of the American Dental Association, Vol. 105, July 1982.

American Dental Association, Council on Dental Education. Annual Report on Dental Education, 1984-1985. Also prior annual reports.

American Dental Association. "Financial Report," fiscal year ending June 30, 1984. Supplement 4 to the Annual Report on Dental Education, 1984-1985. Also prior annual reports.

Amerisan Dental Association. "Dental Student Attrition, 1983-984." Supplement 5 to the Annual Report on Dental Education, 1584-1985. Also prior reports.

American Dental Association. "Compact Agreements Between States and Dental Schools, 1982-83." Supplement 8 to the Annual Report on Dental Education, 1982-83. Also prior reports.

American Dental Association. "Dental School Faculty, 1984-1985." Supplement 10 to the Annual Report on Dental Enucation, 1984-1985. Also prior reports.

American Dental Association. "Trend Analysis, 1984-85." Supplement 11 to the Annual Report on Dental Education, 1984-1985. Also prior reports.

American Dental Association, Council on Dental Education. Annual Report on Dental Auxiliary Education, 1983-1984. Also prior annual reports.

American Dental Association, Council on Dental Education. Annual Report on Advanced Dental Education, 1983-1984. Also prior annual reports.

American Dental Association, Bureau of Economic and Behavioral Research. "The 1984 Survey of vental Practice." American Dental Association, Chicago, Ill., 1984. Also prior surveys.

American Dental Association. Personal Communication with J. Vincent Shuck, Secretary, Council on Prosthetic Services and Dental Laboratory Relations. September, 1985.

Bohannan, H.M. "The Impact of Decreasiny Caries Prevalence: Implications for Dental Education." Journal of Dental Research (special issue), Vol. 61, 1982.

Dental Foundation of North Carolina. Planning for Dental Care on a Statewide Basis -- North Carolina Dental Manpower Project, Bowden, J.W., and De Friese, G.H. eds. Chapel Hill, N.C., 1981.

De Paola, P., et al. "Changes in Caries Prevalence of Massachusetts Children Over 30 Years." Journal of Dental Research, Vol. 60A: Abstract No. 20r . i281.

Forsythe Conference on : ining Prevalence of Dental Caries. Journal of Public Health Dentistry, Vol. 43, Winter 1983.

Glass, R.; Scheinin, A.; and Barmes, D. "Changing Caries Prevalence in Two Culturas." Journal of Dental Research, Vol. 60A: Abstract No. 202, 1981.

Gotowka, Thomas D. "Economic Growth of the Dental Profession: Comparisons with other Health Care Sectors." Journal. of the American Dental Association, Vol. 110, February 1985.

Hixson, Jesse S. "Long-Term Forecasts of Economic Activity in the Dental Sector." Journal of the American College of Dentistry, Vol. 48, No. 2, Summer 1981.

Irwin, D.M. "Dentistry's Prospects for the Future: a Personal Perspective." Journal of the American Dental Association, Vol. 106, March 1983.

Johnson, Kenneth P. and Howard L. Friedenberg, "Reqional and State Projections of Income, Employment, and Population to the Year 2000," Survey of Current Business, May 1985, pp. 39-48.

National Institute of Dental Research. "Prevalence of Dental Caries in United States Children, 1979-1980. National Dental Caries Prevalence Survey." National Institute of Dental. Research, Bethesda, Md., 1981, pp. 1-12.
U.S. Department of Commerce, Bureau of the Census. Projections of the Population of the United States: 1982 to 2050 (Advance Report), Current Population Reports, Population Estimates and Projections, Series P-25, No. 704, October 1982.
U.S. Department of Health, Education, and Welfare. The Econometric Model of the Dental Sector: Purpose, Scope, and Uses. DMA Report No. 80-44, March 1980.
U.S. Department of Health and Human Services, Bureau of Health Professions. Report to the president and Congress on the status of Health Personnel in the United States: May 1984. DHHS Publication No. HRS-P-OD 84-4, May 1984.
U.S. Department of Health and Human Services, Centers for Disease Control. "Dentai Caries and Community Water Fluoridation Trends--United States," Morbidity and Mortality Weekly Report, Vol. 34, No. $1,1985$.

## Chapter 6

## OPTCHISTRI

## Sevelopments in Supply

Current Supply. The number of active optometrists has increased moderately in recent years, with the number of newly graduating optometrists exceeding the number of optometrists leaving the profession by 50 percent. In 1984 there were an estimated 23,600 active optometrists in the United States, of whom 22,800 were providing some form of patient care. The remainder are in teaching and research activities.

While the number of active optometrists sas increased for the past two decades., the growth rate has only recently begun to outpace that of population. The ratio of active optometrists per 100,000 population increased from 8.9 in 1970 to 9.2 in 1.975 and to 9.9 per 100,000 in 1984 (Table 6-1).

The eftects of the G.I. Bill of the 1.950 s and the sudden increase in the number of or N onetrists graduating in the mid 1970's and subsequent years can 3till be seen today. Nearly 28 percent of active optometrists were between 50 and 64 years of age in 1984. More recer.t increases in graduates are also quite evident, as more than 30 percent of active optometrists are inder age 35. Optometry is becuring incressingly populated y younger professionals, with optometrists' median aqe fal.ing fro. . 8 years in 1980 to 42 years in 1984.

Momen and Minorities. Although the number of women active in optometry is small, the proportion of women in the field is e-pected to rise significantly in the coming years. While slightly less than 8 percent of optometrists are women, the proportion has grown substantially in recent years because of increased enrollments of women in optometry schools. Women constituted more than one-third of first-year enrollments in 1983-84, and this level of female enrollment is expected to continue.

The number of optometrists from minority groups is quite small, although the profession continues to be unusually attractive for Chose of Japanese or Chinese descent. In 1980 an estimated 800 active optometrists, or 3.5 percent of the total, were members of racial or ethnic minority grorps, and about three-fifths of this total were of Japanese or Chinese descent. Although the number of minorities in schools of optometry has increased in recent vears due to intensive recruiting efforts, the largest grointh in real numbers has bel 1 among Asian-American sturients. In 1983 minority enrollments totaled 584, compared with 181. in 1972.

Practice Characteristics. Most tometrists work exclusively in patient aare activities, and most work full-time, defined as 30 or more hours a week. By this definition, more than 90 percent of active optometrists work full-time.

It is estimated that fewer than 5 percent of active optometrists are engaged in nonpatient-care activisies.

Geographic Distribution. Estimates of the current georraphic distribution of optometrists as derived from the 1978 inventory of optometrists range from a high of 11.8 per 100,000 population in the We, e to a low of 8 per 100,000 in the South. The ratio of optometrists per $1.00,000$ population is 11.1 for the Midwest and 9.9 for the Northeast. The States with the highest estimated ratios of optometrists $p=100,000$ population are Maine (16.4), Montana (15.6), and Massachusetts (15.8); those with the lowest ratios are New Jersey (5.7), Georgia (5.8) and Louisiana (5.8) (Table 6-2).

Another factor to be considered in evaluating the geographic distribution of optometrists is the similarity between some services provided by optometrists and ophthalmologists. For example, in the designation of health manpower shortage areas for vision care, the supply of both optometrists and ophthalmoloqists is consinered airce professionals in ei h group spend considerable portions of their time performing basic eye examinations.

Strong reqional differences are evident in the distribution $0^{\circ}$ optometrists and oph. almologists and in their proportions within individual states. States in the East such as Connecticut, New York, and Maryland which normally have relatively high ratios of health professionals per population, have lower than average ratios of optometrists to population but higher than average ratios of ophthalmologists. Conversely, several rural States (e.g., Iowa, North Dakota, and South Dakota) have unusually large supolies of optometrists relative to their populations and relatively low supf'ies of ophthalmologists. The Northeast which has experienced the largest increase in the supply of ophthalmoloqists had the lowest rate of increase in the supply of optometrists.

As of March 31, 1985, 273 health manpower shortage areas with a combined population of 13.8 million persons had been designated for vision care personnel, including optometrists. Access to care by ophthalmoloaists and optometrists is included in the shortage area criteria.

To eliminate the difference between visits required and visits supplied in these shortage areas, an estimated 406 additional vision care practitioners would be needed, if each practitioner provided 3,000 visits. While 79 percent of the esigrated areas were nonmetropolitan, such areas covered only 31. percent of the population in desicgnated areas.

## Im ne of Optometrists

The American Optometric Association estimates that the mean net income of active optometrists in 1984 was $\$ 55,000$. Optometrists in the first year of practice are estimated to have a mean net income of $\$ 27,000$. This estimate increases to $\$ 42,000$ by the end of the fifth year of practice. The increase of optometric mean net income war 30 percen: over the 5 -year period ending in 1984, having risen from $\$ 42,300$ in 1979 (AOA, March 1985).

## Optometric Services by Setting

While the majority of optometric practices are still private solo practices, there has been a trend toward partnerships and group optometric piactices. Optometrists have been joining with other eye care professionals as well as other health professionals in multidisciplinary clinics and health maintenance organizations. A recent outgrowth of this trend is the membership of optometrists on medical staffs with appropriate clinical privileges.

According to the 1981 Annual Survey of Hospitals conducted by the American Hospital Association, 30 percent or 2,135 of the registered hospitals in the United States have one or more optometrists who provide services to outpatients or inpatients on a regular full-time scheciule or intermittently. For more than 1,000 of these hospitals, optometric services are hospital based and staffed. About 200 hospitals contract for such services and more than 900 have arranged for services through another hospital or directly with. providers. According to a recent survey of the American Optometric Association, the majority of members identified as affiliated with hospitals were in private or fee-for-services practice and worked pert-time with hospital patients. About one half were not in private practice and were for the most part employed by either the Armed Forces, the Public lealth Service, or the Veterans Administration. The proportion of these optometrists who provided service within hospitals was 75 percent, while only 11 percent receive hospital-referred patients in their offices. State hospitals are the most common non-Federal government hospitals with optometric affiliations (AOA, August 1984).

## Competency Assurance

A license to practice optometry is required in all States, the District of Columbia and 1 ierto Rico. At the present time 46 States have either statutory requirements or board rules requiring attendance at continuing education for optometric license renewal, usually 12-18 hours a year. At least one tate requires that 10 of 28 hours must be sponsored by an academic institution, with assessment by some form of examination.

The International Association of Boards of Examiners in Optometry at its 1984 Annual Meeting unanimously passed a resolution adopting a continuing optometric education information system. The purpose of the system is to improve the relevance of continuing optometric education by:
o Providing the basis for the national coordination of optometric continuing education;

- Providing data to state boards acting on behalf of the public, to more adequately assess the current level of continuing optometric education's impact on maintaining continuing competency of the practitioners in the State;

Allowing better educational planning in developing continuing professional education in optometry.

## Educational Developments

## Applicants

The number of applicants to schools and colleges of optometry, having tripled in the preceding 6 years, peaked at nearly 4,200 in 1975-76 before declining to less than 2,100 in 1981-82. In academic year 1982-83, applicants increased slightly to 2,187 .

The ratio of applicants to first-year places showed a similar pattern, increasing from 1.8 in 1969-70 to nearly 4 applicants per first-year place in 1974-75. However, the ratio subsequently declined to 1.65 in academic year 1981-82. (At the same time, three new schools of optometry were established.) In 1982-83, the ratio of applicants to first-year places rose again to 1.87 because of increasing applicants and declining first-year places.

## Enrollments and Graduates

In 1983-84, 15 schools and colleges of optometry enrolled 4,539 students ${ }^{1}$, a decrease of less than 1 percent over the previous year enrollment of 4,561. The number of graduates in 1983-84 was 1,171 . First-year enrollments, which stood at 1,187 in 1983-84, declined 5.2 percent from the level 3 vears earlier. However, this reflects 2-year declines of 1.6 percent between 1980-81 and 1981-82 and 9.6 percent between 1981-82 and 1982-83 as well as an increase of 5.9 percent in first-year enrollments between 1982-83 and 1983-84.

Women and Minorities. Women continue to enter the profession of optometry in increasing numbers. Between 1971-72 and 1983-84, total student enrollme it in optometric schools increased 47 percent, but the enrollment of women increased 1,053 percent from 112 to 1,291 . This represents an average annual increase of nearly 10 F -sent in female enrollment since the late 1970's. During the same period, $\dagger$ Jverall increase in male enrollment was only 9 percent. As a result, 28.4 percent of optometric students today are women, compared to 3.6 percent 12 years earlier. Similarly, the 285 women who graduated from optometry schools in 1983-84 constituted 24 percent of the graduating class, a proportion that is expected to increase, since women accounted for more than 34 percent of the first-year class in academic year 1983-84.

Although the number of minority students in optometry schools more than doubled during the 12 years ending in 1983-84, the number and proportion

[^10]remain very low for some minority groups. While enrollment of asian-American students increased from 117 to 293 during this period, Black students increased only from 32 to 88 , those with Spanish surnames from 30 to 123, and American Indians from 2 to 18.

## School Location

The location of their school of optometry is a prime factor in determining where optometrists practice after graduation. Nearly three-fourths of optometrists under age 45 who practice in States that have optometry schools were graduated from an in-State sciuol. The proportion of all active optometrists who graduated from schools within their State of practice is more than 93 percent in Illinois, 94 percent in Tennessee, 88 percent in Oregon, 84 percent in Pennsylvania, 82 percent in California, and 80 percent in Massachusetts.

Jearly two-fifths of the students who completed training in 1979-81 graduated from three schools: the Illinois, Pennsylvania, and Southern Colleges of Optometry. The Illinois and Pennsylvania colleges enrolled the most firstyear students during these 3 years, and the Illinois College of Optometry had the most graduates (419). Among established schools, the optometric college at Ferris State graduated the fewest students (79).

## Survey of Recent Optometry Graduates

A survey of optometry graduates of 1979, 1980, and 1981 conductec by the Association of Schools and Colleges of Optometry (ASCO) shows that the trend among recent graduates is in the direction of seeking self-employment. About 54 percent of all recent graduates are self-employed, 42 percent are salaried in a clinical setting, and only 5 percent are salaried in a nonclinical setting. When the data are examined by year of graduation, the proportion of self-employed practitioners increases rather sharply from the first year after graduation ( 44 percent) to the third year after graduation ( 63 percent). Conversely, the proportion of graduates in a salaried position decreases over time after graduation, in about the same proportion as the increase in the self-employed category. These survey data suggest that some graduates enter a salaried position after graduation perhaps because of educational indebtedness or inability to raise needed capital. Subsequently, they overcome such obstacles ard move toward their real professional preference, self-employment (ASCO, Sept. 1983).

Another survey finding is a somewhat higher inclination of recent male graduates to enter self-employment than female graduates. Male optometrists work an average of 40 hours a week, and females average 37 hours a week.

Approximately 90 percent of the 1979-81 optometry graluates indicate general optometry as their primary type of practice, while another 8 percent reported that their primary practice was in contact lenses. Some 74 percent reported contret lens services as their secondary area of activity.

By and large, new optometry practitioners establish themselves in States in roughly the same proportion as existing practitioners. Most of the States showing the greatest increase in the number of optometrists are found in the general region of the Sun Belt, and those with the greatest decline are in the northern industrial States.

Nearly 78 percent of the recent optometry graduates successfully completed the exanination for licensure sponsored by the National Board of Examiners in Optometry (NBEO) either before of after graduation. Differences in State requirements for licensure (e.g., use of the NBEO examination versus a Statesponsored examination) did not account for any significant variation in the time needed to obtain a State license.

The recent graduates took an average of 2.1 licensure examinations. An overwhelming majority ( 88 percent) successfully completed the requirements to practice on their first or second State attempt and ended up practicing in one of those two States. Nineteen percent of the recent optometry graduates were not successful in one or more licensure attempts for a variety of reasons. The most often stated reasons were either failure of the written or practical examination. However, 49 percent of individuals who were initially unsuccessful passed the licensure examination in a later attempt. Analysis of the data revealed that States that do not accept the NBEO for licensure purposes tend to have a higher rate of failure than those that require the National Boards.

## Educational Costs

During the 4 -year period ending in the 1981-82 academic year, substantial increases in the costs of optometric education took place. Optometric students' overall educational expenses, including tuition, fees, textbooks, instruments, room and board, and miscellaneous educational costs (but not total living expenses), rose to $\$ 6,810$ in 1981-82 (a 70 percent increase) for resident students and $\$ 8,862$ ( 62 percent) for nonresidents at public institutions (ASCO, Sept. 1984). At independent schools of optometry, these costs increased to $\$ 11,254$ (up 73 percent) for residents and $\$ 11,921$ (up 67 percent) for nonresident students.

Tuition for optometric students increased an average of 52 percent for regident students and 64 percent for nonresident students at public schools. During the same perici, students at the independent colleges experienced average tuition increases of 87 percent for residents and 73 percent for nonresidents. Room and board costs also increesed, an average of 74 percent at public institutions and 53 percent at independent schools, Such increases are above the rate of inflation during this period.

Most States that lack a school or college of optometry (exceptions are Wisconsin, Vermont, and the District of Columbia) contract with schools in other States to provide spaces for their students. Such arrangements may be Alrect or through a regional compact such as the Southern Regional Education Board (SREB) or the Western Interstate Conference on Higher Education (WICHE). A qualifying student from a State with no optometry school might be
granted a sizable tuition reduction (subsidy) to attend the optonetry school which has such contracts. These subsidies presently range from $\$ 3,600$ to $\$ 4,400$ per academic year. With few exceptions (State University of New York and University of California, Berkeley) all schools have contract arrangements, although some decline in the total number of contracts has been noted.

During the 1977-82 period increasing numbers of students sought financial assistance. Borrowing increased in the public institutions from an average of 33 percent of the student body in 1997-78 to 49 percent in 1981-82. At independent schools borrowers using institutional resources increased from 38 percent to 61 percent of the student body.

The Federal portion of such aid, principally PELL grants and Exceptional Financial Need (EFN) scholarships, continued to decline during this period and now represents a negligible amount of available support. However, State and private sector scholarships have continued to be awarded. State contract income in the category of student aid accounts for a major portion of available aid, according to reports from the schools to the Council on Optometric Education.

In general, the major source of financial assistance to students of optometry is in the form of loans. Each school or college administers loans through the institution. By far the greatest portion of these institutional loan funds comes from the Federal Government. The Health Prcfessions Student Loan (HPSL) and the National Direct Student Loan (NDSL) have been the primary sources of institutional lending. Both represent direct Federal funds. Howiver, the major source of HPSL revenue now comes from the revolving-fund monies being paid back to the sciiucuis in previous borrowers. The Federal government continues to be the major source for total financial assistance available. In 1981-82 Federal programs represented 97 percent of $l$ jan funds and 88 percent of aid funds available through the optometry schools.

The total available funds administered by the schools now account for less than 30 percent of the average student expenses during the academic year. Students must seek other funding sources as well as savings, work and spouse's income for the larger amount of required expenses.

A study of educational loan indebtedness at the Illinois College of Optometry indicates that the level of indebtedness among graduates (at that school) is increasing steadily. In 1981, for example, the average amount of loan inde btedness was $\$ 18,265$; in 1983 the figure had risen to $\$ 24,710$. In 1982, 95 percent of the graduates had educational loan indebtedness.

## Training in Geriatric Optonetil

The large growth of the elderly population predicted for the coming decades intensifies the need to understand the health problems associated with aging. Aging is accompanied by decreases in the body's capabilities, including decline in the acuity of senses such as vision and hearing. Impaired vision is almost universal among the elderly. This need for
information and knowledge of factors governing the aging process is being met by development of a geriatric optometry curriculum for continuing professional education of practitioners. The program, whose development was funded by the Administration on Aging, was first presented in 1984 as a tutorial during national, reqional, and State professional meetings of optometrists. This geriatric optometry program is being expanded and nodified for use in colleges of optometry as part of the basic professional curriculum.

## Projections of Future Supply

The number of optometrists is expected to increase sharply in the coming years. Three different sets of projections of the supply of active optometrists between the years 1982 and 2000 are presented here. Each rests on different assumptions regarding the number of studen ${ }^{2} 3$ who will be graduated during the projection period.

Projections of enrollments and graduates of schools of optometry are critical to projection of overall supply in the profession. The basic supply projection series (the most jikely of the three projections) assumes that first-year enrollment will be maintained at the level achieved in 1983-84, and that no new schools will open during the projection period. The basic series and other projection series assume that the proportion of women enrolling in schools of optometry will remain constant at the 1983-84 level.

All three sets of projections assume that the 16 schools of optometry operating in academic year 1983-84 will remain cpen. These include Northeastern Oklahoma State, which began classes in September 1979, and the University of Missouri at St. Louis, which began classes in September 1980. It is also sssumed that these two schools will maintain their initial firstvear enrollment throughout the projection period. It should be noted that graduates of the Inter-American University School of Optometry in Puerto Rico (which opened in January 1981 with an initial enrollment of 32) are not included in the future supply estimates. Evidence from other health professions shows that graduates of Puerto Rican schools tend to remain in the Comnonwealth.

Basic Series. The basic series estimates assume that optometry schools will be able to maintain their 1983-84 enrollment levels. Although there has been some decline in applicants, the number of applicants continues to be substantially greater than the number of first-year admissions. This projection is predicated on maintaining present enrollments, through a combination of State, local, and other support to optometry schools. It is also assumed that tuition will cover more oi total educational costs.

In the basic series, first-year enrollments are projected to remain at the 1983-84 level of 1,187. Graduates are projected to decrease from 1,089 in 1984 to 1,072 in 1985 and 970 in 1986, before increasing to 1,029 in 1987 and remaining at 1,029 for the balance of the projection period. The total addition of new graduates to the work force between 1984 and 1990, therefore, is expected to be $\mathbf{7 , 2 0 0}$, or about 28 percent of all active optometrists in
1990. The number of graduates produced between 1984 and 2000 is projected to be 17,560 , which would account for 59 percent of the active supply of optometrists at the end of the century.

The projected average annual number of graduates during this period would be 1,029 -- nearly 60 percent greater than the average annual loss expected from death and retirement (651). The supply of active optometrists would thus increase more than 8 percent between 1984 and 1990, from 22,600 to 25,500. Growth between 1990 and 2000 would be somewhat greater, with the number of active optometrists rising to 29,700 , an increase of 16 percent over the decade. The ratio of active optometrists to population, which stands at 9.9 per 100,000 in 1984, is projected to increase to 10.2 per 100,000 in 1990 and 11.1 per 100,000 in the year 2000 (Table 6-1). Because of increased enrollments of women in schools of optometry, the growth in the number and proportion of female optometrists is expected to be substantial. The number of active women optometrists is projected to increase from 1,800 or 7.6 percent of the active supply in 1984 to 3,600 or 14.1 percent of the active supply by 1990. The growth between 1990 and the end of the century will be nearly 90 percent, yielding 6,800 active female optometrists by the year 2000. By 2000 , women will represent nearly 23 percent of all active optometrists (Table 6-3).

Low Alternative Series. The low alternative series assumes that the overall net decrease ( 5.2 percent) between 1980 and 1983 in first-year enrollment will continue to 1987. It is assumed that another 5.2 percent decrease in enrollment to 1987-88 will take place and that first-year enrollment thereafter will remain level. Thus an average decline of 1.3 percent per year from 1983 to 1987 is assumed. This series assumes that the elimination of Federal support to schools of optometry has a more prolonged effect on student enrollments. It is also assumed that the distribution by sex of first-year enrollees observed in 1983-84 will continue. Based on these assumptions, the low alternative series projects a decline in first-year enrollment from 1,187 in 1983 to 1,156 in 1985, to 1,126 in 1987, remaining at the 1987 level until 2000. In the low series, graduates are projected to decline from $\alpha, 089$ in 1984, to 1,029 in 1987, to 976 in 1991, remaining at the 1991 level until the end of the centurv. The total number of graduates between 1984 and 2000 would be 16,900 , or about 4 percent less than the basic series.

In the low series, the number of active optometrists would rise to 25,400 in 1990 and 29,100 in 2000 , but would still grow faster than the population, resulting in a ratio of 10.8 optometrists per 100,000 population (Table 6-1). In 2000 there will be 6,600 women optometrists or nearly 23 percent of all active optometrists.

High Alternative Series. The high alternative series assumes that the level of increase in the $\mathrm{f}^{-}:$st-year enrollment observed between the 1982-83 and 1983-84 academic year will continue to 1987, but at a slower pace. This seriss assumes enrollment maintenance, despite the loss of Federal support, through a combination of State, local, and other support to schools of optometry. It is assumed that the 5.9 percent increase ir, enrollment will
take place over a 4 -year period instead of a single year (the average annual increase in first-year enrollment is therefore assumed to be 1.5 percent). This level of increase is judged to be reasonable since it is only half the average annual enrollment increase shown by optometry schools prior to enactment of the Health Professions Educational Assistance Act of 1963. After 1987, it is assumed first-year enrollment by sex will be maintained. Therefore, the high alternative series assumes that first-year enrollment will increase from 1,187 in 1983 to 1,225 to 1985 and to 1,265 in 1987 and remain at that level through the projection period. In the high series, graduates are projected to increase from 1,089 in 1984, decline to 1,029 in 1987, and increase to 1,097 by 1991, remaining at that level to the end of the projection period. The total number of graduates between 1984 and 2000 would be 18,300 or about 5 percent more than the basic series.

According to high series estimates, the number of optometrists would rise to 25,600 in 1990 and to 30,400 in the year 2000 , or to a ratio of 11.3 optometrists per 100,000 population (Table 6-1). By the end of the century, the number of women in optometry would be 7,100 or 23 percent of all active optometrists.

## Future Supply/Requirements

An estimated 23,600 optometrists were practicing in 1984 with 29,700 active optometrists being projected under the basic series by the end of the century. Using the assumptions discussed below, the Bureau of Health professions projects that requirements for optometrists will reach 30,400 by 2000 , or roughly the same as the projection of supply in that year. These projections assume continuation of the current trend toward an increase in vision analyses performed by optometrists. As population and income levels increase, the number of vision analyses should continue to rise. In addition, the aging of, the Nation's population and a consequent rise in vision care services is assumed to play a role in increasing requirements. Visits to both optometrists and ophthalmologists are substantially higher for persons over age 45, reflecting the onset of vision problems during middle age and the increasing severity of these conditions as individuals become more elderly. Although data on utilization of optometric services over time are zeverely limited, it is evident that per capita utilization has been increasing at a modest rate. Part of this increase may be attributable to rising per capita income, which permits consumers to obtain care more frequently.

The possible influence of health insurance coverage is less clear. At present, 25 percent of optometrists' patients have third-party coverage, according to a survey by the American Optometric Assocation. Visits to optometrists and ophthalmologists may receive limited coverage by Federal Government programs such as Medicare unless the visit is for refractive services only. The projections reported here are based on the pattern of optometric service utilization that has been observed in recent years and are
believed to reflect the best method for estimating requirements for optometrists. However, an alternative estimate is available for purposes of comparison.

In a recent manpower study, the Amerjcan Optometric Association projected that 36,000 optometrists would be required in 1990 (AOA, 1982). The study pro'acted needs for vision care services using four sets of data: the expected prevalence of conditions requirinq care, the distribution of probable treatment modes for each condition, the average time necessary to deliver the services implied by each treatment mode, and the expected need for diaqnostic services by 2000. The study assumed that actual demand would be less than it would be if optometrists were to provide all primary eye and vision care. The study estimated that half of the required diagnustic services would actually be provided and that ophthalmologists and additional providers other than optometrists would provide 35 percent of primary care. In addition to clinical care, the study projected needs in the areas of acministration, research, and teaching.

In contrast to the AOA study, the projection of requirements for optometrists prepared by the Bureau of Health Professions assumes continuation of the existing relationships between optometrists and ophthalmologists in the health care system and the maintenance of current roles and responsibilities for vision care services. Any change in these relationships, such as more widespread referrals among practitioners, might have direct impact upon the level of requirements. Refrowitz notes that ophthalmologists refer between 1 and 4 percent of their cases to other ophthalmoloqists and 9 percent to optometrists. Optometrists refer between 1 and 14 percent of their cases to ophthalmologists. These findings tend to supporit the contention that the flow of patients from cotometry to ophthalmoloqy exceeds the referral or return of referral patients from ophthalmology to optometry (Refrowitz, 1981).

## Sumary

- The number of active optometrists per 100,000 population has increased from 9 in 1970 to 10 in 1.984. Although the number of graduates has increased, a high proportion of optometrists are nearing retirement age.
- The increase in women in optometry has been substantial; they now comprise one-third of optometry students. The proportion of women in the active supply is expected to triple by the end of the century.
- While the majority of optometric practices are still solo private practices, there has been movement into group practices, as well as into multidisciplinary settings and hospitals.
o The more than 4,500 students in schools of optometry are located in 13 States and Puerto Rico. Substantial increases in the cost of optometric education have taken place.
- Substantial differences in the geographic distribution of active optometrists continue to exist. New granuates distribute themselves in States in about the same proportion as c:isting practitioners.
o The number of active optometrists is expected to increase to nearly 30,000 by the end of the century, or more than 25 percent over today's levels. Nearly 3 of 5 persons active in optometry in 2000 will be future graduates.
- Although very difficult to define, requirements for optometrists are projecter to be about equal to the supply in the field by the year 2000.

Table 6-1. NUMBER OF ACTIVE OPTOMETRISTS AND OPTOMETRIST-TO-POPULATION RATIOS: SELECTED YFARS, ESTIMATED 1970-1984, AND PROJECTED 1985-2000 1

Year and alternative projection	Number of active optometrists	Active optometrists per 100,00\% total population $2 /$
1970	18,400	8.9
1975	19,900	9.2
1980	22,000	9.5
1984	23,600	9.9
1985	23,900	10.0
Low	23,900	10.0
High	23,900	10.0
1990	25,500	10.2
Low	25,400	10.1
High	25,600	10.2
1995	27.500	10.6
Low	27,100	10.4
High	27,900	10.7
2000	29,700	11.1
Low	29,100	10.8
High	32,400	11.3

1/ The basic methoroloqy was used for the projections shown for the years 1985 through 2000; alternative assumptions were useत for the low and high prnjections. Includes optometrists in Federal services.

2/ Ratios are based on total population, including Armed Forces overseas, as of July 1.

SOIJRCE: Health Resources and Services Administration, Bureau of Health Professions, Division of Associated and Dental Health Professions.
U.S. Bureau of the Census. Current Population Reports, Series P-25, Nos. 952 and 959.

TAble 6-2. NUBER OP ACTIVE OPMOMLTRISTS AND OPTONETRIST-TD-POPULATION RATIOS, BY REGION, DIVISION, AND STATE: DECEMEER 31. 1970, 1980, AND 1984

Geograph ie ares	1970		1980		1984	
	Act Ive optamevista	Active optometriate per 100,000 realdent population	Active optometriate	Active   optometriata   per 100.000   residont population	Active optometriata	Active optometrlita per 100,000 resident population
ONITED STATES	18,400	8.9	22,330	9.6	23.590	9.9
WORTHRAST	4.747	9.7	4,903	9.4	4,965	9.9
New England	1, 3 , 33	11.2	1,669	13.4	1,687	13.3
Connecticut	259	6.6	297	9.5	284	9.0
Meine	116	11.1	169	15.0	190	16.4
Mesaschuntta	118	12.6	921	16.0	922	15.8
Mew trapthire	70	9.4	93	10.5	107	10.9
Whode Ialand	132	13.7	130	13.7	128	13.2
Vermont	38	e.9	54	10.5	56	10.5
Midale Atlantle	3,414	9.2	3,234	E.t	3,276	0. 8
Mew Joramy	674	9.5	451	6.1	430	5.7
Mew York	1,595	6.6	1,488	8.5	1.502	8.4
Pannaylvania	1,145	9.6	1.295	10.9	1,346	11.3
MzDMEST	5,869	10.3	6,427	10.9	6,619	21.1
East Morth Central	4,200	10.4	4,467	10.7	4,690	11.2
Illinole	1,613	14.5	1,392	12.2	1.356	11.7
Indiana	510	9.6	637	11.6	739	13.4
Michigan	707	7.9	870	9.4	959	10.5
Onio	942	8.6	976	9.0	1,039	9.6
Wisconaln	426	9.5	592	12.5	597	12.5
Mest Morth Central	1,669	10.2	1,960	11.4	1,929	$\frac{11.0}{12.5}$
Iowa	335	11.7	385	13.2	366	12.5
Ranase	229	10.7	272	11.4	300	12.2
Minnesota	353	9.2	443	10.8	455	10.9
Minsouri	431	8.9	401	10.0	445	6.1
Eshraska	153	10.1	185	11.7	184	11.4
Morth Dakota	12	11.3	${ }^{5}$	13.4	65	12.3
South Dakote	94	13.5	96	14.0	94	13.3
80\%	4,128	6.6	5,914	7.7	6,445	6.0
South Vtlantic	$\underline{1.931}$	6.3	2,898	7.7	3,057	7.7
Delawara	35	7.3	49	0.2	50	6.1
Dintrict of -olumble	11	9.3	62	9.6	54	6.6
Plorida	492	7.3	869	8.9	932	6.4
coorgia	262	5.6	310	5.6	339	5.6
Marylrad	175	4.6	283	6.6	317	7.3
Worth Carolin	321	6.1	444	1.5	462	7.5
South Ceroline	155	5.8	244	1.6	266	6.0
virginia	213	5.8	422	1.8	440	7.3
weat virginia	147	0.6	195	10.0	197	10.0
Eant South Cantral	825	6.6	1,244	8.5	1,308	9.2
Alabama	180	5.2	25:	6.7	303	7.6
Rentucky	229	7.4	306	8.4	332	8.9
Misalsalppi	121	5.9	176	7.0	163	7.0
Tennesae	295	7.4	501	10.7	570	12.0
Weat South Central	1.372	7.1	1.772	7.3	2,000	7.6
Arkanana	151	7.8	235	10.2	288	12.2
Loulaiane	223	6.0	245	5.7	258	5.8
Oklahons	247	9.3	314	10.2	352	10.6
Texas	751	6.8	978	6.7	1.102	6.9
west	3.656	10.5	5.086	11.6	5,561	$\frac{11.8}{10.3}$
Mouritaln	712	0.6	1,143	9.9	1,305	10.3
Arizona	127	7.3	254	9.2	284	9.3
colorado	188	0.1	288	9.8	313	9.6
+ t /ho	86	12.6	119	12.5	129	12.8
Montana	89	12.9	123	15.5	129	55.6
Mavade	36	8.1	68	8.2	102	11.1
New Mexico	11	6.9	131	9.9	158	11.0
Dtah	14	6.5	107	1.2	127	8.9
Wrowing	41	12.0	53	11.0	63	12.3
Pactifie	2,947	11.1	3,943	$\frac{12.2}{10.5}$	4,256	12.4
Alpake	17	6.6	43	10.5	59	11.7
Califorria	2.239	11.2	2,983	12.4	3,270	12.7
Hewali	64	1.8	94	9.6	95	9.1
Oregon	272	12.8	368	13.9	364	13.5
Washing ton	355	10.3	455	10.9	468	10.7

SOURCE: Zatimated by Health Resourcea and Servicea Administration, Bursau of Feslth Profeasiona, Division of Asanclated and Dental Fealth Profeasiona.

6-14
259

Table 6-3. NUMBER OF ACTIVE OPTOMETRISTS, BY SEX:
ESTIMATED 1984, AND PROJECTED FOR SELECTED YEARS, 1985-2000 $1 /$

Year	Number   of active   optometrists	Male   optom-   etrists	Female   optom-   etrists	Percent   female   of all   optometrists
1984	23,600	21,800	1,800	7.6
1.985	23,970	21,900	2,000	8.4
1990	25,500	21,900	3,600	14.1
1995	27,500	22,200	5,300	19.3
2000	29,700	22,900	6,800	2.2 .9

l/ The basic methorology was used for all of these projections. Includes optometrists in Federal service; exclures optometrists in U.S. Possessions.

SOURCE: Health Resourses and Services Administration, Bureau of Health Professinns, Division of Associated and Dental Healt:: Professions.

## References

American Optonetric Association. Economic Survey Data, March 1985. Unpuhlished data.

American Optometric Association. Report of the AOA Task Force on Optometric Manpower. March 1982.

American Optometric Association, Primary Care Division. Optometric rervices in Hospitals. Auqust 1982.

Association of Schools and Colleges of Optometrv. Final Report of a Follow-lis Survey of Optometry Graduates to Determine Practice Patterns. Technical Report pursuant to contract no. HRA 232-81-0C54, September $28,1983$.

Association of Schools and Colleges of Optometry. Changing Trends in the Financing of Optometric Education. Final Report of purchase order HRSA 84-208, September 30, 1984.

Refrowitz, Robert. "Inter- and Intrareferrals Within and Between Ophthalmology and Optometry." American Journal of Optometry and Physiological Optics, November 1981.

## Chapter 7

## PODIATRIC MEDICINE

Although podiatric medicine has fewer practitioners than any other health profession, it plays a significant and expanding role in health care by providing the diagnosis, treatment, and prevention of abnormal conditions of the feet. Podiatrists perform surgical procedures on the foot, prescribe corrective devises, and precribe and administer drugs and physical therapy. Podiatrist, are trained and licensed to deliver a wide range of services, including the redical and surgical treatment of corns, callosit_es, bunions, bursitis, flatfeet, diseases of the skin and nails, and foot injuries affecting bones, tendons, muscles, and joints. In addition, they serve as the entry point into the health care system for patients with systemic diseases that manifest symptoms in the feet. These patients are referred to aliopathic or osteopathic physicians for treatment of the systemic disorder. Physicians, primarily general or family practitioners and orthopedic surgeons, also provide care for foot disorders. Approximately 3 percent of general and family practice visits and 22 percent of orthopedic surgery visits are for foot care (USDHHS, 1981). These physicians treat most injuries to the ankle or foot, and most cases of clubfoot, and other foot deformities.

## Developments in the Practice of Podiatric Medicine

Every podiatrist is required to be licensed by the State(s) in which he c. practices. Each State establishes its own requifements for licensure and limits of practice. Practice limits vary from State to State but usually include: anatomical areas where surgery can be performed; parts of the foot that may be amputated; and rules on the uses of anesthesia and prescription drugs. The anatomical scope of practice proposed by a panel comprising leaders in the profession includes the foot, ankle, and soft tissues of the lower leg (APA/CPE, 1984).

## Number and Characteristics of Podiatrists

The number of podiatrists has gradually increased since the early 1970 's, when expanded enrollments in the Colleges of Podiatric Medicine, stımulated by Federal incentive programs, began to yield higher numbers of graduates. This is evident from data collected in the last three national surveys of the profession. As more podiatric medical graduates have entered practice, their median age has rapidly decreased from 51 in 1974 to 40.5 in 1983 (Table 7-1). More than one-third of podiatrists are now less than 35 years old. It is expected that the podiatric workforce will remain relatively young for the rest of this decade, with a median age of 39-40. The data for number of years the podiatrısts have been in active practice al:so reflect this trend. The percentage of podiatrists in practice less than 10 years increased from 21.6 in 1974 to 46.3 in 1983 (APMA, 1985).

The number of women in podiatric medicine contınues to be very low. Although the number of women has increased to 350 in 1983, the proportion of women in podiatric practice has dectined slifhtly during the period from 1974 to 1983 (APMA, 1985).

Representation of women in the profession should improve in the future, because aumission of women into the Colleges of Podiatric Medicine has increased significantly in the last $j$ years. Wumen represent more than 24 percent of the first-year enrollment for academic year 1984-85.


Number and Percentage of Active Women Podiatrists in 1970, 9974 , and 1983		
Year	Number of Womin Podiatrists	Percent of Total Who Are Women
1970	315	4.5
1974	271	3.8
1983	350	3.6

SJURCES: Number of active podiatrists, 1970 and 1975, from National Center for Health Statistics data. Number of active podiatrists, 1983, fr national survey data (APMA, 1985).

Minorities are also underrepresented in podiatric medicine, and have been throughout the history of the profession. White, non-Hispanic podiatrists representer more than 94 percent of the practitioner population in 1974 and in 1983. The proportion of black podiatrists is uncertaln; two studies have ylelded significantly different data. An analysis of employment data from the 1980 census (USDHHS, 1984) shows tnat 4.1 percent of podiatrists are black; on the other hand, a 1983 survey of podiatrists (APMA, 1985) indicated that only 1.5 percent are black (Table 7-2). A modest increase in minority representation can be expected, because the number of minorities in the colleges has increased as the result of vigorous recruitment efforts. The 1984-85 academic year enroilment incluces 356 minority stude 2 ts, as compared to 189 five years earlier.

## Geographic Distribution

Substantial differences in the national distribution of podiatrists continue to exist. Although the total number of podiatrists increased from 7,120 to 9,700 between 1974 and 1983, the geographic distribution has not improved significantly. The census division which encompasses the States of New York, New Jersey, and Pennsylvania had the highest podiatrist:population ratio in 1974 and the largest per-population 1 ncrease during the next 9 years. Southern States, which continue to have the fewest pcdiatrists, showed the nighest percent of increase. The increase in the South Atlantic Division is pramarily the resul.t of large increases in Maryland, a border State, and in Florida.

Podiatrists, like other specialized medical practitione's, must locate their practices in areas that have a population density suffic ient to generate an adequate patrent census. Consequently, less than 5 percent of podiatrists' offices are found in communities of fewer than 10,000 population, and 45 percent are in cıties of 200,000 population or moie (Table 7-3). In rural areas, general and family physicians are likely to provide some of the services that podiatrists would provide if they were avallable. Because podiatrists tend to locate in larger cities, a large number of counties are experiencing a shortage of podiatric care. Seventy-five percent of the l,403 counties identified as shortage areas by BHPr are in nonmetropolitan areas (BHPr, 1984).

Census Division	istrıbution of podiatrists by Census Dlvisions, 1974 and 1983				
	Podiatrists per 100,000 Population			Percent   Increase	States Iricluded
	1974	1983	Increase		
United State.s	3.3	4.2	0.9	27	
New England	5.1	5.8	0.7	14	$\begin{aligned} & \mathrm{ME}, \mathrm{NH}, \mathrm{VT}, \mathrm{MA}, \\ & \mathrm{RI}, \mathrm{C} \mathrm{C} \end{aligned}$
Middle Atlantic	6.0	7.3	1.3	22	NY, PA, NJ
East North Centrai	4.0	4.8	0.8	20	IL, IN, OH, MI, WI
West North Central	1.9	2.7	0.8	42	MN, IA, MO, ND, SD, NE, KS
South Atlantic	2.1	3.2	1.1	52	DE, MD, DC, VA, WV, SC, GA, FL
East South Central	0.8	1.3	0.5	62	KY, TN, AL, MS
West South Central	1.5	2.3	0.8	53	AR, LA, OK, TX
Mountain	2.4	3.4	1.0	42	$\begin{aligned} & \text { MT, ID, WY, CO, NM, } \\ & A Z, ~ U T, ~ N V ~ \end{aligned}$
Pacıfic	3.3	4.1	1.0	32	WA, OR, CA, HI, AK

SOURCES: 1974 Jata for active pod:atrists, from National Center for Health Statistics. 1983 data is from Profile of Podiatric Medicine - 1984 (APMA, 1985). Census estimate for July 1, 1983. Serıe; P-25, No. 957. Bureau of Census, U.S. Department of Commerce.

A factor which has played an important role in the establishment of the present distribution patterns for podiatrists is the graduates' tendency co remain in the general area ot the college where they receive their professional trainıng. An analysis of the association between the State of primary practice by the college attended confirms the relationship betweer. practice location and college location. Approximately two-thirds of podiatric medical graduates of New York and Calıfornia colleges have remained in those States to practice. Approximately one-third of the students from the other three colleges have remarned in the State where they recerved tneir professional training (Table 7-4). As more podiatrists complete residency tranning in States other than those in which the colleges are located, distribution patterns may be affected.


Because the number of Colleges of Podiatric Medicine is limited, the number of podiatrists per population to be served ( 4.2 per 100,000 in 1983) is low, and the nature of podictric practice is specialızed, some level of geographic maldıstribution is likely to contınue for the remainder of this century.

Numbers of Podiatrists, Orthopedic Surgeons, and General and Family Physicians per 100,000 Population, by Census Division

Census Division	Practitioners per 100,000 Population		
	$\begin{gathered} \hline \text { Podiatrists } \\ (1983) \\ \hline \end{gathered}$	Orthopedic   Surgeons (1982)	General and Famıly Physicians (1982)
United States	4.2	6.7	26.8
New England	5.8	8.5	19.8
Middle Atlantic	7.3	6.9	22.5
East North Central	4.8	5.7	26.1
West North Central	2.7	5.7	32.0
South Atlantic	3.2	6.6	26.0
East South Central	1.3	5.2	25.1
West South Central	2.3	5.8	25.1
Mountain	3.4	6.8	28.6
Pacıfic	4.1	8.6	32.1

SOUKCE: Data on podiatrists fr m 1983 national survey (APMA, 1985); Orthopedic surgeon and general and family medicine data from AMA Annual Survey (AMA, 1984).

The correlation of the distribution of podiatrists to the distribution of or thopedic surgeons is statistically significant at the 0.05 level. This indicates that practice opportunity is generally related to population density for both podiatrists and surgical specialty practices. General and family physicians are more evenly distributed than podiatrists, with higher proportions of practitioners in typically rural areas such as the West North Central and Mountain Divisions, but this may be attributed to Federal incentives to correct uneven distribution of these praceitioners. Similar incentives have not been offered to podiatrists until recently. In areas of the country that are not served by podiatrists, general and family physicians are often the primary source of foot care for residents.

## Practice Characteristics

Podiatrists have tradıtionally been self-employed, usually $n$ solo practice. There is a gradual trend away from solo practice as younger podiatrists mofe frequently elect other practice arrangements. A 1983 survey of podiatrists indicated that 71.7 percent of podiatrists were in solo practice, 12.7 percent in partnerships, and 5.4 percent, in group practice. The remaining 10.2 percent were in practice in a variety of institutional settings (APMA, 1985).

Percentage Distribution of Podiatrists, Aged 35-44, by Principal Form of Employment and Year of Survey

Form of Employment	Percent Distribution, Year of Survey		
	1970	1974	1983
Solo Practice	86.5	75.9	70.7
Partnership and Group Practice	9.2	21.0	20.4
Salaried and Other	4.2	3.1	8.9

SOURCE: 1970 and 1974 data from Trends in the Podiatric Profession, DHEW Pub. No. (PHS) 79-1816. 1983 data from national survey (APMA, 1985).

Only 0.5 percent of the respondents in the 1983 survey reported working in a Health Maintenance Organization (HMO) or a Preferred Provider Organization (PPO) (Table 7-6). The pansion of these orgenizations in the current climate of cost containment is likely to have a significant impact on podiatric medical practice. In areas where HMOs and PPOs become major health care providers, podiatrists may have to participate in these groups to retain their patients who enroll in these plans, because services rendered by nonparticipating providers are usually not reimbursed. To date, HMOs and PPOs have been rel.uctant to admit podiatrists. The American Podatric Medical Association is in the process of developing data to examine the cost-effectiveness of including podiatric medicine in prepard practice arrangements.

Nearly all podiatrists treat the majority of the $1 r$ patients in a private office setting (Table 7-7). Podiatric practice in hospitals, however, has increased during the last 9 years, as the number of podiatrists with hospital privileges has increased: 73 percent of podiatrists have professional privileges of some type in hospitals, and surgical privıleges have been extended to 58.5 percen: (APMA, 1985). Nevertheless $1 n$ 1983, less than 15 percent of podiatrists treated more than 5 percent of their patients in hospital settings. Most foot problems that podiatrists treat do not require hospitalization or the use of resources beyond those available in the practitioner's office.

Percentage of podiatrists providing Patıent Care, by Treatment Setting, in 1970, 1974, and 1983			
Treatment Setting	Percent of Podiatrists, Year of Survey		
	1970	1974	1983
Office	93.4	95.2	96.3
Hospital Inpatient	23.1	27.1	39.3
Hospital Outpatient	9.7	9.9	19.5
Nonhospital Clınıc	3.6	6.7	8.2
Nursing Home	33.3	34.1	30.6
Patient's Home	35.2	24.2	21.7

SOURCES: 1970 and 1974 data from Trends in the Podiatric Profession, DHEW Pub. No. (PHS) 79-1816. 1983 data from APMA national survey (APMA, 1985).

Pociatrists who responded to the 1983 survey reported a mean of 83.7 visits for the week of November 14-19, 1983 (Table 7-8). Assuming a 47-week period of practice per year and 9,700 active podiairists, the total annual number of , isits is approximately 38 million . Applying the same methodology to data from the 1974 survey yields a total of approximately 26 million visits. The increase of 12 million visits $1 s$ promarily due to the increase in practicing podiatrists (9,700 vs. 7,085) and, to a lesser extent, the increase in productivity ( 83.7 vs. 77 visits per week).

Podiatric patients as a group tend to be female and older than the general population (Tables 7-9 and 7-10).

Percentage of Podiatric patients and U.S. Population, by Selected Characteristıcs, 1980		
Characteristics	Podiatry   Patients	Total U.S. Population
Age 65 or Older	$31 \%$	10\%
Fe.tale	66	52

SOURCE: Adapted from Veıner and Steınwachs, 198b. Data from the National.
Medical Care Utilization and Expenditure Survey, 1980.

The predominance of women and older patients 15 explained in part by the fact that corns and callosities are more prevalent ariong these two groups. Cnins and callosities are the allments most. frequently treated by podiatrist.s. Sixty-three percent of podiatrists reportec more than 25 percent of their visits related to these problems (APMA, 1985). The second most frequently encountered diagnosis is onychomycosis and other nail diseases.

Hammertoes, bunions, flatfoot, and foot manıfestations of systemıc diseases are other examples of problems commonly treated by podiatrists. Podiatrists also treat ankle and foot injuries, clubfoot, and other detormities, but patients with these problems more frequently go to orthopedic surgeons. Professional referrals between allopathic and osteopathic physicians and podiatrists is mınimal. Typically, less than 10 percent of patients seen by podiatrists are referred from physicians, and a similar proportion of patients with systemic diseases seen by podiatrists are referred to physicians (APMA, 1985). Referrals to physicians are more commonly made by younger podiatrists, by podiatrists that are on staff of hospitals, and by podiatrists who nave completed residency training.

Activity	Percentage of Podiatrists Reportiry the Specified Ranges of Time			
	None	0-5	6-25	26-100
General Practice	2.5	1.2	8.1	88.3
Surgery	16.0	13.8	50.9	18.6
Foot Orthopedics/Bromechanics	17.8	16.4	57.2	8.6
Sports Medicine	48.6	24.8	243	1.8

SOURCE: Adapted from APMA, 1985

Activities characterized as general practice occupy the majority of professional time for almost all podiatrists. Although an emphasis has been placed on acquiring special expertise in surgery and foot orthopedics in recent vears, this specialization, for most podiatrists, means they incorporate an emphasis on surgery or foot orthopedics into their regular practice. Specialization, in che typical medical sense, is relatively rare.

The APMA-sponsored survey conducted in November 1903 provided the first national data on how podiatrists are reimbursed (Table 7-1l). Respondents reported the proportion of therr practice income which comes from Medicare, Medicaid, and non-Government third-party payors by marking the most appropriate range for each. Although an exact figure cannot be determined, it appears that about half of podiatrists' practice income is from self-pay, 30 percent from non-Government third-party payors, 15 percent from Medicare, and less than 5 percent from Medicaid. An analysis of the data shows that, although individual reimbursement varies widely, reimbursement was higher for podiatrists as a group who have been active for less than 10 years. Other podiatrists grouped by age showed little fluctuation in reimbursement experience. This nay indicate that younger podiatrists make greater use of third party payi. $s$ and provide more extensive seivices, including surgery.

Reimbursement Experience Reported by Podiatrists, 1983			
Percent   Reimbursement	Percent of Respondents Who Reported Specified Level of Reimbursement by Program		
	Medicare	Medicaid	Non-Government Third-Party
None	8.9	39.0	6.8
1-10	29.8	50.0	18.4
11-25	32.4	8.1	19.3
26-50	19.1	2.0	26.0
51-76	8.0	0.6	23.2
76-100	1.9	0.3	6.4

SOURCE: Adapted from APMA, 1985.

## Educational Develoginents

Podiatric traıning typically requires 4 years of college preparation (Table 7-12) and 4 years of specialized training at a College of Podiatric Medicine. During the first 2 years of professional training, the student recelves a thorough grounding in the basic sciences. This is followed by 2 years of clinical traıning focused on the diagnosis, treatment, and prevention of abnormalities of the foot and systemic diseases that have manifestations in the feet. Almost all graduates apply for the limited number of residency positions available. Only about 69 percent of graduates can pursue postgraduate training. Residency training is usually lyear, aithough a limited number of 2 - and 3 -year programs are available. Completion of the residency provides greater access to hospital privileges, more referrals from physicians, and a mure lucrative practice. The competition for ti.ese positions is intense.

## Undergraduate Students

podiatric professional training is provided by six private colleges, five of which are free-standing colleges of podiatric medicine. The sixth college was established in a health science center.

Colleges of Podiatric Medicine, Number of Students in Academic Year 1984-85, and Graduates, 1984   Number of Students			$\begin{aligned} & \text { Number of } \\ & \text { Graduates } \\ & \hline 1984 \end{aligned}$
	First Year 1984-85	Total Enrollment 1984-85	
Calıfornia College of Podiatric Medicine	132	399	86
College of Podiatric Medicine and Surgery a/	70	147	-
Dr. Wm. M. Scholl College of Podiatric Medicine	150	509	135
New York College of Podiatric Medicine	164	554	131
Ohio College of Podiatric Medicine	140	551	139
Pennsylvania College of Podiatric Medicine	126	456	116
Total	782	2,616	607

a/New school; first graduating class will be in 1980.
SOURCE: Unpublished data from an annual survey of the colleges, American Association of Colleges of Podiatric Medicine, Rockville, MD 1985.

Enrollment in the Colleges of Podiatric Medicine has leveled out after a period of rapid expansion from 1964 through 1976. The fluctuation in enrollment in 1983 and 1984 was caused by an unusual enrollment situation at one of the colleges. The general upward trend from 1980 to the present was augmented in 1982 by the gradual phasing in of larger class sizes by the new College of Podiatric Medicine and Surgery, Des Moines, IA. The 782 first-year students in 1984-85 were selected from a total ot 972 applicants. The ratio of 1.5 applicants per admıssion in 1985-86 shows improvement over the 1.3 to 1 ratio which occurred in the early 1980 's. Eighty-seven percent of the 1984 first-year admissions had bachelors or higher degrees and all had at least 3 years of college.

Colleges ot Podiatric Medicine,		
Number of First-Year	Students and Graduates for Selected Years	
Academıc	Number of First-	Number of
Year	Year Students	Graduates
1963.64	209	96
$1967-68$	291	162
$1971-72$	400	286
$1975-76$	641	497
$1979-80$	718	577
$1983-84$	689	607

SOURCE: Data compiled by Health Resources and Services Admınıstration, Bureau of Health Protessions, based on data from the American Association of Colleges of Podiatric Medicine.

Colleges of Podiatric Medicine,   Number of Colleges and First Year Students, 1980-1986		
Year	Number of Colleges	Number of First Year Students
1980	5	695
1981	5	702
1982	6	724
1983	6	689
1984	6	782
1985	6	7603/
1986	6	760a/

a/Estimate by Colleges of Podiatric Medicine.
SOURCE: Data Compiled by Health Resources and Services Administration, Bureau of Health professions, based on data from the American Association of Colleges of Podiatric Medicine.

In 1974-75, minority students made up only about 5 percent of the total enrollment. Ten years later, the percentage has risen to 13.6 percent. The proportion of women students grew at an even faster rate, from 3 percent of total enrollment in 1974-75 to 21.8 percent in 1984-85. In academic year 1984-85, almost one-quarter of the fırst-ycar class were women (Table 7-13).

Percentage of Women and Mınorities Enrolled in Colleges of   Podiatric Medicine, Academic Years 1979-80 through 1984-85		
academic	Percent of Total Enrollment	
Year	Women	Mınorities
$1979-80$	12.1	7.5
$1980-81$	11.9	8.4
$1981-82$	14.0	8.4
$1982-83$	16.4	10.2
$1983-84$	18.6	11.6
$1984-85$	21.8	13.6

SOURCE: Data compled by Health Resources and Services Adininistration, Bureau of Health Professions, based on data from the American Association of Colleges of Podiatric Medicıne.

Approximately 1 out of 10 entering podiatric medical students drop sut before the beginning of the second year. The 4-year attrition rate for the 1984 graduating class was 12.7 percent. Many factors, including academic and financial problems, contributed to this level of at'rition. An analysis by the Association of Colleges of Podiatric Medicine (AACPM, 1985) shows that mınorities ( 20.8 percent), women (17.2 percent), and in-State residents (17.9 percent) exper lence higher than average levels of attrition. More than 42 percent of the students in Colleges of Podiatric Medicine in academic year 1984-85 are from the State in which the college is located. Because the colleges, in general, do not offer reduced trition for in-State students, geographic proximity rather than monetary consideration appears to be the major influencing factoi.

## The Colleges of Podiatric Medicıne

The Colleges of Podiatrıc Medıcine are charged with the basıc mission of providing initıal professional training for podiatrists. The colleges are involved in a wide range of other activities as well, such as: sponsoring residency tralning; conducting research; providing continuing education for practicing podiatrists; preventive services to the community; and foot care for individuals. The colleges, in part, because they are almost all free-standing institutions, conduct numerous other activities such as recruitment of students, arrangement and maintenance of agreements for the use of community clınical settings for teaching purposes, preparation and presentation of elective courses in related subject areas, fundraising, and student counseling.

The colleges employed a total of 249 full-time faculty in academic year 1984-85. They maiňain a relatively small number of basic science faculty, who carry the bulk of the teaching load during the first 2 years of the curriculum. Clinical faculty are primarily D.P.M.s who teach and demonstrate clinical skills to third- and fourth-year students and, in some programs, to tirst-year residents. Although each college's facilities and curricula

7-12
273


SOURCE: Unpublished data from the American Association of Colleges of
Podiatric Medicine, 1985.
differ, the training of third-year students typically is concentrated in local clinics which the college operates. Fourth-year training occurs in the local clinics and in remote locations as internship (hospital-based) or clerkship (office or clinic-based) rotations. In 1984,843 students received clinical training in 198 cff-campus clinics (AACPM, 1985). In addition, 586 students participated in office-besed clinical clerkships. With the assistance of the Podiatric Medicine Training Grant Program, three gr ntee colleges have initiated six new clinical training sites in areas that are underserved by podiatrists. ilis grant program, which started ir. FY 1984, requires that at least four podiatric medical students be assigned to each site for a period of ct least 9 months. This long-term trainng in areas that have shortages of podiatrists, along with recruitment of new students from these areas, is expected to help alleviate the current uneven distribution of foot care providers in the United States.

## Curriculum

The podiatric medical profession has been involved in an effort to identify the skiils necessary for the entry-leve practice of podiatric medicine. The Committee on Entry-Level Expectations (CEIE) was established in 1981 to oversee the completion of this effort. With broad participation by faculty and practitioners, CELE developed a list of professionil tasks that all new podiatrists must be able to perform. The next step was to develop educational objectives that encompass all of the practice tasks. Both the task index and the "Terminal Objectives" have been published and widely accepted by the profession (A $\urcorner P M, 1984$ ). The American Podiatric Medical Association (APMA) in conjunction with the AACPM and the Council on Podiatric Medical Education (CPME), has recently developed strateyies to meet challenges that will face the profession in the year 2000 (APMA, 1984). The report of this effort, called project 2000, strongly endorsed the use of the CELE tasks to standaroize the entry-level competencies. The colleges are it the process of changing their currsi:ula and evaluation strategies to assure that all students
meet the minimum requirements and that the colleges use appropriate rudent evaluàtion techniques. Project 2000 also recommended that the colleges give special attention to the subject areas of gerontology, prevention, bioethics, communication skills, and practice administ.ration.

## Educational Expense and Financial ${ }^{n i d}$

Tuition at the private nonprofit colleges of podiatric medicine for academic year 1984-85 ranged from $\$ 8,800$ to $\$ 10,700$. The average educational cost to the student, including annual fees, is approximately $\$ 10,000$ per year-- nearly a 20 percent increase over the last 2 years. The increase in tuition and living costs has necessitated a major increase in the amount of student assistance administered by the colleges. The two major sources of financial assistance are the Guaranteed Student Loan (GSL) Program and the Health Education Assistance Loan (HEAL) Program. Use of the HEAL Program has increased dramatically as other sources have diminished or become inadequate to l...et the needs of podiatric medical students. If the average financial aid per stuuent is tctaled over the last 4 academic years, it can be estimated that the typical podiatric medical graducte has a debt of $\$ 44,000$ from his or her profersional trdining. In most cases, undergraduate education is also financed, in part, by -oans, making the total debt much higher. This substantial debt service requirement likely influences graduates to locare their practice in areas where chey can develop an adequate patient load. Sho:tage areas, such as in the South, where podiatric medicine has nor been highly visible, are not attractive under these economic conditions.

College-Administered Student Assistance Data, Academic Yeare 1980-81 Through 1984-85					
	1981-1 1	1981-82	1982-83	1983-84	1984-85 ${ }^{\text {a }}$
Number of Students Receiving Aid	2,261	2,393	2,445	2,331	2,44?
Percent of Enrollinent	88	93	94	89	93
Total Aid (in thousands of \$)	19,287	21,542	21,751	29,446	33,022
GSL (in ごousands of \$) HEAL (in thou	6,243	7,045	1.1,657	11,035	11,838
sands of \$)	3,035	4,455	4,344	13,185	15,662
Average Aid per Student (\$)	8,530	9,000	8,900	12,600	13,500

[^11]
## Residency Training

Less than one-half cf practicing podiatrists have completed residency training (Table 7-14). The age distribution of podiatrists who reported having served residencies reflects the gradual growth of programs during the last 25 years. podiatric residency training is sponsored by hospitals that range in size from small community or specialty hospitals to Veterans Administrition facilities with more than 1,000 beds. A recent study describes the average sponsor as a 290-bed nospital with an active pociatric teaching staff of 13 , including 5 podiatrists who are certified by the American Board of Podiatric Surgery (CPME, 1985). First-year residencies provide addıtional primary care clinical training and experience in one or moíe disciplines such as surgery, orthopedıcs, and radıology; 152 residency programs in 30 states are approved to provide first-year residency training to 417 podiatrists in academic year 1984-85. Residency training capacity increased by 9 percent in 1984, but only two-thirds of the graduates could be placed in programs. Almost all graduates apply for admıssion to a residency program.

Podiatric kesidencies, Fi.si-Year Positions Per Graduate, Academıc Years 1981-82 Through 1984-85				
	1981-82	1982-83	1983-84	1984-85
Number of Programs	128	129	137	152
Number of Approved First-Year Posirions	365	372	382	4.7
Number of Graduates	597	599	631	607
Positions per Graduate	61	62	61	69

SOURCES: Data compiled by Health Resourses and Services Administration, Bureau of Health Professions, based on data from the American Association of Colleges of Podiatric Medicine and the Council of Podiatric Medical Education.

The profession is actively promoting the establishment of additional residency programs and has initiated a new level $O_{i}$ postgradudte training, preceptor ships, for graduates who are unsuccessful in getting residency placement. Preceptorship training 18 under the general supervision of the Colleges of Podiatric Medicine or existing residency programs. At this time the number of preceptorships available is minımal. The Project 2000 consensus panel recommended that an effort be made to have resideniry or preceptorship positions available for all graduates by the year 1990, and that when it is available, successful completion of the training should be made a requirement for permanent State licensure. Ten States already have this requirement (APMA, 1984). Current changes in reimbursement policy may shift surgery from the teaching hospitals, which conduct the residency programs, to outpatient facilities. If this occurs it may make it difficult to expand the number of residency positions in the near future. A limited number of plograms now offer a second-year residency, usually with an emphasis on surgery.

## Assurance of Competence

The Council on Podiatric Medical Education, formerly the Council on Podiatry Education, is the accreduting body recognized by the U.S. Department of Education. The CPME regularly reviews the Colleges of Podiatric Medicine, residency programs, and continuing education programs to assure that they meet minimal standards for each type of training. A residency review process, which includes participants from the certification boards and specialty societies for surgery and podialric orthopedics, has recently been initiated. Members from these specialty organizations participate in the development of review criteia, onsite evaluations, and the formulation of recommendations to CPME. Residencies are evaluated in four categories: rotating podiatric residency, podiatric orthopedic residency, podiatric surgical residency (12 months), and podiatric surgical residency ( 24 months or more).

Increasing numbers of podiatrists are seeking certification by the American Board of Podiatric Surgery and the American Bnard of Podiatric Orthopedics. In 1984, 164 podiatrists were granted diplomate status in surgery and 8 in podiatric orthopedics (CPME, 1985). Based on the 1983 survey, 15.5 percent of podiatrists claım certification $1 n$ surgery anc 2.6 percent in prdiatric orthopedics (Table 7-15).

## A Look at the Future

The expanding enrollments in the Colleges of Podiatric Medicine which have charccterized the last 20 years appear now to be over. The increase in the 1980's is the result of the opening of a new college in Des Moines, IA. The turst class at this new school was enrolled in 1982. The first-year class size is gradually being increased until the target maximum of $90-100$ students is reached ir academic year 1985-86. The remaining colleges expect to enroll slightly fewer students than dur)ng their peak years. The total number of first-year students estimated by the colleges for each of the next 3 years is 760 . For purposes of projecting the future supply of podiatrists in the United States, it is assumed that first-y^ar enrollment will remain at this 760 level through 1996 and that the current attrition rate of 12.7 will remain constant. This results in an annual addition to supply 663 new podiatrists. Data on total numbers and age distribution of the podiatrists as of late 1983 (APMA, 1985) were used to establish the base population for supply projections. Eacn year, the projected supply was reduced by a factor which represents expected death and retirement for the distribution of ages represented in the podiatrist population that year. On this basis the ratio of podiatrists to population is projected to grow to 5.1 podiatrists per 100,000 population in 1990, and to 6.4 in 2000. In the spring of 1985 , Barry University (Miami, FL) announced its intention to develop a College of Podiatric Medicine. If this etfort is successful, the supply of podiatrists will be larger in the 1990's.

277

Supply of Active podiatrists and Podiatrist: Population Rat .0 : Actual 1970, 1975, 1983; Projected 1985-2000.

Year

(Dec. 31)

Number of Active Podiatrists

Activ. Podiatrists per 100,000 population

1970	7,100	3.5
1975	7,300	3.4
1983	9,700	4.2
1985	10,500	4.4
1990	12,700	5.1
1995	15,000	5.8
2000	17,100	6.4

SOURCES: 1970 and 1975 data derived from National Center for Health Statistics surveys conducted in 1968 and 1974. 1983 data from APMA national survey (hPMA, 1985). Projections by HRSA, BHPr. U.S. Bureau of the Census Current Population Reports, Series P-25, Nos. 704 and 937.

Some level of improvement in the supply of podiatrists nas occurred in all of the census divisions. However, the geographic distribution of podiatrists has not improved appreciably in the last 9 years. The colleges have been working to influence the first practice location of graduates for a number of years through clirical training placements remote from the college and recruitment efforts in areas that are 1 nderserved. Positive results from these efforts are not assured and could not be expected to yield a demonstrable change in national ligures over a short period. As the total number of podiatrists continues to grow over the next several years, competition from ather podiatrists and other physicians may prove to be a stronger influence on decisions to locate practices in underserved areas than it appears to have been in the past.

The GMENAC reviewed the supply of and requirements for medical specialties in 1990. Panels of experts estimated that 64,400 family physicians and 20,100 orthopedic surgeors would be in practice in 1990 (USDHHS, 1980). These two specialties, together with general su.gery and other medical specialties, provided as much as 35-40 percent of foot care services in 1977-78 (Weiner and Steinwachs, 1985).

The BHPr projects that family medicine physician supply will be aproximately in balance with GMENAC requirements in 1990, and that treere will be an oversupply of approximately 5,000 orthopedic surgeons. A substantial excess of general surgeons already exists, according to GMENAC (USDHHS, 1980). Competicion for patients to produce prac:tıce l،come may cause a gradual shıft of all foot care providers to areas previously lacking such services.

## Requirements

The 1983 survey does contirm that the aging of Americans is having an effect on demand for podiatric services. Approximately 60 percent of podiatrists reported that patients 65 years or older made up more than 25 percent of their clients. Podiatrists reported that about 15 percent of their income now comes from Medicare. With an increase in the numbers of elderly projected and an expanding patient awareness of the role podiatrists can play in maintaining mobility, it is expected that the requirement for foot care provided by podiatrists will expand. The prevention and treatment of sports injuries have and will continue to increase the amount of foot care needed. Orthopedic surgeons and general and family practice physicians also provide a significant level of foot care services, particularly treatment of injuries and foot deformities. As increasing numbers of physicians enter practice, podiatrists will be facing increased competition. The extent to which third-party payors reimburse podiatrists for their services will be a major factor in futur? years as cost containment strategies continue to be implemented.

Although the 1983 survey has collected data that will be useful i. upda'cing requirement projections, an analysis of che data has not been compleied. It is therefore, not possible to project requirements accurately for 1990 or later. An updated requirement projection is expected to be available for inclusion in the next Report to the President and Congress on the Status of Health Professions Personnel.

## Summary

As of Decemb : 1984, there were approximately 10,100 active poriatrists in the United States. This number is projerted to increase by about 400-450 each year. The rate of growth in numbers of podiatrists will be greater than the rate of population growth. The ratio of podiasists per 100,000 population is expected to improve from 4.2 in 1983 to 5.1 in 1990. Podiatrists now entering plactice are better trained than their predecessors, with almost two-thirds of graduates receiving at least 1 year of residency training. The influx of larger gradrating classes in \&ecent years has led to a steady reduction in the median age of fodiatrists, which is now about 40 years of age. Women and minorities are anderrepresented in this proíassion. Orily 3.6 percent of active podiatilsts are women, and less than 5 percent are minoritios. However, the percentage of women and minorities in the 1984 graduating class were 21.8 and 13.6 , respectively, indicating that the slow process of ımproving representation has begun.

In an earlier report $($ DHEk, 1978), podıatric medıcine was characterized as the health professior, with the most serious geographic distribution problem. Although the number of podiatrists per population has improved during the last 9 Years, the patt:rn of distribution appears essentially unchanged. A wide variation continues to exist between areas in the South, with as few as 1.3 podiatrists per 100,000 , and the Northeast, where the ratio has increased to 7.3 podiatrists per 100,000 populatic. The place professional trainirg is recieved, the need for sufficient patients to support a specialty practice, and the high level of debt most podiatrists have wnen they graduate are factors that appear to be inhibiting a more even distıibution of podiatrists. During the period 1974-1983, comfetıtion among podiatrists and $c^{4}$ her foot care providers did not dissuade podiatrists from continuing to locate in the

New York, Now Jersey, and Pennsylvania areas which already nave the highest praiatrist: population ratio. Unless economic conditions relative to the practice of pociatric medicine change substantially, the geographic distribution of podiatrists is unlikely to change significantly in the near future.

Orthopedic s, urgeons, general practice and famıly medicine physicians, and to a lesser degree, general surgeons also provide foot care. In fact, certain types of frodems such as injuries and foot deformities are treated predominantl: oy other physicians. Because the factors that influence the choice of a plactitioner for foot care are not well understood, it is difficult to assess the requirements for podiatrists. The 1983 survey of podiatrists sponsored by the APMA provided valuable inforination auuut current practice characteristics of podiatrists. Podiatrists continue to favor solo practice (70 percent), with almost no participation in HMOs and PPOs reported. It is expected that increased numbers of podiatrists will elect to practice in these or simılar organizations. Altnough there is a trend to develop and certify competence in specialty areas such as surgery and podiatric orthopedics, the preponderance of practice activity for almost all podiatrists continues to be general in nature. The treatment of sports infuries is stıll only a small part of most podiatric medical practice. More than 95 percent of patient visits occur in the podiatrist's office, where most surgical procedures are performed using local anesthesia. Almost one-third of patients seeing podiatrists are age 65 or older. Approximately one-half of a typical podiatrist's fee is reimbursed through third-party payors as follows: Medicare-(15 percent), Medicaid-(less than 5 percent), and non-Government payors-(30 percent).

Five Colleges of Podiatrıc Medicine graduateu a total of 607 st.udents in 1984. The sixth college will graduate its first class in 1986. When this new college reaches its planned class size, it is expected that approximately 665 podiatrists will graduate from all schools each year. The colleges are in the process of implementing a profession-wide initiative to base each college's curriculum on specific competencies that all graduates must possess to function as practicing podiatrists. An increasing number of States, now 10: are requiring podiati:1sts to have a year of residency training before they wili approve licensure. This trend creates a problem for the profession, because there are only enough residency positions to accommodate about two-thirds of the graduates. Efforts in recent years to increasa the number of residencies have met. with modest sucsess; 24 new frograms and 52 new positions have been created in the last 4 years.

The supply of podiatrists will stea $y$ increase during the next several years, reaching approximately 12,700 in 1990 and 17,100 in 2000. Although requirements for podiatrists in the future cannot be estimated adequately at this time. the demand for podiatric services has expanded $1 n$ the past 9 years and can be expected to conti.ue to expand. It is clear that even though the supply of podiatrists has expanded ir all areas of the United States, many parts of the cour.try continue to receive inadequate podiatric services.

## Reterences

American Association of Colleges of Podiatric Medicine. Annual Report Summazy, 1984-85. Unpublished data. Rockville, MD 1985.

American Association of Colleges of Podiatric Medicine. Terminal Objectives and Competency Task Index for Podiatric Medicine. Rockville, MD, 1984.

Amer ican Medical Association. Physicıan Characterıstics und Distribution in the U.S., 1983 edıtion. Cnicago, IL, 1984.

Amerıcan Podiatrıc Medıcal Association. Profile of Podiatric Medicine - 1984. Wasnington, DC, 1985.

Amerıcan Podiatric Medical Association. SLate Reference Manual on Administratıve, Legıslative, and Judicial Developments in Podiatric Medicine. Washington, $D C, 1984$.

American Podiatry Association and Council of Podiatric education. Project 2000: A Strategic Plan for Podiatric Medicine. Washıngton, DC, 1984.

Bureau of Health Professions. Selected Statistics on Health Manpower Shortage Areas. Inhouse Communication, Office of Data Analysis and Management, September 30, 1984.

Council on Podiatric Medical Educat: 1983-1984." Journal of the American Podiatric Medical Association 75:1:53-55, January 1985.

Mugge, R.H. "Visits to Physicians and Other Health Care Practitioners." Health United States, 1983. NCHS, Hyattsville, MD, December 1983.
U.S. Department of Health, Education, and Welfare. A Report to the President and Congress on the Status of Health Professions Personnel. DHEW (HRA) 7993, U.S. Government Printing Office, Washington, DC, 1978.
U.S. Department of Heal.th and Human Services. An In-Depth Examination of the 1980 Decennıal Census Employment Data for Health Occupations. ODAM Report No. 16-84. U.S. Government Printing Office, Washington, DC, 1984.
U.S. Department of Health and Human Services. National Ambulatory Medical Care Survey: Reasons for V1siting Physicians. DHHS (PHS 82-1717), U.S. Governmert Printing Office, Washington, DC, 1981.
U.S. Department of Health and Human Secvices. Summary Report of the Graduate Medical Education National Advisory Committee. DHHS (HRA; 81-651, U.S. Government Printing Office, Washington, $D C, 1980$.

Weiner, J.P. and Steinwachs, D.M. "A Rev rew or the Literature on the U.S. Foot Health Care Svstem, Part I." Journal of the American Podiatry Association 74:12:505-610, December 1984.

Weiner, J.P. and Steinwachs, D.M. "A Review of the Literature on the U.S. Foot Health Care System, Part II." Journal of the American Podiatric Medical Association 75:3:142-146, March 1985.

Table 7-1. Age Distribution of Podiatrısts, November 1983

Age
Number
Percent

$25-29$ years	457	9.4
$30-34$ years	1,197	24.6
$35-44$ years	1,424	29.2
$45-54$ years	585	$12 . C$
$55-64$ years	783	16.1
$65-74$ years	383	7.9
$75-86$ years	44	1.0
Total	4.873	
Mean		

SOURCE: American Podiatric Medıcal Associat،on. Profıle of Podiatric Medicine - 198i. Washington, DC, 1985.

Table 7-2. Kacıal Ethnic Distribution of Podiatrısts, Based on 1980 Census Data and the 1983 Survey of Podiatrists

	1980 Census Analysis		1983 Survey	
iace/Ethnic Origın	Number	Percent	Number	Percent
Total	6,740	100.0	4,848	100.0
White (Non-Hispanic)	6,361	94.4	4,684	96.6
White (Hispanic)	63	0.9	34	0.7
Black	274	4.1	73	1.5
Oriental	42	0.6	35	0.7
Other	-	-	22	0.4

SOURCES: U.S. Department of Health and Human Services. An In-Deptn
Examination of the 1980 Decennial Census Employment Dati for Health Occupations. ODAM Report No. 16-84, 1984.

American Podiatric Medical Associatior. Profile of Podıatrıc Medicine - 1984. Washington, DC, 1985.

Table 7-3. Population Size of Podiatrists' Community of Practice, November 19?3

Population Size for
Community of Practice
r:umber
Percent

Fewer Than 2500	25	0.5
$2500-9999$	196	4.3
$10,000-49,999$	1,361	29.6
$50,000-99,000$	948	20.6
$100,000-499,999$	1,051	22.9
500,000 and Over   Total	$\frac{1,018}{4,599}$	$\frac{22.1}{100.0}$

SOURCE: Amer ıcan Podiatric Medical Association. Profile of Podiatric Medicine - 1984. Washington, DC, 1985.

Table 7-4. Census Division of Prımary Fractice, by Location of College of Podiatric Medicine Attended, November 1983.

Census Divis'on	San Francisco   $(\mathbb{N}=663)$	Chicago   $(N=1275)$	Cleveland   $(N=125 l)$	New York   $(N=800)$	Philadelphia   $(N=810)$
New England	2.68	5.78	8.08	5.18	13.88
Maddie Atlantic	2.3	7.5	18.6	74.1	48.4
East North Central	1.4	39.4	34.5	21	3.6
West North Central	1.8	13.6	2.2	0.8	1.6
South Atlantic	3.6	9.2	17.6	12.6	19.1
East South Central	0.3	3.7	2.4	0.4	1.7
West South Central	6.3	8.8	7.8	1.0	4.6
Mountain	11.5	4.9	2.9	1.1	2.7
Pacific	70.0	6.7	5.1	2.4	4.3
Outside U.S.	0.3	0.5	1.0	0.4	0.1

SOURCE: Amerıcan Podıatric Medıcal Association. Profıle of Podiatrıc Medicine - 1984. Washington, DC, 1985.

Table 7-5. Principal Form of Employment by Age of podiatrist, November 1983

Principal Form of Employment	Age (Percent)				
	Under 35 Years $(N=1,620)$	$\begin{aligned} & 35-44 \\ & \text { Years } \\ & (N=1,396) \end{aligned}$	45-54   Years $(N=563)$	$\begin{aligned} & 55-64 \\ & \text { Years } \\ & (N=751) \\ & \hline \end{aligned}$	65 Years and Over $(N=381)$
Solo Practice	66.3	70.7	76.0	79.9	81.9
Partnership	14.7	13.7	11.7	10.8	6.8
Group practice	5.4	6.7	5.9	4.1	3.1
Salarıed	10.4	6.4	4.6	3.7	5.8
Other	3.2	2.5	1.8	3. 5	2.4

SOURCE: American Podiatric Medical Association. Profile of Podiatric Medicıne - 1984. Washington, DC, 1985.

Table 7-6. Podiatris $3^{\prime \prime}$ Type of Employment, November 1983

Form of Employment	Number	Percent
Solo Practice	3.403	71.7
Partnership	602	12.7
Group Practice	257	5.4
Preferred Provider Organization	3	0.1
Federal Government	107	2.3
HMO	18	0.4
State/Local Government	12	0.3
Non-Government Institution	24	0.5
Nonprepaid Group	4	0.1
Other Podiatr 1 st	130	2.7
Retired	32	0.7
College of Podiatric Medicine	36	0.8
Other	117	2.5
Total	4,745	100.0

SOURCE: American Podiatric Medical Association. Profile of podiatric
Medicine - 1984. Washington, $\mathbb{C}, 1985$.

Table 7-7. Use Frequency of Practıce Settings, November 1983

|  | Frequency of Use (Percent) |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Practıce Settings | None | $1-5$ | $6-25$ | $26-50$ | $51-75$ | $76-100$ |
| Prıvate Office | 4.7 | 1.0 | .9 | 4.8 | 12.9 | 75.7 |
| Hospital Inpatıent | 60.7 | 26.4 | 13.0 | 1.2 | 0.1 | 0.3 |
| Hospital Outpatient | 80.5 | 10.2 | 6.6 | 0.6 | 0.7 | 1.5 |
| Nonhospıtal Clinıc | 91.6 | 1.6 | 3.4 | 2.0 | 0.4 | 0.8 |
| Surgi-Center | 94.7 | 3.0 | 2.2 | 0.0 | 0.0 | 0.0 |
| Nursing Hcme | 69.4 | 9.8 | 15.1 | 4.2 | 0.9 | 0.6 |
| Resident Facility | 97.2 | 0.9 | 1.4 | 0.4 | 0.1 | 0.1 |
| Patient's Home | 78.3 | 17.4 | 3.6 | 0.3 | 0.1 | 0.2 |
| Other Setting | 97.0 | 1.2 | 1.3 | 0.4 | 0.0 | 0.1 |

SOURCE: American Podiatric Medical Association, Profile of Podiatric Medicine - 1984. Washington, DC, 1985.

TABLE 7-8. Number of Weekly Patient Visits to Podiatrists, November 1983
Number of Patient

Visits During Week	Number	Percent
$0-50$ Visics	1,383	30.0
$51-100$ Visics	1,965	42.6
$101-150$ Visits	902	19.6
$151-20$ V Visits	247	5.4
More Than 20G Visits	116	2.5
Total	4,613	100.0

Mean $=83.7$ patient visits

SOURCE: American Podiatric Medical Association. Profile of podiatric Medicıne - 1984. Washington, DC, 1985.

Table 7-9. Patient Age Distribution for Fodiatrists, November 1983

	Percent of Patients				
Age	None	$01-25$	$26-50$	$51-75$	$76-100$
16 Years or Less	13.6	$83 . \varepsilon$	2.3	0.2	0.4
17 to 44 Years	6.3	62.3	25.6	4.3	1.5
45 to 64 Years	4.7	39.5	44.8	8.5	2.5
65 Years or Older	5.4	35.4	36.6	15.3	7.4

SOURCE: American Podiatric Medical Association. Profile of Podiatric Medicine - 1984. Washington, DC, 1985.

Table 7-10. Female Patıent Distribution for Podiatrists, November 1983 Percent of Female
Patients

Number Percent

$0-25$	50	1.1
$26-35$	29	0.6
$36-40$	41	0.9
$41-45$	58	1.3
$46-50$	148	3.2
$51-55$	277	6.0
$56-60$	911	19.7
$61-65$	1,239	26.8
$66-70$	1,128	24.4
71 and Over	735	15.9
Total	4,616	100.0

SOURCE: American Podiatric Medical Association. Profile ot Podiatric
Yedicıne - 1984. Wcohington, DC, 1985.

Table 7-11. Thırd-Party Reımbursement Dıstrıbution for Podiatrists, November 1983

Percent Reambursement Specified by Respondents	Source		
	Medicare	Medıcaıd	Other Third Party
Number	4,647	4,662	4,648
None	8.98	39.0\%	6.88
1-10	29.6	50.0	1R.4
11-25	32.4	8.1	19.3
26-50	19.1	2.0	26.0
51-75	8.0	0.6	23.2
76-100	1.9	0.3	6.4

SOURCE: Amerı, n Podiatric Medical Association. Profile of Podiatric Medicine - 1534. Washinqton, DC, 1985.

## Table 7-12. Prepodiatric Education for podiatric Students Academic Year 1984-85

Level of Prepodiati.ic Education	Current Cl.ass Year				Total
	1st	2nd	3rd	4th	
3 Years but Less than 4	90	73	67	32	262
4 years but Less Than a Bacnelor's	18	19	20	13	0
Bachelor's Jegree	617	492	507	503	2,119
Masters Degree	51	24	40	32	147
Ph..).	2	2	2	2	8
M.D.	-	1	1	-	2
A.A./A.S.	3	2	-	1	6
Other	1	-	-	1	2
Total	782	613	637	584	2,616

SOURCE: Unpublished data from the Annual Survey of Colleges of Podiatric Medicine (AACPM, 1985).

Table 7-13. Gender and Ethnic/Mınority Composition of Podiatric Medicine Students, Academıc Year 1984-85

Gender	Current Class Year				Total
	1st	2nd	3rd	4th	
Total Students	782	613	637	584	2,616
Men	590	488	504	465	2,047
Women	192	125	133	119	569
Percentage Women	29.6	20.4	20.9	20.4	21.8
Ethnic/Mınority					
Total Minorities	141	73	80	62	356
Black	66	43	42	34	185
iispanic	27	11	9	10	57
Amer iran Indian	6	2	1	2	11
Asian/Pacific Islander	40	16	27	16	99
Other	2	1	1	-	4
Percent of Total Students Who are Ethnic Minorities	18.0	11.9	12.6	10.6	13.6

SCURCE: Unpuplished data from the Annual Survey of Colleges of Podiatric Medicine (AACPM, 1985).

Table 7-14. Residency Status of Podiatrists, November 1983

Residency Status	Number	Percent
Not Completed	2,663	55.4
Completed 1 Year		
Completed 2 Years	1,815	37.7
Completed 3 Years   or More   Total	309	6.4

SOURCE: American Podıatric Medical Association. Profile of Podiatric Medicıne - 1984. Washington, DC, 1985.


## Chapter 8

## pharanact

## Developents in Supply

Current Supply. There were an estimated 1.57,000 active pharmacists in the Uni乞ed States in 1984, an increase of 38 percent since 1.970 and 69 percent since 2960 (Table 8-1). Toqether with the growth in the work force, the nature of pharmacy has changed in siqnificant ways. In two decades, pharmacy has been moving from a profession largely characterized by practitioners who owned pharmacies to one whose members are often emplovees. Moreover, during this time pharmacy has been moving from a profession largely concerned with dispensing of prescription drugs, to one with a greater clinical focus, with emphasis on ensuring rational drug use, and minimizing adverse drug effects.

In 1984 neacly two thirds of all active pharmacists worked in community pharmacies. More than one half of this group worked in chain store pharmacies, and the rest in independent establishments. One third of all active pharmacists worked in hospitals, nursing homes, government agencies, educational institutions, or manufacturing industries.

The proportion of pharmacists working in independently owned pharmacies has decreased significantly in recent years. In 1966, more than two thiris of all pharmacists either owner or worked in independent establishments. This proportion dropped to 47 percent in 1973, and to 39 percent in 1978. At the same time, the proportion working in chain store pharmacies rose from 14 percent in 1966 to 29 percent in 1978. While no precise current data are available, based upon the 1978 inventory, it is estimated that 30 percent of pharmacists worked in independent establishments, and 33 percent in chain store pharmacies in 1984. Over the same period, the number employed by manufacturing and wholesale industries remained relatively constant.

Hospitals also have been major areas of qrowth in the employment of pharmacists. The number of pharmacists working in hospitals dcubled in the past 11 years, from 17,000 in 1973 to an estimated 39,000 in 1984. Over the past decade, rospitals have increased their use of full-tine pharmarists. In 1984 about 95 percent of all short-term general hospitals had pharmacies, up from 82 percent in 1070 .

Women and Mincorities. One of the most dramatic trends in the profession has been the tremendous increase in the number and percentage of women pharmacists. In 1950 only 4 percent of active pharmacists were momen; by 1984 the proportion had risen to nearly 24 percent. This upward trend is expeoted to continue for some time, hecause the percentage of women enrolled in the final 3 years of study in colleges of pharmacy has steadilv increased. In 195,3-64, 13 percent of these students were women. By 2984-85 the proportion had risen to 54.5 percent.

The impact of these changes is likely to be felt in all areas of pharmacy, but especially in hosbitals. While female pharmacists, like male pharmacists, once were most numerous in community pharmacies, the main employment setting for women is now the hospital pharmacy. It has been estimated that women now comprise nearly two fifths of all hospital pharmacists.

According to the 1978 Inventory of Pharmacists, among pharmacists 30 years or older, the activitv rate of women maintaining licenses ( 77 percent) is substantiallv lower than for men ( 86 percent). Women active in pharmacy also average fewer hours per week than men: 36 hours a we $2 k$ in contrast to 45 hours a week for men. However, there appears to re a trend toward longer weekly working hours among female pharmacists under age 30. Although 31 percent of all female pharmacists work fewer than 35 hours a week, the rate drops to 17 percent of women under age 30 .

In 1984 it was estimated that there were 14,600 active minority pharmacists or 9.3 percent of total active pharmacists. This proportion has increased from 8.9 percent in 1.980 and 9.1 percent in 1982. The number of active minority pharmacists in 1984 included 4,100 Blacks; 2,900 Hispanics; 7,000 Japanese, Chinese, and other Asians; 300 American Indians; and 300 members of other minority groups.

Age Distribution. The changing nature of the profession is clearly reflected in the age distribution of pharmacists among various practice settings. Among younger pharmacists, there appears to be a sharp trend away from independent pharmacies and toward chain pharmacies and hospitals. An increasinqly large proportion of pharmacists emploved by Feतeral hospitals, private hospitals, and chain pharmacies are under age 30, while the percentage of young pharmacists practicing in independent pharmacies is much lower. This unde:scores the general trend away from independent pharmacies.

Younger pharmacists also appear to spend more time with patients and clients, possibly because of the increased emphasis upon clinical training in pharmacy schools. In hospital pharmacies, pharmacists under age 30 spend more time in dispensing activities and in providing information to prescribers and institutional clients than pharmacists over age 30. As expected, younger hospital pharmacists compensate for the additional time in dispensing and informing activities by spending considerablv less time in administrative and managerial activities.

Geographic Distribution. As estimated from the $19 \% 8$ inventory of pharmacists, the 1984 regional distribution ranged from a high estimate of 77 pharmacists per 100,000 population in the Midwest to a low of 53 in the West, while the South had 67 and the Northeast 65. Among most States there is little variation in the estimated ratio of pharmacists to population; however, Nebraska and North Dakota had the highest ratios of pharmacists to population, reflecting large numbers of younger pharmacists in these states. States with the lowest ratio of pharmacists per 100,000 were Hawaii (31) and Alaska (35); neither state has a pharmacy school (Table 8-2).

As of March 31, 1985,132 health manpower shortage areas with a population of slightly more than 1.1 million persons hat been designated for pharmacists. The difference between the number of pharmacists required under the shortage area criteria and the current supply of pharmaciscs in these areas was 174. About 87 percent of the designated shortage areas were nonmetropolitan, which included 94 percent of the population in the designated areas.

## Competency Assurance

A license to practice pharmacy is required in all states, the District of Columbia, and Puerto Rico. Thirty-three States requice continuing education credits for relicensure in pharmacy. Fifty-seven percent of all outstanding licenses are represented by these 33 States. The National Association of Boards of Pharmacy is now revisinq its licensure examination to improve its validity and reliability. The revisen examination is expected to be ready for use in all states in 1985.

## Phariacy Practice

The recent National Study of the Practice of Pharmacy conducted for the American Pharmaceutical Association described the practice of pharmacy and provided input into the settina of practice standards and the development of measures to assess professional competence. In the study, a questionnaire was mailed to a national sample of pharmacists who were asked to rate their responsibilities on three rating scales: time spent, importance, and level of judgment. The analysis identified four broad dimensions of the practice of pharmacy: general management and administration of the pharmacy; activities related to processing the prescription; patient care functions; and education of the puhlic and heaith care professionals (Rosenfeld, 1978).

Analvses of these four dimensions using a time spent rating scale and the demographic data provided by the respondents indicated the following:
o There is a remarkable consistency in the way pharmacists across the nine census regions of the United States spend their time.

The differences that do occur (and these are not majo: differences) are associated with practice setting and the number of years an individual has been practicing pharmacy.
o Although all four dimensions were judqed to be important aspects of the practice of pharmacy, pharmacists spend the most time on processing the prescription and patient care functions. Less time is generally spent on general management and administration of the pharmacy and education of the public and health care professionals. The amount of time spent on these two dimensions varies

```
 somewhat hy - actice setting and the number of years a
 pharmacist has been in practice.
Responding pharmacists indicated that in the future that
thev expected to spend less time in processing the
prescription and more time in patient care as well as
education of the public and other health professionals.
```


## Role of Pharmacists in Individual Preventive Health Care

Some 150 representatives of all disciplines of pharmacv qathered recently to discuss the trend toward more clinically oriented pharmacy practice. The qroup reached this consensus:
"In this information service era, pharmacists have an important obligation to other health care professionals, patients, and the public to provide authoritative usable druq information. The provision of information should become a major focus of pharmacy practice." (ASHP, Februarv 1985)

An acceoted role of the community pharmacist in dispensing prescription medication is the prevention of adverse reactions and other therapeutic misadventures. Another dispensing activity that is gaining increasing importance is the pharmacist's preventive health role in counseling patients about self-care and the infurmed use of nonprescription druqs as well as nonprescription medications such as vitamin/mineral preparations and weight control products. Other areas in which pharmacists may influence individual preventive health care are hypertension screening and counseling, diabetes screening and counseling, family planning, prevention of sexually transmitted diseases, cancer prevention and detection, fluoridation counseling, and prevention of child abuse and neqlect (Jinks, 1983).

## Pharmacy Attention to Special Population Groups

Pharmacy education traditionally has included training to assist various qroups with special medical needs, such as diabetics, hypertensives, children, and allergy sufferers. Demoqraphic changes are now intensifying the focus on geriatrics.

The over-65 population uses more than 25 percent of all prescribed drugs. The percentage will increase as the population continues to aqe. Physiological changes associated with the aging process can affect drug absorption, metabolism, and excretion. Drug therapy in the elderly should be preceded by a thorough evaluation that takes all areas of physical and emotional health into consideration. Since multiple acute and chronic medical conditions are common among the elderly, thorough medical evalution of ten requires the services of several different kinds of health care providers, each tending to prescribe his own drug regimen. Thus, there is a great need for coordination and proper oversight. Pharmacists are especially well suited for this role. Educational programs are being introduced to prepare pharmacists to deal with specific pharmaceutically-related health needs of elderly patients.

The response to the need for pharmacists trained in the special problems of the elderly is evidenced by the development and distribution of the comprehensive curriculum, "Pharmacy Practice for the Geriatric Patient." This curriculum is the result of 4 -vear joint effort by the Amer ican Association of Colleges of Pharmacy and Eli Lilly and Company. The 30 -chapter text and the instructor's quide have been desiqned to provide all pharmacy students a core curriculum on aging and to qive practicing pharmacists the opportunity to gain competence in this area through postgraduate education. Other initiatives in geriatric pharmacy have been in use for some time. They include the University of Maryland's Eldercare in'tiative and the Health Check Test developed by the American Pharmaceutical Association with support from Lederle Laboratories.

## Educational Trends and Developents

## Enrollments

While all pharmacy schools require 5 = jademic vears of study for the baccalaureate degree and 6 years for the doctorate (Pharm,D.), the amount of preprofessional college study required vari's from 2 years to none, depending on the school. Thus the enrollment data compiled by the American Association of Colleges of Pharmacy include only the final 3 years of study, which is the only period of pharmacy education common to all schools. Accordingly, discussions of new students deal with "third-to-last-vear" enrollments, rather than "first-year" enrollments.

From 1965-66 through 1.974-75, followind the enactment of the Health Professions Educational Assistance Act of 1963, pharmacy schools experienced an average annu. growth rate of nearlv 9 percent in third-to-last-year enrollments. Tocal enrollments peaked in 1975-76 and declined 16.2 percent in the next 6 years, while thira-to-last-Vear enrollments declined more than 20 percent (Table 8-3).

In 1984-35 the 72 colleges of pharmacy (including Duerto Rico's) enrolled 18,646 students for a first professional dearee in pharmacy -- 1 percent fewer than in the previous year. Third-to-last-vear enrollment in 1.984-85, however, has risen over the previous year. The enrollment of 5,849 students represents an increase of 2 percent over the 1983-84 level and 4.2 percent over the third-to-last-year enrol.lment in 1982-83. Third-to-last-vear enrollment in that year had declined hy 19.2 percent from such enrollments 3 years earlier and 24.7 percent from such enrollments in 1974-75, the highest achieved.

Enrollments in pharmacy schools are substantially above the level of the late 1.960s but below the peak ievel in 1974-75. Enrollments now appear to he stabilizinq after a decline that has been takina place since the 1970 s .

Women and Minorities. Despite declines in total enrollments, the number and proportion of women enrolled in pharmacy schools has continued to increase. In academic year 1984-85, the nearly 10,200 women enrolled in the final 3
years of pharmacy school represented 54.5 percent of total enrollments. The third-to-last-year class enrolled 3,793 or 55.4 percent women. In contrast, only about 20 percent of pharmacy students at the heqinning of the 1970 decade were women. While growth has been relatively steady, recent trends suggest that the number of women enrolled in pharmacv schools and their proportion of the total may level off.

The proportion of American minority students enrolled in pharmacy schools has increased modestly in recent years. The proportion of black sturents in pharmacy schools increased from 3.7 percent of all students in 1.975 to 5.6 percent in 1984. Hispanic students increased slightly from 3.8 percent of all students in 1975 to 4.1 percent in 1984. Minority students represented $16 . ?$ percent of the total enrollments in 1984. The proportion of minorities in the third-to-last-year class paralleled total enrollment and included 429 Blacks ( 6.3 percent of encollment), 390 Asian-Americans, ( 5.7 percent), 292 Hispanics ( 4.3 percent), 11 American Indians ( 0.2 percent), and 29 others ( 0.4 percent). Four predominately minority colleges -- Texas Southern, Florida A \& M, Xavier, and Howard -- continue to enroll 40 percent of Black Pinerican pharmacy students. Because of only small chanqes in total enrullments, the number of minorities enrolled in pharmacy schools may not increase significantly in the future.

## Graduates

The number of first professional degrees in pharmacy (B.S. and Pharm.D.) peaked in 1976-77 and subsequently declined 25 percent to 5,954 in 1983-84. Graduates in 1983-84 were 6 percent fewer than in the previous year. The 719 Pharm.D. degrees awarded in 1983-84 represented a slicht decline from the previous year. However, students receiving the Pharm.D. as an advanced professional dcgree increased 11.4 percent over 1983-84. In contrast to the overall trend, women received 2,949 or 49 percent of the first professional deqrees conferred in 1983-84, up from 40 percent in 1977, while minorities received 13.9 percent of the total ( 828 degrees), an increase of 1.8 percent since 1976-77.

Pharmacy schools in 1984 awarded 373 master's degrees, down 7.5 percent from the orevious year, while Ph.D. degrees ( 227 in 1984) rose more than 9 percent over the previous year.

## Projections of Future Supply

The number of active pharmacists is expected to rise substan.:tially in the coming years, although supply increases may be mitiqa d somewhat by the increasing entry of women in the field and their tend ncy to work less than full-time. Future levels of supply will depend heavily upon enrollments in pharmacy schools. Three different sets of projections of the supply of active pharmacists between the vears 1984 and 2000 are presented here. Each rests on different assumptions reqariing the number of students who will be graduates during the projection period.

All enrollment projectiors assume that the 72 existinc schools of pharmacy will continue to operate and do not include the Camphell University School of Pharmacy which may open in academic year 1986-87. All proiections further assume that the trend toward increased enrollment of women in third-to-lastyear classes will level off at the current rate of approximately 55 percent. Average completion rates for men and women entering third-to-las ${ }^{2}$-vear classes are expected to continue at the rates observed in recent vears.

Basic Series. Projections of enrollments and graduates of schools of pharmacy are critical to projections of overall supply in the profession. The basic (or most likely) supply projection series assumes that all existing schools will remain open and that on the average they will be able to maintain the most recent enrollment levels until 1988. As stated, third-to-last-year enrollments have bequn to rise from the level achieved during the period of decline ending in 1982-83. Since the percentage of female enrollments has grown relatively little in recent years, it is also assumed that female third-to-last-vear enrollment will be maintained at the percent achieved during the most recent acajemic year. In addition, because of the demonstrated relationship between the size of the 18-22 age group and enrollment in pharmacy schools, che basic assumption is that changes in thi-d-to-last-year enrollnent beyond 1988 will be related to changes in the size of this age group (Table 8-4). This projection is predicated upon maintaining present enrollments despite the loss of Federal support, through a combination of State, local, and other support to pharmacy schools.

On this basis, the total entry of new pharmacy graduates between 1984-85 and 1999-2000 would be 88,200 new graduates or 47 percent of all pharmacists active by the end of the century. During this period, pharmacy schools would graduate 59 percent of all women pharmacists and 32 percent of all male pharmacists active in the year 2000.

With these assumptions, the total supply of active pharmacists is projected to increase from 157,000 in 1984 to 170,800 in 1990 and to 188,200 in 2000 , a net increase of 31,200 during the projection period (Table 8-1). Growth in aggregate pharmacy supply would be 8.8 percent between 1984 and 1990 . Between 1990 and 2000, projected growth in active supply will be 10.2 percent. The average annual qrowth in supply will be qreater between 1984 and 1990 (1.5 percent) than between 1990 and 2000 ( 1.0 percent) since a somewhat higher propnrtion of active pharmacists are expected to retire by the end of the century. The median age of active pharmacists is expected to rise from 39 years in 1984 to 40.1 years in 1990 and to 42.7 years in 2000.

The ra-io of active pharmacists per 100,000 population is projected to increase from 66.0 in 1984 to 68.4 in 1990 and 70.2 by the end of the century.

All expected growth in the active supply of pharmacists would result from substantial growth in the number of women pharmacists. The number of women active in pharmacy is projected to grow from 37,400 in 1984 to 53,000 in 1990 and to 76,100 in 2000. The number of men in the field is projected to decline from $11.9,600$ in 1984 , to 117,800 in 1990 , and to 112,100 by 2000. While women constituted 24 percent of the active supply in 1984 , they are projected to
represent 31 percent of the active supply in 1990 and 40.4 percent by the end of the century (Table 8-5).

The effect that this increasing proportion of female pharmacists will have on the overall availability of pharmacy services cannot he predicted exactly. It is likelv, however, that the number of full-tim-equivalent (FTE) pharmacists will be less than the aqgregate numbers imply. Although the employment participation of female pharmacists cannot be estimated precisely, the most recent data ( 1.978 Inventory of Pharmacists) indicate that women pharmacists work 85 percent of the hours spent by the average male pharmacist. Thus, assuming that women would provide 85 percent of the FTE service of male pharmacists in any given vear, $t$ te following table shows how changes in the aqgegare number of pharmacists might translate into changes in full-time scuivalents.

	Total active   supply of   pharmacists	Change during   period	FWTE supply   of pharmacists	Change during   period
1934	157,000		151,300	
1990	170,900	8.88	162,800	7.68
2000	188,200	10.28	175,800	8.58

Low Alternative Series. The low alternative series assumes that third-to-last-year enrollments will again revert back to a declining pattern. (This could be a very real possibility if the profession moves to a 6-year Pharm.D. as the sole entrv-level degree.) It is assumed that enrollments will decline to one half the annual decrease in enrollnents that existed between 1978 and 1982 (Table 8-3). It is assumed under this series that the elimination of Federal support to pharmacy schools would thus have a more prolonged and severe impact upon enrollments. This decline would begin in 1985 and continue to 1988 with enrollments changing in proportion to changes in the 18-22 age group from 1988 to the end of the projection period. Thus an average annual enrollment decrease of 2.9 percent per yeac is assumed between 1985 and 1988. Accordingly, graduates would decline from 5,788 in 1984, to 5,272 in 1990, and to 4,541 by 2000. The total number of new graduates between 1985 and 2000 would be 81,300 or about 8 percent less than in the basic series.

In this low scenario, the number of active pharmacists woild rise to 169,800 in 1990 and to 181,500 in 2000 , for a ratio of 67.5 active pharmacists per $1.00,000$ population (Table $8-1$ ). Women are projected to comprise 39.9 percent of the active supply by the end of the century, slightly less than in the basic series.

Bigh Alternative Series. The high alternative series assumes that the recent growth in third-to-last-year enrollments seen between 1982 and 1984 will continue until 1988. This projection is predicated upon maintaining recent enrollment increases despite the loss of Federal support, through a combination of State, local, and other support to pharmacy schools. It is therefore assumed that eniollments will continue to increase by an average of

2 percent annuallv until 1988, the level of recent growth. After this period, it is assumed that third-to-last-year enrollments will change only as the number of persons age 18 to 22 in the population chanqes. Accordinglv, it is assumed that graduates of pharmacy schools will increase from 5,788 in 1984 to 6,112 in 1990, increase to 6,233 in 1992, and decline to 5,529 by the end of the century. The total number of new graduates between 1985 and 2000 would be 93,400 or about 6 percent more than in the basic series.

On this basis, the number of active pharmacists will reach 171,500 in 1990 and 193,200 in the year 2000, for a ratio of 72.1 pharmacists per 100,000 population (Table 8-1). By the end of the centurv, the precentage of active pharmacists who are women will be 40.8 percent, slightly more than in the basi: series.

## Payment for Pharmacist Clinical Services

The American Pharmaceutical Association recently conducted a national survev to gauge the willingness of consumers to pav for pharmacists' clinical services. Consumer reaction to the following clinical services were includeत in the survey: private consultations about the proper use of prescribed medications, maintenance of up-to-date medication records, monitorinq of drug therapy, home consultations, and consultations about treatment of minor complaints. The initial public reaction to the concept of clinical pharmacy reimhursement was positive. A substantial proportion of the public indicated willingness to pay for clincal services from the pharmacist. Nearlv one half of the respondents indicated willingness to pay a pharmacist to make house calls to consult about medication. Nearly one third expressed willingness to pay a pharmacist for private consultation on medication (Smith, 1983). This willingness to pay for pharmacists' clinical services could have an impact on the ciemand for pharmacists in the future.

## Puture Trends in Pharmacy

Participants in the recent "Pharmacy in the $21 s t$ Century" conference expect that major factors influencing pharmaceutical use in 2010 will include an increasingly elderly population, more widespread health promotion and wellress activities, more vigorous efforts at proving the cost effectiveness of drugs, a decline in hea ${ }^{-}$- $n$-care expenditures as a proportion of GNP, and an increase in home remedj.s and nonconventional therapies (AACP, 1984).

More sophisticated drug delivery systems were foreseen by many, including more prevalent transđermal, aerosol, and pump systems and increasing reliance on controlled-release devices. There was some agreement that delivery systems would have to pass a cost-effectiveness trial before receiving marketing, approval.

Participants also believe that a larqe proportion of prescription druqs will be moved into the over-the-counter categorv during the next few decades. It is expected that pharmacists of the next century will play an important role
in monitoring medications, and while there will be some opportunities for irdependents, most pharmacists will practice in settings that are part of large health care enterprises or retail chain pharmacies.

## Future Supply/Requirements

In 1984 there were an estimated 157,000 active pharmacists in the United States, with an estimated full-time-equivaleni supply of $1.51,300$. If pharmacists continue to practice in traditional modes, approximately 176,000 FTE pharmacists would be required in 2000 -- approximately 17 percent more than the supply of pharmacists in 1984. Comparing this estimate with the basic series supply estimates presented above, it appears that supply and requirements for pharmacists would be in close balance at the end of the century.

These projections of requirements for pharmacists ،..e based largely on analyses of the Food and Drug Administration's unpublished empirical data on use of prescription drugs. In the past the number of prescriptions has been the benchmark used as the best single measure of requirements for pharmacists. This is likely to remain the primary factor in measuring pharmacist productivity.

Between 1.973 and 1983 t'iere was an overall decline in the number of prescriptions per capita, due principallv to a per-capita decline in prescriptions for outpatients. However, the average size of a prescription has steadily increased over time, leading to an increase in the total volume of druqs used.

## Expanding Pharmacy Clinical Roles

Expanded clinical roles may be analyzed in terms of the disciplines from which they originally evolved. The clinical pharmacy literature describes roles that have evnlved from two particular sources (Fedder, 1984):

1. Those that are firmly based in the discipline of pharmacy itself and are grounded in the unique knowledge or skills of pharmacists. These are part of the pharmacists' acknowledged domain. Although some additional knowleds and further development of skills may be necessary in some instances, massive retraining is not required. Nor is there any need to obtain permission from any other discipline to perform these roles. Education of patients and professionals, drug monitoring, counseling, pharmacokinetics, and nutritional supplementation all fall into this category.
2. Roles that require either legislative or delegated authority for pharmacists to perform. Although they may in fact be natural outgrowths of the practice of pharmacy, these roles qenerally require structured protocols and mav he subject
to medical audit. Drug prescribing, dose adjustment, physical assessment, and some तiagnostic iunctions are includad.

Recent surveys indicate that the practice of clinical pharmacy has increased substantially since 1.975 within the short-term hospital setting. The number of computerized pharmacies has doubled in the past few years, as has the number of pharmacies providing counse!ing and monitoring activities (Stolar, 1979, 2983).

## Sumary

o Although the level of enrollments in schools of pharmacy only recently has begun to increase after a number of years of decline, the number of active pharmacists continues to increase. Supply and requirements of pharmacists are expecter to be in close balance throughout the rest of ihe century.
o Alrong younger pharmacists, especially women, there appears to be a sharp trend away from independent pharmacies and toward chain pharmacies and particularly hospitals.
o One of the most dramatic irends in the profession has been the tremendous increase in th: number and percent of women pharmacists. All expected growth in the active supply of pharmacists will result from the substantial growth in the number of women pharmacists. More than 2 of 5 pharmacists by the end of the century will be female, the highest of anv health profession next to nursing.
o Pharmacists, perhaps the most accessible of all health professionals, are playing an increasing role in preventive health care throug, interaction with patients, an activity with increasing consumer acceptance. Experts in the profession see a continuing role of pharmacists in monitoring medication.

Table 8-1. NUMBER OF ACTIVE PHARMACISTS AND PRARMACIST-TO-POPULATION RATIOS: SELECTED YEARS, ESTIMATED 1970-1984, AND PROJECTED 1985-2000 ${ }^{\text {I/ }}$

Year and alternative projection	Number of active pharmacists	Active pharmacists per 100,000 , total population-
1970	113,700	54.4
1975	122,800	55.6
1.980	14s. 100	63.0
1984	157:000	65.0
, 1985 :	159,200	66.4
Low	159,200	55.4
High	1.59,200	66.4
1990	170,800	68.1
Low	159,800	67.7
High	171,500	68.4
1995	181,200	59.6
Low	177,200	68.0
High	184,100	70.7
2000	188,200	70.0
Low	181,500	67.5
High	193,200	71.9

1/ The basic methodology was used for the projections shown for the years 1985 through 2000; alternative assumptions were useत for the low and high projections. Includes pharmacists in Federal services; also includes pharmacists in U.S. Possessions.

2/ Ratios are based on total population, including Armed Forces overseas, as of July 1.

SOURCE: Health Resources and Services Administration, Bureau of Health Professions, Division of Associated and Dental Health Professions.
U.S. Bureau of the Census. Current Population Reports, Series P-25, Nos. 952 and 959.

Table 1-2. monen op active phanmacists and manhacist-to-mpullation atios, ©Y REGION, DIVISION, ND STATE. DECZDER 31, 1970, 1910, iND 1984

Geographic  	1970		1980		1984	
	Active pharmaciata	Active phartaciate per 100.000 raaldent population	Ac:ive pharmaciata	Active pheracista per 100,000 raident population	Active phormaciate	Activa phernaciste per 100,000 rasident population
ONITED STATES 1/	112,570	55.4	142,780	62.5	156,960	66.0
mottirast	29,524	60.1	32,701	66. 5	32,257	64.6
Now England	7,697	64.8	9,166	73.9	10,267	$\frac{01.2}{72.3}$
connocticut	1,990	65.7	2,209	73.1	2,291	72.3
Maine	436	43.9	669	59.2	763	65.7
Maneachuente	4,149	72.1	4,641	80.7	5,463	94.1
Mew Remphira	350	44.2	533	57.4	575	58.6
Thode liland	560	51.8	744	02.1	462	49.1
Vermont	184	43.4	247	40.1	293	55.0
Midole Atlantic	21.027	50.5	23,615	64.0	21,990	50.9
Wew Juracy	3,430	53.3	4.456	60.3	6,419	50.5
Mew York	11,474	62.1	10,874	61.1	9,256	51.9
Pennaylvenia	6,515	55.1	1,20s	68.7	1,315	69.5
MIDMETET	32,500	57.5	39,936	67.1	45, 362	76.7
Eater Morth Central	22,514	$\frac{55.8}{621}$	27,633	66.3	30,330	$\frac{72.6}{63.1}$
1111 nola	6,914	621	7.311	63.0	7.303	63.1
Indian	2,964	56.9	3,076	76.7	4,690	84.9
Michigan	4,004	54.0	6,752	73.1	7.965	07.3
Onlo	5,443	51.0	6,059	56.1	6,314	50.4
Wieconain	2,309	53.9	3,635	76.7	4.050	04.7
ment morth Cantral	10,074	61.6	12,303	71.4	$\frac{15,232}{2,523}$	06.5
Iowe	1,753	61.9	2,210	76.0	2,623	19.7
Rancae	1,511	67.2	1,377	58.0	1,715	70.0
Minne cota	2,051	53.7	2,0u9	60.7	3,576	15.5
Mi asour 1	2,101	59.7	3.629	73.6	1,366	06.7
Mebraeka	1,109	74.2	1,207	01.7	1,506	98.
Nor'h Dakote	423	64.3	494	75.3	693	100.5
south Dakote	430	64.4	497	72.2	673	¢ 4.9
soort	31,937	50.6	47,330	62.1	54,401	67.2
South Atlentic	14,679	47.6	22,126	59.0	24,096	14.0
Delawers	247	44.0	274	45.9	274	44.5
Dietrict of Colunbia	376	43.1	608	104.5	784	127.3
plorida	3,329	41.5	5,206	51.9	4,935	44.7
georgio	2,357	51.1	3,656	66.1	3.742	63.1
Maryland	-,904	57.9	2,691	63.1	2,011	64.3
North Carolina	2,0:2	41.0	3,324	56.1	4.369	70.5
south Carolina	1,303	50.1	2,177	692	2,869	16.5
Virginle	1,940	41.5	3,014	55.1	3,746	66.1
Weat virginie	${ }^{1} 01$	45.0	1,096	56.1	1,366	69.7
East South Central	6,033	53.2	10,221	69.6	- 22,388	$\frac{02.0}{6.7}$
Alobant	1,924	55.7	2,664	68.2	3.477	66.7
Rentucky	1,672	51.7	2,356	64.3	2,711	73.0
Misalasippi	1,131	50.1	1,911	75.6	2,218	14.9
Tennessee	2,106	53.4	3,297	71.6	3,962	13.6
West South Central	10,445	53.1	15,035	$\frac{62.2}{70.0}$	17,117	65.3
Ackanses	1,001	51.8	1,601	70.0	2,103	19.1
Loulaiane	1.075	51.3	2,252	52.1	2,515	56.1
Okl ahome	1,764	68.6	2,190	71.6	2,371	71.5
Texae	5,805	51.6	1,977	61.7	10,120	63.0
WEST	18,501	52.9	22,674	51.8	24,740	52.7
mountaln	4,820	57.7	7.439	64.3	$\frac{1,285}{2,138}$	63.7
Arlzona	930	51.8	1,835	66	2,138	67.7
Colorado	1,419	63.7	1,096	64	1,976	61.9
Idaho	476	66.3	567	59.5	632	62.8
Montena	328	47.0	592	74.8	698	84.3
Nevade	284	57.4	310	46.0	414	46.5
New mexico	496	48.4	737	55.7	925	61.6
Otan	631	61.0	1,096	73.3	1,055	63.6
Myoning	236	70.6	336	69.4	417	81.1
Pacific	13,601	51.3	15, 235	47.3	16,455	47 -9
Alaska	66	21.6	158	38.7	178	351
callfornia	9,790	48.6	10,189	42.5	10,974	42.6
Ravali	221	28.5	294	108	325	31.1
Or egon	1,399	66.5	1.796	67.9	1,819	68.4
Washington	2,205	64.5	2.798	66.9	3,139	71.8
----- --..-	-	----	--- - -	---- --	-	-
1/ Excludes counte of pharmactinte in o.s. Posseastons.						
Division of Aancineed and Dental Fealen Piopestona						

Table 8-3. THIRD-LAST-YEAR ENROLLMENT IN SCHOOLS OF PHARMACY IN THE UNITED STATES, BY SEX: ACADEMIC YEARS 1969-70 THROUGH 1984-85 1

AcaAemic year	Both sexes	Male	Female
	Number of students		
1969-70	5,428	4,248	1,180
1970-71	5,694	4,345	1,349
1971-72	6,532	4,849	1,683
1972-73	7,546	5,452	2,094
1973-74	8,342	5,934	2,508
1974-75	8,734	5,910	2,824
1975-76	8,710	5,50]	3,109
1976-77	8,209	4,959	3,239
1977-78	8,461	5,035	3,426
1978-79	8,321	4,694	3,627
1979-80	8,035	4,398	3,637
1.980-81	7,551	3,896	3,655
1981-8?	6,899	3,441	3,458
1982-83	5,574	3,078	3,496
1983-84	6,715	3,097	3,518
1984-85	6,849	3,056	3,793
	Percent		
1969-70	100.0	78.3	2.1 .7
1970-71.	100.0	75.3	23.7
1971-72	100.0	74.2	25.8
1972-73	100.0	72.3	27.7
1973-74	100.0	69.9	30.1
1974-75	:00.0	67.7	32.3
1975-76	100.0	64.3	35.7
1976-77	100.0	60.5	39.5
1977-78	100.0	59.5	40.5
1978-79	100.0	55.4	43.6
1979-80	100.0	54.7	45.3
1980-81	100.0	51.6	48.4
1981-82.	100.0	49.9	50.1
1982-83	100.0	45.8	53.2
1983-84	100.0	46.1	53.9
1984-85	100.0	44.6	55.4

1/ These students comprise those in the first year of the three years of pcofessional pharmacy education, excluding any students in pre-pharmacy years.

SOURCE: American Association of Colleges of Pharmacy. Enrollment Report on Professional Degree Programs in Pharmacy, Fall 1984 and earlier puhlished̉ reports.

Table 8-4. NUMBER OF THIRD-LAST-YEAR PHARMACY STUDENTS AND NUMBER OF PHAPMACY GRADUATES, BY SEX: $\quad$ ROJJECTED FOR ACADEMIC YEARS, 1985-86 THROUGH 1999-2000 l/

Academic vear	Number of third-last-year students			Number of graduates		
	Total	Male	Female	Total.	Male	Female
1985-86	6,849	3,056	3,793	5,644	2,544	3,100
1986-87	5,849	3,056	3,793	5,759	2,510	3,249
1987-88	6,849	3,056	3,793	5,759	2,510	3,249
1988-89	6,849	3,0\%	3,793	5,759	2,510	3,249
1989-90	6,849	3,056	3,793	5,759	2,510	3,249
1990-91	6,766	3,019	3,747	5,759	2,510	3,249
1991-92	6,670	2,976	3,594	5,759	2,510	3,249
1992-93	5,500	2,900	3,600	5,690	2,480	3,210
1993-94	6,314	2,817	3,497	5,609	2,444	3,165
1994-95	6,109	2,726	3,383	5,466	2,382	3,084
1995-96	6,074	2,710	3,364	5,310	2,314	2,996
1996-97	5,074	2,710	3,364	5,131	2,2.31	2,892
1997-98	6,074	2,710	3,364	5,108	2,226	2,882.
through						
1999-2000						

1/ The basic methodology was used for all of these projections.
SOURCF: Health Resources and Services Administration, Bureau of Health Professions, Division of Associater and Dental. Health Professions.

Table 8-5. NUMBER OF ACTIVE PHARMACISTS, BY SEX: ESTIMATED 1984, AND PROJECTED FOR GELECTED YEARS, 1985-2000 l/

Year	Number   of active   pharmacists	Male   pharma-   cists	Female   pharma-   cists	Percent   female   of all   pharmacists
1984	157,000	119,600	37,400	23.8
1985	159,200	119,300	37,900	25.1
1990	170,800	117,800	53,000	31.0
1995	$1.82,700$	115,600	65,600	36.2
2000	188,200	112,100	75,100	40.4

l/ The hasic methodology was used for all of 'these projections.
Includes pharmacisis in Federal service; also includes pharmacists in U.S. Possessions.

SOURCE: Health Resources and Services Administration, Bureau of Health Professions, Division of Associated and Dental Health Professions.

$$
35
$$

## References

Amertcan Association of Colleges of Pharmacy. Pharmacy in the 2lst Century: Executive Summary. March 1984.

Amer ican Society of Hosoital Pharmacists. Proceedings, Research, and Education Foundation Conference. Fer, uary 1985

Fedder, D.O. "Expanding Pharmacy Roles: An Issue of Priorities." American Pharmacy NS24:6, June 1984.

Jinks, M. et al. "The Pharmacist's role in Individual Preventative Health Care." Amer ican Pharmacy NS23:7, July 1983.

Rosenfeld, M., et al. National Study of the Practice of Pharmacy. Prepared for the American Pharmaceutical Association and the American Association of Colleges O. Pharmacy. 1978.

Smith, "APHA National Survey: Willingness of Consumers to Pay for Pharmacist's Clinical Services." American Pharmacy NS23:16, June 1983.

Stolar, M.H. "National Survey of Hospital Pharmaceutical Services -1978." Amer ican Journal of Hospital Pharmacy NS36:3, March 1979.

Stolar, M.H. "National Survey of Hospital Pharmaceutical Services -19'32." American Journal of Hospital Pharmacy NS40:6, June 1983.

## Chapter 9

## VEIERINARY MISDICINE

## Developents in Supply

Veterinary Medicine and Euman Bealth. Veterinary medicine plays a major rose in the human health care deliverv system with activities directly related to the protection of human health. They help prevent the outbreak and spread of animal diseases, some of which - like rabies - can be transmitted to human beings. In addition, veterinarians are involved in food protection, as well as, the prevention and control of environmental hazards. They lso work on scientific research teams on such projects as searching out new pharmaceuticals to treat heart disease.

The impact of environmental health hazards and food-borne diseases upon human health has received increasing attention. The control of ingestion of toxic chemicals by livestock has become a high priority objective as laboratory research reveals their harmful effects on human health. Increased emphasis has been placed upon development of veterinarians who will be able to deal with chemical contamination of the food chain.

Another area upon which increased emphasis is being placed is animal pathology, particularly in laboratory research settings. New and sophisticated equipment in the laboratorv require special skills that are being developed by veterinarians.

Current Supply. The supply of active veterinarians grew 37 percent between 1975 and 1984. In 1984, approximately 42,600 veterinarians were active in the Inited States, up from 31, 100 in 1975 (Table 9-1). Although men outnumbered women 84.7 percent tc 15.3 percent among active veterinarians in 1984 , the supply of female veterinarians has grown much faster in recent years. Between 1977 and 1984, male veterinarians increased 20 percent (from 30,100 to 36,100 ) while female veterinarians increased 124 percent ?from 2,900 to 5,500). The growing number of women in the profession reflects substantial increases in the enrollment of women in veterinary schools.

The increased entry of worm into the profession in recent vears is also reflected in the age distribution of active veterinarians, because female veterinarians are generallv younqer. The median age of all active veterinarians in 1984 was 38.9 years. Seventy-four percent were aged 49 or younger, 21 percent were between 50 and 64 , and 5 percent were 65 or older. The median age for men was just over 41 years, and nearly 70 percent of them were under 50. Women veterinarians had a median aqe of slightly more than 31 vears, and 76 percent were under 35.

Practice Characteristics. Currentlv, there are 41 different professional activities in which veterinarians can be engaged. There are also 12 specialties with establisher educational requirements and competency
certifying procedures. The Board-certified specialtias include toxicologv, laboratory animal medicine, theriogenologv (animal reproduction), anesthesiologv, dermatology, internal medicine (with subspecialties in cardiology and neurology), microbiology, ophthalmology, nathology, preventive medicine, radiologv, and surgery.

According to the Master File of the American Veterinary Medical Association in 1984, the principal activities of three-fourths of all active veterinarians were in large-, small-, and mixed-animal practices. Within these areas 38 percent of all active veterinarians were in small-animal practices, 32 percent in mixed-animal practices, 4 percent in large-animal practices, and the rest in a variety of other veterinary occupations. These same activities also represented the largest portion of active veterinarians in 1979.

While increases in the number of active veterinarians have occurred in most speciaities, slight decjines heve scurred in veterinary public health, regulatorv veterinary medicine, and avian pathology.

In 1984, 48 percent of all active veterinarians were self employed, and about 28 percent worked in other private practices (Tahle 9-2). Together, these two groups arew from 27,000 in 1979 to 32,400 in 1984 , a 20 percent increase. Large-, small-, and mixed-animal practices drew 97 percent of all selfemployed veterinarians and approximately the same percent of all veterinarians employed in private practice in 1984.

Colleges, universities, and industrial settings showed increases in veterinarians between 1979 and 1984, while decreases of veterinarians have taken place in the Federal and State governments. In 1984, most veterinarians working for the Federal Government engagen in regulatory medicine 161 percent), while 6 percent worked in puhlic health. State and local government veterinarians worked principally in regulatory medicine and public health (42 percent and 1.4 percent respectivelv).

In 1984, 76 percent of all active veterinariars were primarilv engaged in clinical practice, with most of the remainder in research, education, inspection, and management. Ninety-six percent of veterinarians in clinical practice were self-emploved or employed in other private practices. Anong veterinarians engaged in research, 44 percent were employed by colleges or universities, 26 percent were in private industry, and most of the remainder were employed by the Federal Government as civilians or members of the Armed Forces. Among veterinarians engaged in inspection activities, 63 percent were employed by the Federal government, 18 percent were employed by State and local governments, and 7 percent were in the Armed Forces, and the remainder are distributed within other types of employers.

1 Bovine, equine, and porcine practices are included in figures for large-animal practices.

Geographic Distribution. Although relatively few veterinarians have largeanimal practices, proximity to farns and farm animals has a strong effect on distribution of veterinarians. Unlike the situation with other health professions, nonmetropolitan counties have higher veterinarian-to-population ratios than metropolitan counties.

The highest ratios of veterinarians to population are found in the Midwest
 the lowest ratio ( 12.8 per 200,000 ) (Table $9-3$ ). The supply of veterinarians in individual states is related to the amount of farming. Iowa, Montana, Kansas, Nebraska, South Dakota, and Colorado, which have large percentages of land committed to farming, have very high ratios of veterinarians, while States such as Massachusetts, New York, Rhode Island, South Carolina, and West Virginia have low ratios. The relationship between veterinarian supply and farm land exists despite differences in types of farming and types of animal stock among states. Although there has been considerable interest in increasing the supply of veterinarians in large-animal practices during recent years, the ratios of veterinarians to population in farm states did not appear to grow any faster than in other States.

Current Income of Veterinarians. The recent economic survey of the American Veterinarv Medical Association fornd that the average net income of veterinarians in orivate practice in 1983 was $\$ 46,255$. Average income for specific types of private practice ranged from a low of $\$ 40,566$ for mixedanimal practitioners to a high of $\$ 53,524$ for equine practitioners. Average incomes for other practice types ranged downward as follows: small-animal practice exciusivelv, $\$ 47,533$; large-animal exclusively, $\$ 46,310 ;$ large-animal predominantly, $\$ 45,957$; and small-animal predominantly, $\$ 43,991$.

The 1983 average income of veterinarians not in private practice was $\$ 46,422$. Averaqe incomes for specific types of nonprivate practice ranged from a low of $\$ 36,517$ for Armed Forces veterinarians to a high of $\$ 61$, ? 70 for those in industry. Average income levels were $\$ 37,854$ for veterinarians employed by state or local governments, $\$ 42,431$ for those employed by the Federal Government, and $\$ 44,513$ for veterinarians working in colleges or universities (Wise, October 1984).

Competency Assurance. Licensure to practice veterinary medicine is required in all States, the District of Columbia, Puerto Rics, and Guam. Continuing education is required for relicensure in 26 States, Puerto Rico, and the District of Columbia. At this time as few as 4 and as many as 20 contact hours per year of approved veterinary continuing education can be required of veterinarians as a license renewal requirement. Most States still renew veterinary licenses annually, but the trend is toward increasing the renewal interval. Several States are now on a 2-year cycle, and Iowa and Puerto Rico have gone to 3 years.

Veterinary Service Expenditures for Pet Care. A recent nationwide survey conducted by the American Veterinary Medical Association reported that dogs
were seen by veterinarians an average 1.2 times during the previous year. The survey also found that 36 million households in the Nation owned 55 million dogs. The average annual expenditure for veterinary care was $\$ 52$ per doa or a total of $\$ 2.5$ billion during the vear. This total is about 56 percent of the $\$ 4.6$ billion in annual expenditures for veterinary services by U.S. households and farms in the 1982 to 1983 period (Wise, January and February 1984).

The same survey also showed that 52 million cats were owned by 24 million households. The average cat was seen by a veterinarian only once during a 30 month period (an average of 0.4 times in a 12 -month period). The total expenditures on cats for veterinary services was estimated to be $\$ 955$ million during the year.

Current Requirements. As of March 31, 1985, 623 geographic areas, with a population of nearly 14.6 million persons, were designated health manpower shortage areas with respect to veterinary care. A total of 1,598 mure foodanimal veterinarians would be needed to achieve a ratio of 10,000 veterinary livestock units per veterinarian. While only 6 percent of the designated areas were metropolitan, such areas covered 19 percent of the population in designated areas.

## Student Trends and Developments

Applicants. The number of applicants to schools of veterinary medicine has decreased steadily in the last few years, from 7,286 in academic year 1980-81 to 5,503 in 1954-85. The proportion of applicants admitted to schools of veterinary medicine has increased noticeably during these years because the number of first-year student places has remained fairly constant. In 1980-81, there were more than 3 applicants per first-vear student, with only 31 percent of the applicants enrolled. Bv 1984-85, the number of applicants per firstyear place had decreased to 2.4, and 42 percent of the anplicants enrolled. Of the 1984-85 applicants, 52.4 percent were women, and 5.2 percent helonged to minorities, including 2.3 percent Hispanic and 2.0 percent Black.

Enrollments and Graduates. Enrollments in veterinary schools have increased dramatically over the past two decades, with the largest percentage increases sccurring since the mid-1970s. Between 1960-61 and 2970-71, first-year enrcliments rose 45 percent, from 983 to 1,430 (Table 9-4). During the 1970s, first-year enrollments grew even faster, reaching 2,329 by academic vear 1984-85 -- 63 percent higher than in 1.971-72 and 137 percent higher than in 1961-62. The number of graduates has increased by 160 percent in two decades, rising from 819 in 1961-62 to 1,258 in 1.971-72 and 2,138 in 1983-84. Total enrollment in 1984-85 was 8,843, an increase of 2.1 percent over the previous vear. Although much of the increase in enrollments can be attributed to previous Federal support, state qovernments have continued substantial support to schools of veterinary medicine.

The increased enrollment of women has heen a major development in schools of
veterinarv medicine. In 1984, 2,176 or more than 50 percent of the entering students in veterinarv schools were women. Of all veterinary students in 1984, nearly 49 percent were women, compared with 1 of 5 in 1974 and fewer than 1 of 10 in 1970 (Table 9-5).

In 2984, only 484 students, just under 5 percent of total enrollments, were members of minority groups, a proportion that has risen only slightly in several years. Nearly a third of them were enrolled in one school -- Tuskegee Institute. Black students accounted for 217 minority enrollees in veterinary schools; Hispanic students accounted for 142.

## Institutional Trends and Developments

Schools. The number of veterinary schools rose from 18 in 1970 to 21 in 1976 and 27 in 1984. New schools opening in recent years include Oregon State and Tufts (which admitted their first classes in 1979). Virginia Polytechnic Institute (1980), North Carolina State and Tennessee (1981), and Wisconsin (1983).

Accredited schools of veterinary medicine are located primarilv in the Southern (ll schools) and Midwest States (9). There are 4 schools in the West and 3 in the Northeast. Five schools accounted for more than 3.1 percent of all graduates in 1984 -- California, Colorado State, Iowa State, Ohio State, and Texas $A \& M$ Universitv. Colorado State University and Texas $A \& M$ had the largest first-vear enrollments, 140 and 139 students respectively.

Distritution/Compacts. The 27 schools of veterinary medicine are located in 26 States, with only Alabama having two schools. Seventeen schools have compact agreements that provide for anmission of students from other States; 9 schools have no such agreements. Manv compact agreements are with two regional organizations: the Southern Regional Educational Board and the Western Interstate Commission on Higher Education. In addition, several States have agreements with a schoo? or a reqional organization that specify a minimum number of first-year positions to which students will be admitted.

Because of the decrease in applicants and in the ratio of applicants to firstyear places, many schools are willing to consider applicants from States other than those with which they have compact agreements. Many are therefore increasing the number of States from which applicants may be considered for admission.

Manpower Trends Related to Veterinary Education. A recent study has shown a geinerally decreasing trend in the number of faculty positions in the disciplines of veterinary pharmacology and toxicology. Despite an increase in the number of faculty positions available in schools of veterinary medicine, the supply of facultv in these positions is decreasing. The study recommends that effective ways be found to attract veterinary medical students into these areas (Heath, 1983).

During recent years, fewer veterinarians have entered large-animal practices and some areas have shortages of food-animal veterinarians. Many managers of large-scale dairy operations have begun to rely heavily on nonveterinarians for services such as nutrition and preventive medicine. Many investigators have pointed out that operators of large dairies require veterinary services that emphasize a herd health approach and that improved trairiny will be required before veterinarians will be able to integrate economic herd health and clinical knowledge effectively to allow them to participate fully in all aspects of herd health management.

In response, veterinary schools in recent vears have hegun to offer course work in subjects such as biostatistics, epidemiology, and environmental health, and nine schools have instituted programs in preventive medicine. Also, with encouragement and direct assistance from the American Association of Bovine Practitioners, retraining programs have been established to help practicing veterinarians acquire herd management skills (Goorger, 1983).

Salaries and Educational Indebtedness of Recent Gradiates. A recent surver of the 1984 graduating classes of veter inary medicine by AVMA shows that starting income of greiuates was slightly higher ( 1.3 percent) than for 1983 graduates. One third of all graduates entered into small-animal exclusive practices. Their starting salaries averaged $\mathbf{\$ 2 0 , 6 0 0}$, slightly higher than the average salary of $\$ 19,500$ for all graduates.

Survey results also show that the mean educational indebrediness of 1984 graduates was $\$ 20,540$, up 8.7 percent from 1983 graduates. The relative frequency distribution showed that 20 percent of all graduates, the same as in 1983, had an educational debt of between $\$ 15,000$ and $\$ 20,000$. More than 36 percent of all 1984 graduates as compared with 26 percent of 1983 graduates had debt in excess of $\$ 20,000$ (Wise, 1984). The remaining 44 percent of the 1984 graduates had debts of less than $\$ 15,000$.

Faculty. About 3,100 academic and professional personnel (excluding interns and residents) were employed in U.S. schools of veterinary medicine in 1984-85. Nearly 2,300 or 74 percent held veterinary degrees. In addition, more than 1,500 of the faculty held a Ph.D. degree either in combination with or independent of a veterinary degree. The total faculty has grown by more than 4 percent per year since 1974 -- somewhat faster than total enrollments. The result has been a gradual increase in the faculty to student ratio over this period.

Postdoctoral rraining. Of the students enrolled in U.S. schools of ve:erinary medicine in 1984, 80 percent were undergraduates seeking veterinary degrees. Approximately 20 percent of students enrolled in a U.S. school of veter nary mericine sought advanced degrees or certificates of advanced training. The largest group of these were comprised of students with veterinary degree; seeking either a M.S. or Ph.D. The remaining groups consisted of other graduate students seeking advanced degrees and veterinary graduates seeking
certificates of internship and residency.

Educational Costs. Amonq State-supported schools, tuition charges for State residents in 1984-85 (and students enrolled under compact agreements) range from $\$ 730$ to $\$ 6,900$ per year, with most Stace-supported schools charging tuitions of $\$ 3,500$ or less for these students. Nonresident tuition and tuitions in private schools are considerably hiqher, with the majority of schools charging tuition of $\$ 6,000$ or more.

Tuitions defray only part of the cost of educating a veterinary student. The estimated total annual cost to the institution is estimater at nearly $\mathbf{\$ 2 0 , 0 0 0}$ per student.

Graduates of Foreign Schools. Between 1973 and 1984,571 graduates of foreign veterinarv schools successfully passed the examiration qiven by the Educational Cummission for Foreign Veterinary Graduates (ECFVG), which is required of foreign-school graduates who wish to take State licensure examinations. Sliqhtly more than one-third of individuals registered for the ECFVG examination during this period successfully completed the examination. Currently 487 candidates are enrolled in the ECFVG program.

## Projections of Future Supply

The supply of veterinarians is expected to rise in the coming years. Three sets of projections of the supply of active veterinarians between 1984 and 2000 are presented herc. Each rests on different assumptions regarding the number of new veterinary graduates du-ing the projection period. Each set of projections assumes that the first-vear enrollment of women will remain at 50 percent throughout the projection period.

Basic Series. Projections of encollments and graduates of schools of veterinary medicire are critical to projections of overall supply in the profession. The basic (or most likely) supply projection series assumes that 27 existing schools (including the relatively new school at Wisconsin) will maintain first-year enrollments at the level achieved in 1984-85 during the projection period. Bven with the decline of Federal suppurt, it is assumed that the present level of support for veterinary schools from state governments will continue, allowing enrollment levels in existing schools to be sustained. First-year enrollment would therefore be maintained at 2,329 from 1984 to the end of the projection period. Graduates would increase from 2,138 in 1984 to 2,169 in 1987 and to 2,213 in 1989 and would remain at that level through the projection period. The total number of students graduated between 1985 and 1990 would be 13,000 , or about 26 percent of all veterinarians active in 1990. The number of graduates produced between 1985 and 2000 would be 35,200 or 56 percent of the active supply in the year 2000 .

The basic assumption, that of maintenance of 1984-85 enrollments as indicated


#### Abstract

akove, results in an average annual increase of 1,220 veterinarians tetween 1985 and 2000. The supply of active veterinarians would then increase from 42,500 in 1984 to 50,400 in 1.990 -- an 18 percent increase in 6 years or an averaqe of 3 percent annually (Table 9-1). The growth rate over the next 10 years, between 1990 and 2000, would be somewhat slower ( 24 peıcent), with active supply rising to 62,700 in the year 2000. The ratio of active active veterinarians per 100,000 population is projected to rise from 18.0 in 1984 to 20.1 in 1990 and 23.3 by the end of che century.

The proportinn of active female veterinarians is projected to increase sharply, rising from 15.3 percent in 1984 to 35.9 percent in 2000 . The number of women in veterinarv medicine would nearly double between 1984 and 1990 and would increase by another 80 percent between 1990 and 2000 , reaching 22,500 by the end of the century (Table 9-5).


Low Alternative Series. The low series of supply projections assumes that veterinary medicine schools will be unable to maintain enrollments at current levels. It is assumed that reduced enrollments would occur as a result of declining Federal funding, higher costs, and increasing competition, thereby reducing applications for veterinary education.

The low alternative series assumes that first-vear enrollments in existing schools will decline 10 percent between 398 and 1988 and that no new schools will open during this period. First-year enrollment would therefore decline from 2,329 in 1964 to 2,096 in 1988, after which it would remain constant. The total number of new qraduates between 1.985 and 2000 would be 32,800 , about 7 percent less than in the basic series.

Under this low series, the number of active veterinarians would increase onig to 60,400 by the end of the cencury, yielding a ratio of 22.4 per 100,000 population (Table 9-1). The number of veterinarians in the year 2000 would be 2,300 less, or 3.7 percent fewer than the number projected in the hasic series.

Eigh Alternative Series. A hiqh alternative series assumes very small (l percent per year) increases in first-vear enrollments until 1988. After this period, enrollment would be maintained through the end of the projection period. In this series, first-year enrollments are expected to increase from 2,329 in 1984 to 2,424 in 1988. This series assumes somewhat greater levels of support of veterinary education among $s t a t e$ and local governments. Graduates are projected to rise from 2,134 in 1985 to 2,234 in 1989 and 2,302 in 1992, after which they would remain constant throughout the projection period. Jnder these assumptions, 36,100 students would graduate between 1985 and 2000 -- 3 percent more than in the basic series.

In the high alternative series, th = number of veterinarians is projected to increase to 50,500 in 1990 and 63,500 in 2000, yielding a ratio of 23.7 active veterinarians per 100,000 population (Table 9-1). The number of active veterinarians woul. be 1.4 percent greater than in the basic series by the end of the century.

## Future Supply/Requirements

It is estimated that 59,500 veterinarians will he required by 2000 , compared to the projected supply of 62,700 in that year. However, it should be noted that severe data $]$ imitations make it unusually difficult to estimate requirements for veterinarians. While data are available on numbers of veterinarians active in specific practice areas, there is a shortage of data on veterinarian productivity or the utilization of specific services by the puhlic.

The projection procedures assume that increases in requirements for small-* animal veterinarians are proportional to changes in retail pet food salas, per capita income, and population. Changes in per capita consumption of beef and pork, which correspond to changes in the number of beef cattle and other food animals, provide a basis for estimating requirements for large-animal veterinarians. The assumption of an increase in requirements for veterinarians in educational insifutions is based on a recent AVMA funded study that foresees demand for veterinarians in this setting rising about 4.5 percent annually.

Requirements for large-animal veterinarians are not likely to increase as rapidly. Only moderate growth in food-animal production is forecast. It is likely that producers will increase their use of veterinary services somewhat, but the resulting growth in food-animal requirements will likely lag betind thuse for companion animals.

Strong growth is expected in the more highly specialized areas of veterinary medicine. Research fields such as toxicology and animal pathology are expected to continue to grow as a result of demand created by industry and regulatory agencies. Offsetting these increases will be declines in meat inspection as government agencies replace veterinarians with other professionals.

Accorting to a 1982 report from the National Research Council, the Nation has enough veterinarians to care for family pets and domestic farm animals and may even have a modest surplus by 1990. However, a growing need exists for veterinarians with advanced scientific degrees or special experience to work in environmental and consumer protection, food production, research, and other aciivities not related to veterinary care. The report further states that while demand for qeneral practitioners has stabilized, demand for veterinary specialists trained in patholngy and laboratory-animal medicine employed in industrv and contract sesearch laboratories increased in the late 1970 s and continued to increase through 1984.

## Industrial Enployment of Veterinarians

A recent survey of veterinarv employment in industrv by the American Veterinary Medical Association showed that 650 veterinarians were employed in the Unjted States by the 1.15 responding companies. The majority of
veterinarians in industrv specialized in patholoqy, toxicology or laboratory animal science. Analysis of future employment needs indicated that the number of veterinarians needed by private industry will increase by 44 percent in the years 1985 to 1990 , and by 94 percent in the years 1991 to 2000. In other words, by the turn of the century the number of veterinarians needed by industry is expected to double over current levels.

Companies that currently employ more than five veterinarians expect to employ 30 percent more by 1990 and 54 percent more by the end of the sentury, Companies that employ fewer than five veterinarians anticipate higher percentage increases in hirings of veterinarians (ranaing from 100 to 170 percent) by the year 2000. As a result, about two-thirds of future hirings will be by companies currently employing five or more veterinarians, and about one-third of future hirings will be bv companies currently employing fewer than five veterinarians (Wise, January 1985).

## Sumeary

o The number of active veterinarians has increased substantially in recent years with apprnximately 1,200 veterinarians being added each year.
o Nearly 7 of 10 veterinarians provide care for small pets or a combination of pets and larger animals. More than threefourths were self employed or in other forms of private practice.
o During recent years, fewer veterinarians have entered largeanimal practice 27 d some areas have shortages of food-animal veterinarians. Although a smaller proportion of veterinarians serve large animals exclusively, proximity to farms and farm animals continues to have a strong effect on the activity of veterinarians.
o Although the number of applicants to schools of veterinary medicine has been decreasing, the ratio of applicants to first-year admissions (more than 2 to $?$ ) indicates that current enrollment levels will at least be maintained. Consequently, the supply of active veterinarians is expected to grow to 52,000 by 1990 and to nearly 63,000 by the end of the century.
o Females now account for nearly one half of all students in schools of veterinary medicine.
o Although there may be a decrease in requirements in some areas of veterinary medicine, strong growth is expected in research areas such as toxicology and animal patholoqy. The need for veterinarians by private industry is also expected to grow substantially.

Table 9-1. NUMBER OF ACTIVE VETERINARIANS AND VETERINARIAN-TO-POPULATION RATIOS: SELECTED YEARS, ESTIMATED 1970-1984, AND PROJECTED 1985-2000 1

Year and alternative projection	Number of active veterinarians	Active veterinar-   ians per $100,00 \mathrm{l}$ total population 2/
19\%0	25,900	12.5
1975	31,100	14.3
1980	36,500	16.0
1984	42,600	18.0
1985	43,900	18.3
Low	43,900	18.3
High	43,900	18.3
1990	50,400	20.1
Low	50,300	20.1
High	50,500	20.1
1995	56,800	21.9
Low	55,600	21.4
Hiqh	57,300	22.2
2000	62,700	23.3
Low	60,400	22.4
High	63,600	23.7

1/ The basic methodology was used for the projections shown for the years 1985 through 2000; alternative assumptions were used for the low and high projections. Includes veterinarians in Federal services.

2/ Ratios are based on total population, including Armed Forces overseas.

SOURCE: 1970 and 1.975 active veterinarians derived by Health Resources and Services Administration, Bureau of Health Professions, Division of Associated and Dental Health Professions, based on data from the American Veterinary Medical Association. Projections by HRSA, BHPr, DADHP.
U.S. Bureau of the Census, Current Population Reports, Series P-25, Nos. 952 and 964.

Table 9-2. NUMBER AND PERCENT DISTRIBUTION OF ACTIVE VETERINARIANS, BY TYPE OF EMPLOYMENT, AND BY SEX: DECEMBER 31, 1984

Type of employment	All active veterinarians		Male		Female	
	Number	Percent distribution	Number	Percent distribution	Number	Percent distribution
All active	42,500	100.0	35,100	100.0	6,500	100.0
Self-emplover	20,400	47.9	18,900	52.?	1,500	23.8
Private practice employee	12,000	28.?	8,500	23.5	3,500	53.5
College or universi'v	4,700	11.0	3,900	10.9	800	12.4
Industria: employee	1,100	2.6	1,000	2.8	1.00	1.3
Federal government (civilian)	1,400	3.3	1,300	3.7	100	1.8
Armed Forces	650	1.5	600	1.6	50	0.8
State or local government	750	1.8	700	2.0	50	0.8
Other	1,600	3.7	1,200	3.2	400	5.5

SOURCE: Health Resources and Services Administration, Bureau of Health Professions, Division of Associated and Dental Health Professions.
 BY REGION DIVISION，ND STATE：DECUPER 31．1970， 1910 ．AND 1E84

Geograph！c ミ：ェニ	1970		1900		1984	
	Active veteri－ neriens	Aet 10 veter Inarians per 100.000 realdent population	Active veteri－ narlene	Active veterinariana per 100.000 realdent population	Active veter！－ neriana	Active vetarinariant per 100,000 realdent population
ditted states	25.900	12.7	36.000	15.1	42，570	17.9
MOMTEPAST	1，001	0.3	5，366	10.9	6.393	12.1
Kew England	$\underline{59}$	0.0	1，459	11.9	1，709	14.2
Connecticut	247	1.1	301	12.2	452	14.3
Maline	99	9.9	155	13.7	196	16.9
Masaschuecte	391	6.0	564	9.1	696	11.9
Mou Mapahita	06	11.6	150	16.1	199	20.3
Nhote Ialand	47	4.9	70	7.4	13	0.6
Vertont	49	19.7	139	27.0	163	31.5
migale Atlentic	3，122	0.4	3.207	10．6	4，604	12.3
Wew Jercey	570	7.9	102	10.6	950	12.7
Wew York	1．543	0.4	1.732	9.6	2，074	11.7
Pennaylvenia	1，069	0.5	1，373	11.6	1，560	13.1
MIDMEST	9，125	16.1	11，507	19.7	12，079	21.7
Eant Morth Central	5.019	12.4	6，654	16.0	71475	17.9
1111nola	1，339	120	1，640	14.4	1.010	15.7
Indiana	100	15.3	1，009	10.4	1.132	20.5
Michigan	992	11.1	1.407	15.2	1.530	17.4
Onlo	1.220	11.4	1.604	14.9	1，720	15.9
Wieconair	668	15.0	997	21.0	1，215	25.4
Weat Morth Central	4，106	35.0	4.923	20.6	5，404	30.7
Iow	2.100	41.9	1.292	44.4	1，302	67.3
Raname	610	27.1	760	32.0	134	34.0
Minsemots	742	20.4	949	24.2	1，104	26.4
Miasousi	763	16.2	1，006	20.4	1，103	21.9
Mebranke	452	30.3	511	32.4	379	35.9
Morth Dakote	100	16.2	132	20.1	160	23.2
Pouth Dakote	211	3.7	233	33.9	242	34.1
80080	7，472	11.0	12，509	15.2	$\underline{14,263}$	27.5
Gouth atlentic	3， 3 50	11.5	5，220	14.0	6，590	17.6
Delamare	71	14.2	52	13.7	53	15.1
Diatrict of Columbe	12	10.1	33	14.7	64	13.4
plor 14．	053	12.4	1．440	14.4	1，946	17.6
Ceorgla	618	13.1	47	15.9	999	17.0
Maryland	643	16.3	124	19.4	948	22.6
Worth Caroline	406	0.0	681	11.5	963	15.5
South Carolin	203	1.0	204	9.1	357	10.1
virginia	560	12.2	798	14.7	980	17.3
Weat Firginia	50	5.1	144	7.4	108	0.6
East South Central	1，351	10.5	2，120	14.4	2，547	16.9
Alabay	442	12.4	625	16.0	730	10.2
Sentucky	353	10.9	527	16.4	644	17.2
Mieaiealppl	215	9.7	344	13.4	390	14.9
Tonneasee	341	0.7	624	13.5	743	16.5
teret south Central	2，501	$\underline{13.3}$	4.241	17.5	5.010	$\underline{19.1}$
Askansas	211	11.9	342	10.9	432	10.3
Coulalana	307	0.4	573	13.4	709	15.1
Onlatome	421	16.3	694	22.6	037	25.3
Texee	1.662	14.6	2.632	14.1	3，040	10.9
West	5， 222	15.0	7，450	17.0	2．135	19.1
Mounteln	$\underline{1.626}$	19.4	2，473	21.4	3，130	24.9
Ar 180 m	248	13.7	457	16.5	600	19.6
Colorsdo	591	26.6	773	26.3	1，06＊	33.4
Idaho	145	22.9	279	29.3	332	33.0
montane	106	26.7	270	34.1	297	35.9
Wevede	45	17.2	130	16.7	194	21.6
Wev Mexico	144	14.1	234	17.7	273	19.1
Dtah	121	11.3	172	11.5	204	12.3
tyoling	18	26.0	150	31.0	168	32.7
Pectilic	3，596	13.5	1，915	15.5	5，997	17.5
Al max	24	7.9	13	20.3	106	21.1
Colifornie	$2.56{ }^{\circ}$	12.1	3.316	10.1	4.071	15.1
lemell	6	0.1	102	10.5	131	12.5
Oregon	322	15.3	498	10.9	622	23.1
Weahington	613	17.9	915	21.9	1.067	24.4

 Diviation of aseociated and Dentel Fealet Profesiona．

Table 9-4. NUMBER OF SCHOOLS OF VETERINARY MEDICINE, STUDENTS, AND GRADUATES: ACADEMIC YFARS 1960-51 THROUGH 1984-85

Academic year	Number of schools	Number of students		Number of graduates
		Total	First year	
1960-61	18	3,497	983	824
1961.62	18	3,528	1,001	819
1962-63	18	3,632	1,044	830
1953-64	18	3,727	1,059	834
1964-65	18	3,864	1,139	815
1.965-66	18	4,1.19	1,242.	910
1966-67	18	4,388	1,305	963
1967-68	18	4,623	1,315	1,064
1968-69	18	4,779	1,311	1,129
1959-70	18	4,876	1,339	1,155
1970-71	18	5,006	1,430	1,239
1971-72	18	5,149	1,453	1,258
1972-73	18	5,439	1,580	1,280
1973-74	19	5,763	1,594	1,388
1974-75	19	6,005	1,669	1,408
1975-76	19	6,274	1,712	1,523
1976-77	21	6,571	1,856	1.591
1977-78	22	6,918	1,973	1,640
1978-79	22	7,334	2,089	1,704
1979-80	23	7,803	2,247	1,845
1980-81	25	8,156	2,239	1,932
1981-82	26	8,391	2,246	1,969
1982-83	26	8,538	2,211	1,975
1983-84	27	8,672	2,284	$2.1381 /$
1984-85	27	8,843	2,329	- 1/

1/ Data not yet available.
SOURCE: Data compiled by Health Resources and Services Administration, Bureau of Health Professions, Division of Associated and Dental Health Professions, based on data from the Association of American Veterinarv Medical Collinges.

Table 9-5. FIRST-YEAR ENROLLMENT IN SCHOOLS OF VETERINARY MEDICINE IN THE UNITED STATES, BY SEX: ACADFMIC YFARS 1968-69 THROUGH 1984-85

Academic   vear	Roth   sexes	Male	Female
$1968-69$	1,327	1,207	120
$1969-70$	1,341	1,195	146
$1970-71$	1,430	1,286	144
$1971-72$	1,453	1,231	222
$1972-73$	1,580	1,295	285
$1973-74$	1,594	1,230	364
$1974-75$	1,669	1,262	407
$1975-76$	1,711	1,230	481
$1976-77$	1,856	1,237	629
$1977-78$	1,973	1,267	706
$1978-79$	2,086	1,320	766
$1979-80$	2,255	1,343	912
$1980-81$	2,239	1,268	971
$1981-82$	2,246	1,167	1,079
$1982-83$	2,211	1,112	1,099
$1983-84$	2,284	1,173	1,111
$1984-85$	2,329	1,153	$1,17 f$

Percent
1968-69
1969-70
1970-71
1971-72
1972-73
1973-74
1974-75
1975-76
1976-77
1977-78
1978-79
1979-80
1980-81
1981-82
1982-83
1983-84
1984-85

100.0	91.0	9.0
100.0	89.1	10.9

$100.0 \quad 89.9 \quad 10.1$
$\begin{array}{lll}100.0 & 84.7 & 15.3\end{array}$
$100.0 \quad 82.0 \quad 18.0$
$100.0 \quad 77.2 \quad 22.8$
$100.0 \quad 75.6 \quad 24.4$
$100.0 \quad 71.9 \quad 28.1$
$\begin{array}{lll}100.0 & 65.3 & 33.7\end{array}$
$\begin{array}{lll}100.0 & 64.2 & 35.8\end{array}$
$100.0 \quad 63.3 \quad 36.7$
$100.0 \quad 59.5 \quad 40.4$
$100.0 \quad 55.6 \quad 43.4$
$100.0 \quad 52.0 \quad 48.0$
$\begin{array}{lll}1.00 .0 & 50.3 & 49.7\end{array}$
$100.0 \quad 51.4 \quad 48.6$
100.0
49.5
50.5

SOURCE: Association of American Veterinary Medical Colleges. Unpublished data.

Table 9-6. NUMBER OF ACTIVE VETERINARIANS, BY SEX: ACTUAL 1984, AND PROJECTED FOR SELECTED YEARS, 1985-2000 l/

Year	Number   of active   veterinarians	Male   veteri-   narians	Female   veteri-   narians	Percent   female   of all   veterinarians
1984	42,650	36,100	6,500	15.3
1985	43,900	36400	7,500	17.1
1990	50,400	37,900	12,500	24.8
1995	56,800	39,200	17,600	31.0
2000	62,700	40,200	22,500	35.9

1/ The basic methodology was used for all of these projections.
SOURCE: Health Resources and Services Administration, Bureau of Health Professions, Division of Associated and Dental Health Professions.

## References

Goodger, W. T. and Rushman, J. "The Future of Leige Scale Dairv Practice: Toward a Production Oriented Svstem for Veterinarv Services." Journal of the American Veterinary Medical As sociation 183:1, July 11, 1983.

Health, G. W., et al. "An Evaluation of the Present and Future Manpower Needs for Veterinarv Plıarmacoloqists/Toxicologists and Pathologists in the United States.: Journal of Veterinary Medical Association 19:2, Winter 1983.

National Research Council, Committee on Veterinary Medical Sciences. Specialized Manpower Needs Through 1990. Washington, D.C., 1.982.

Wise, J. R. "Veterinarv Health Care Market for Dogs and Veterinary Health Care Market for Cats." Journal of the American Veterinary Medical Assnciation 184:2 and 4, January 15 and February 15, 1984.

Wise, J. R. "Economic Notes." Journal of the American Veterinary Medical Association 185:8, October 15, 1984.

Wise, J. R. "Econonic Notes." Journal of the American Veterinary Medical Association 1.86:1, Januarv 1, 1985.

## Chapter 10

## NURBIING

## A. OVERVIEW OF BIENNIAL NURSING REPORTS

This 15 the fifth report to the Congress in response to the statutory requirements in section 951 of Public Law 94-63 directing the Secretary of Health and Human Services to provide the Congress, on a continulng basis, detajled information on the supply and distribution of and the requirements for nurses as well as on factors affecting supply and distribution. These data v'ere to be used to determine the adequacy of the supply, fram the standpoi' . of type and level of preparation, in relation to population needs and deriands for nursing services. Section 951 further directed the Secretary to incorporate in reports to the Congress recommendations for legislation that would achseve an adequate supply and equitable distribution of nurses nationally and within each State. The annual reporting requirement in section 951 of $P . L$. 94-63 was subsequently amended by section $12(\mathrm{~h})$, P.L. $95-623$ (see copy, page 2 ) to require biennial reports.

Fulfilling the reporting requirements is a complex task. In ternis of sheer volume, information must be collected and analyzed on the 2.8 million nursing personnel who are employed in the health care system. Aggregate numbers are of less significance in determining adequacy of the nurse supply than are data on relatively small segments within the total supply. These data must be examined and analyzed separately. The 2.8 million nursing personnel represent a range of competencies, from those with on-the-job training to those prepared for complex responsibilities in the management of patient care or the admunistration of nursing services. Moreover, they are distributed among a vast array of practice settings. Accordingly, a plan of action was developed to acquıre and analyze data to meet the statutory requirement, which required the development of new tools for analyzing nursing resources and requirenents by initiating projects that would integrate analysis of data collected in a number of different ways and through a number of different sources.

A series of reports was developed to comply with these requirements. The first of these, First Report to the Congress, February 1, 1977 (USDHEW, DN, 1977) relied, of necessity, on information that was already available, and it therefore dealt primarily with information on the supply and distribution of nursing personnel.

New models were also developed for projecting requirements and making determinations of the anticipated nurse supply. The methodologies for both these requirements and supply as well as the projections from these models are fully described in Nurse Supply, Distribution and Requarenents. Third Report to the Congress, February 17, 1982 (USDHEW, LN, 1982).
'The general conclusion of the Second Report that supply and requirements would be roughly in balance by 1985 was tempered by the acknowledgnent that maldistribution might continue to exist in certain areas of the couritry, in

## Part D-Mlscellantoobs

INPCRYATION REAPECTING TIIE AUPPLY AND DIBTRIBTTTIOY OF AND REQUIREMENTS FOR NUAgES

## 42 USC 206 notes

OMB soview,
ubmitual to Congreas

Ssc. 951 . (a) (1) Using procedures developed in accordance with paragraph (3), the Secretary of Health, Fducation, and Welfare (hereinafter in this section referred to as the "Secretary") shall determine on a continuing basis-
(A) the supply (both current and projected and within the United States and within each State) of registered nurses, licensed practical and vocational nurses, nurse's aides, registered nurses with advanced training or graduate degrees, and nurse practitioners;
(B) the distribution, within the United States and within each State, of such nurses so as to determine (i) those areas of the United States which are oversupplied or undersupplied, or which have an adequate supply of such nurses in relation to the population of the area, and (ii) the demand for the services which such nurses provide; and
(C) the current and future requirements for such nurses, nationally and within each State.
(2) The Secretary shall survey and gather data, on a continuing basis, on-
( A ) the number and distribution of nurses, by type of employment and location of practice;
(B) the number of nurses who are practicing full time and thooe who are employed part time, within the United States and within each State;
(C) the average rates of compensation for nurses, by type of practice and location of practice;
(D) the activity status of the total number of registered nurses within the United States and withon each State;
(E) the number of nurses with advanced training or graduate degress in nursing, by specialty, including nurse practitioners, nurse clinicians, nurse researchers, nurse educators, and nurse supervisors and administ rators; and
(F) the number of registored nurses entering the United States annually from other nations, by country of nurse training and by immigrant status.
(8) Within six months of the date of the enactment of this Act, the Secretary shall devolop procedures for determining (on both a current and projected basis) the supply and distribution of and requirements for nurses within the Unitod States and within each State.
(b) Not later than February 1, 1977, and Fobruary 1 of each succeeding jear, the Secretary ahall report to the Congrees-
(1) his determinations under subsection (a)(1) and the data gathered under subsection (a) (2);
(2) an analysis of such determination and data ; and
(3) recommendations for such legislation as the Secretary detormines, based on such detorminations and data, will schieve (A) en equitable distribution of nurses within the United States and within each State, and (B) adequate supplies of nurses within the United States and within each State.
(c) The Ofice of Management and Budget may review the Secretary's report under subeection (b) before its submission to the Congress, but the Ofice may not revise the report or delay its submission, and it may submit to the Congress its comments (and those of other departments or agencies of the Government) respecting such report.
certain practice settings, and among nurses with certain specialized training. Through work experience and advanced training, nurses prepare for practice in various sectors of the diverse health care delivery system. For example, those whose skills equip them for specialized intensive care units are not likely to perform with equal effectiveness in comaunity settings where assessment of health status and managenent of care are prime cuncerns.

In order to examine more closely these and other factors related to the adequacy of the nurse supply and to fill gaps in existing data sources, a nationd sample survey of registered nurses was conducted in September 1977 and the findings were reported in Nurse Supply, Distribution and Requiremerts. Third Report to the Congress: February 17, 1982 (USDHHS, Division of Nursing, 1982.) In terms of the aggregate supply, the Third Report anticipated continued growth in the registered nurse supply over the next 20 years, although at varying rates.

Comparisons were made between the two sets of requirenunts projections and the four sets of supply projections based on alternatıve assumptions reyarding the number and types of graduates that might be available. the comparison of supply projections in relation to the historical erend-based requirements projections indicated a reasonable balance between the two for 1990. By the year 2000, however, requirements projections exceeded supply estimates in three of the four series of supply projections. Comparison of the supply projections with the criteria-based requirements projections was made only for the year 1990. This comparison showed that requirenents would outstrip supply with the most serious deficit occurring in the number of nurses with advanced training. Noting that Federal support had been an important instrument in increasing the supply of registered nurses, the report urged States, the health care industry and the profession to assume a more prominent role in maintaining enrollments, subsidizing the costs of further increases, and instituting measures to improve the utilization of nursing personnel.

The fourth report to the Congress served the dual purposes of fulfilling the biennial reporting requirement and the congressional charge requiring the Secretary to report to the Congress on questions that had been the subject of a two-year study conducted by the National Academy of Siciences acting through the Institute of medicine (IOM). Questions addressed in this study, mandated by section 113, Nurse Training Amendments of 1979 (P.L. 96-76), were: to determine the need to continue a specific proyram of Federai financial support for nursing education; to determine the reasons rurses do not practice in medically urderserved areas in order to develop recammendations for actions that could de taken to encourage nurses to practice in such areas; and to determine the rate at which and. the reasons for which nurses leave the nursing profession and develop recommendations for actions that could be taken to encourage nurses to remain or reenter the nursing profession, including actions involving practice settings conducive to the retention of nurses.

Findings from the fourth report ware in general agreement with those of the IUM study regardir $\}$ the overall balance between supply and requirements for reyistered nurses in 1990 and 2000. For this reason the report recormended that the federal Govenme $t$ limit its future role in maintaining the nurse supply to areas amenable unly to Federal intervention or to areas in whicia Federal actions could serve as a catalyst to the non-Federal sector. These included cortinued support for the preparation of teachers, administrators and clinical specialists who constitute : scarce resource and are key elenents in improving the quallty of education, practice, and the maragement of nursing services rationwide. Extension of the existing authority for the training of nurse practitioners was also recommended as a means of augnenting the quality of care for population groups with limited access to primary health care services.

Preparation of the fourth report was completed sone months in advance of the 3 -year phase-in of prospective payment for Medicare services, which began officially on October 1, 1983. Since nursing is a critical element of hospital care, the new payment system is expected to radically transform the practice of nursing not only in instatutions but in all types of practice settings. Changes in practice will necessarily influence the type and level of preparation essential for providing care of nigh quality in the most cost effective manner. The effect that this fundamental change in payment for services will have on the health care delivery system, and on nursing in particular, cannot be fully assossed on the basis of experience to date. Findings from long-range studies under way will not be available for inclusion in this fifth report. However, there is sufficient empirical evidence of the mpact of change on the delivery of nursirig ser vices in institutional and carmunity settings i support initial conclusions regarding the future needs in assuring an adequate supply of well prepared nurses.

## B. DEVELOPYENASS IN THE REGISTERED AND LICENSED PKACTICAL/VOCATIONAL NURSE SUPPLY

## 1. New Aaditions to the Nurse Population

## Basic INursing Education in the United States 1

Fegistered nurses and licensed practical/vocational nurses are the two types of nursing personnel for which there are formai educational programs that prepare students for examination for licensure for nursing practice. (The licensed practical/vocational nurse will be called licensed practical nurse for the most part in the remainder of this report.) In some

[^12]instances, certain types of nursing aides may take fonnd courses and, in sore States, may be licensed to practice. For the most part, however, nursing aides are on-the-job trained and are not licensed personnel.

There are three types of programs preparing yraduates for licensure as registered nurses. Is notel in table 10-1, as of october 15, 1983, there were 1,466 State board-approved programs in the United States.

Diploma proyrans, primarily 3 years in length and usually based in hospitals, were 19 percent of t?. e total programs. Once the major route of entry for students into nursing, the 1983 total of 281 programs is the result of a steady decline in the number of diploma programs over a long period. In 1970 diploma programs numbered 636, almost nalf of the 1,340 basic nursing educational prograns in existence.

Associate degree programs, prinarily 2 years in length and located mainly in junior or cormunity colleges, are the newest of the three types of programs. firsi established in the early 1950s, the number of such prcgrams grew rapidly during the first two decades of their existence and has continued to grow since then. In 1983 there were 764 such proyrams, more than half the total number of programs.
baccalaureate proyrams, the third type preparing students for licensure as re,gistered nurses, usually require 4 years of education to obtain the degree. However, the actual length of the nursing educational proyran is dependent on whether students are admitted to the program in their freshman, sophomore, or junior year. Almost ialf of the prograns are 4 years in length, admitting students as freshmen. The remaining prograns are about equally divided between 2 and 3 years. 2 Baccalaureate nursing programs have been in existence since the 1920s and their number has grown throughout the period. In 1983 there were 421 basic baccalureate prograris, 29 percent of the total nursing programs.

Although adnissions to these KN nursing educational proyrans declined toward the end of the 1970s, the 1980s to date have shown increases in the number of new students. These increases were acrose the board in ali three types of programs. Even diploma programs, which de . ned in number of proyrams, gained in the overall number of students admitted to the programs.

During the 1982-83 academic year, the most recent year for which data are available, there were 120,579 total admissions, a gain of 4.6 percent over the prior year. The laryest gains during the period occurred in the associate degree programs. The 63,947 admissions to these programs

[^13]represented a 5.6 percent incredse over tine prior year. Liploma prayrans had 19,363 admıssions and baccaldureate prograns, 37,264, duriny the 1982-83 dCddeal: year.

As of Octover lh, 1983, there were 1,292 state board-approved practical nursing prograns in the United States (see table 10-2). Practical nursing proyrans, usually 12 months in lengtin, are based in adult vocational educational settings, although sane are high scnool or ingh school extension proyrams. During the 1982-83 academic year, there were 61,453 students admitted to these prograns. In a sinular pattern to that seen for the students in registered nurse proyrams, there was a decline in the admissions to practical nurse programs in the latter part of the 1970s and an increase in the 1980s to date. 'The 1982-83 admissions reflected a 1.7 percent increase over the prior year.

There has been considerable interest in wiat it costs to educate students in these programs. However, such data are not readily evailable. A major provlem in studying the cost of nursing education is that it is not carried out in free-standiny schools; thus, expenses for certain facets of nursing programs are shared with other types of programs within the schools, making it difficult to isolate and assess the true cost of nursing education. furthernore, schools do not maintain or consider these shared expenses in a uniform manner, thus hampering efforts to provide comparable data on all schools.

Sone data are dvailable on the cost to students in the form of tuition and fee charges. These charges rary widely, depending upon the type and location of the program. for vaccalaureate programs in academuc year 1983-84, the nedian annual tuition and fee charge was $\$ 1.261$ in prograns operated by puidic entities and $\$ 4,860$ in private baccalaureate programs. About half of the baccalaureate programs were in publicly supported schools. Annual median charges in associate derjree programs were $\$ 860$ in the publicly supported programs and $\$ 4,061$ in the privately supported ones; however, about 88 percent of the total proyrams were located in publicly supported schools. Differences in tuition charges for diplana programs were less marked. publicly supported programs nad a median annual tuition and fee charge of $\$ 1,742$ and in the privately supported programs, the median was $\$ 2,099$. Only 13 percent of the diplana proxrams were publicly supported. Sane of the difference between the tuition charges in public and private schools may be due to the fact that the fees reported for publicly supported schools relate on! y to students who are residents of the State or the county in which the proyrann is located. Presumably, nonresidents would have to pay a higher tuition fee than residents pay. In all cases, the charges were higher in the fall of 1983 than in the prior year. Taking all programs into account, the median charge rose about 13 percent.

Data were not availäule for tuition and fee charges made by practical nursing programs in the fall of 1983 at the time of this report. In the fall of 1982, the median annual tuition and fee charge in publicly supported programs was $\$ 79,3$ in those prograns charging tuition and $\$ 1,250$
in the privately supported proyrams. Host practical nursing programs are publicly supported and about 15 percent of them did not have tuition charyes.

Students in Nursing Education Programs
As of October 15, 1983, there were 250,553 student:s enrolled in nursing education programs preparing for licensure as registered nurses. About 44 percent of these students, or 109,605, were in associate degree programs. A total of $98,941,39$ percent of all the students, were in baccalureate programs, and $42,007,17$ percent of the total were in diploma programs. Practical nursing programs had 55,446 enrollees as of October 15, 1983.

The latest data available from the National League for Nursing describing the composition of the nursing : cudent body indicate that it is predominately female, non-minority. Data for the fall of 1981 show that. 5.2 percent of the students in registered nurse programs and 4.9 percent. of the students in practical nursing prograns were men. Among those in registered nurse programs, 5.7 percent in associate degree programs and 5.0 percent in baccalaureate progranıs were men. Diplama prograns were least likely to have men; only 4.2 percent of their student body were men.

Of all the students enrolled in registered rurse programs in the fall of 1981, 6.6 percent were black. Diploma programs were far less likely to have black students than were baccalureate and associate degree programs. Of those in diploma proyrans, 4.3 percent were black, in comparison to 7.1 percent of the baccalaureatr students and 7.0 percent of the associate degree students. Almost 3 percent of registered nurse program studerits were of Spanish background, with baccalureate programs having the highest proportion among their total students ( 3.8 percent) and diplom proyrams, the lowest ( 1.1 percent). In additicr, 1.4 percent of registered nurse program students came from American Indian or Oriental backgrounds.

Practical nursing programs were more likely to have minority students than rere registered nurse programs. In the fall of 1981, 11.4 percent of practical nurse students were Black, 3.6 percent were from Spanish backgrounds, and 1.3 percent were American lndians/Orientals (Vaughn, 1982).

## Graduations from Nursinq Education Prograns

Following several years of a decline in the number of jraduates from programs preparing for registered nurse licensure, there was a slight increase in the 1981-82 academic year and a larger increase in 1982-83. The 77.408 graduates ir. the 1983 academic year represented a 4.5 percent increase over the number graduating the prior year. The increase came primarily from the associate degree prograns, which graduated 41,849 in 1982-83, 9.3 percent more than the prior year. Baccalaureate programs continued to show a decrease in the number of graduates.

Changes in graduation levels in all types of nursing education programs result primarily fram changes in admission levels since completion rates are relatively stable. The number of graduates from generic baccalaureate prograns has decreased in each of the last 4 years (from 1980-81 to 1982-83), although an increase in admissions is expected to result in an increase in graduations.

Since acadenic 1980-81, more than half the graduates eacn year have been from associate degree prograns. It can be anticipated that this trend will continue in future years as admissions to these programs continue to represent the largest share of new students. While the number of graduations from aiploma prograns has increased slightly in recent years, it is probable that graduations will decrease in future years given the continuel steady decrease in the number of programs.

In the 1982-83 acadenic year, there were 45,174 students graduated from practical nursing programs. As was true for the registered nurse prograns, there were decreases in the number of graduates for several years, but in the year 1981-82 this trend was reversed. T'ables 10-3 and 10-4 show State disi fibution of admissions and graduations to nursing educational prograns.

## Issues in Licensure

Ail jurisdictions reyu'i - completion of a nursing education program approved by the respective State board of nurse examiners as a prerequisite for taking the licensure examination. Graduates of all three types of nursing education programs take the same national licensing exanination testing for safe practice.

With few exceptions, graduates take the licensing examination in the state in which they campleted their nursing education program. Since each State determines its own passing score, nurses who choose to practice in a jurisdiction other than the one in which they were origanally licensed, must apply for emorsement in that jurisdiction. The use of a national examination and similarities anong requirements of state boards of nursing endible nurses to nove freely from one jurisdiction to another.

Over the past 20 years, the profession has debated the issue of professional vis "a vis technical nursing practice, the level of education for each practice level and the need to administer separate examinations to test for each level of competency. Under this proposal, yraduation from a program yranting a baccalaureate degree, either initia'ly or after completion of a diploma or associate degree program, would be the prerequisite qualification for professional practice. Provision would be made for individuals already holding licenses as registered nurses. Same States have moved toward developing an exanination qualifying for professional practice to be administered only to baccalaureate degree graduates following the licensure examinaticn. However, assumptions reyarding supply and requirements in this report are based upon continuation of present licensure mechanisms.

Figure 10-1-GRADUATIONS FROM BASIC NURSING EDUCATIONAL PROGRAMS PREPARNG FOR LICENSURE, UNTED STATES, ACADEMIC YEARS, 1970-71 THROUGH 1982-83


SOURCE: National League for Nursing. Divsion of Pubic Polcy and Research. Nursing Student Census. 1984; NLN Nursing Data Book, 1383-84, and National League for Nursing. State-Approved Schools of Nursing - LPN/LVN. 1984


#### Abstract

Licensure mechanısms for practical nurses are comparable to those for registered nurses. Completion of an educational program approved by a State iodra of nursing, or equivalent education so approved, is a prerequisıte to takıng a nationd examination administered by each state. Once licensed, a practical nurse may practice in other States by seeking endorsenent. In recognicion of licensed practical nurses' ancreasing responsibilities for patient care, the House of Delegates of the National Federation of Licensed Practical Nurses passed a resolution at its 1984 meeting to expand the current one-year training program to an 18-month program leading to an associate degree. The organization has launched a 10 -year plan to implement this resolution. Assumptions in tilis report, however, are based upon the current licensure requirements.


## 2. Additions to the Nurse Population from Immigration of Foreign Nurses

A small number of the newly licensed addıtions to the registered nurse population cone fram foreign nurse graduates, licensed in their own country and subsequently licensed in this country. Changes in the immigration laws in the late 1960 s made it possible to increase the fluw of these nurses into the country. This flow was further stimulated by the availabilit.y of employment opportunities at that tine which led to specific recruitment of foreign-trained nurses by United States erployers.

Because occupational background data are not available on all individuals entering the country with visas unconnected to the occupational preference categories, a total count of registered nurse immigrants cannot be obtained. However, from the annual counts available from the Inmigration and Naturalization Service, it wouid appear that the number of registered nurse imnigrants has been decreasing since the mid-1970s. by far the largest number of inmigrants have come from Asia but this count in Fiscal Year 1984 was less than half that of Fiscal Year 1976 and is a major factor in the decline in the overall total number of nurse immigrants (see tables 10-5 and 10-6).

Not all the nurses who emigrate to this country can obtain a license to practice here. To gain licensure, these nurses are required to pass the State board licensing examination acministered to all applicants for licensure. Data from the National Council of State Boards of Nursing indicate that, in 1984, the passage rate was about 47 percent for the 6,471 foreign nurse graduates who took the examination for the first time, compared to a passage rate of about 89 percent for the 80,547 first-time candidates among U.S. graduates. The passage rate on retaken examinations for foreign nurse candidates ( 21 percent) was also lower than that for re-examinations for U.S. graduate candidates ( 52 percent).

It should be pointed out that not all yraduates of foreign schools of nursirg taking the examination are newly arrived in this country. In same instances they may have arrived well ahead of the date of their first application for licensure and are laking the examination or are retaking
it because of prior failures. In other instances, they may have been licensed at one tine by same State based on endorsement of the foreign license and are later required to take the examination because of changes in licensure requirements when they move to another State.

The Bureau of Health Professions in the early 1970 s undertook a special study to examine the extent to which foreign nurses achieve licensure and the problens related to it (USDHEW, DN, 1976). Acting up on the results of that study, the American Nurses' Association and the National League for Nursing sponsored the creation of the Camission on Graduates of Fbreign Nursing schools (COGFNS). The OOGFNS administers an examination both here and abroad designed to test the nursing knowledge and English proficiency of the foreign nurse graduate. Successful completion of this examination is now required by the Immigration and Naturalization Service before a preferential H-l non-immigrant visa will be granted. A labor certificate, issued by the Department of Labor, is also required to obtain an imnigrant occupational preference visa. l'any State bsards of nursing have also established requirements for the foreign nurse to have first passed the UOGFNS screening examination before taking the State board examination. According to data issued by COGFNS, sane 35,000 foreign nurses have taken or retaken the COGFNS examination since its inception in 1978. About 38 percent have passed. The Commission further indicates that, anong COGFNS certificate ho' ${ }^{\text {Ners }}$ known to be in this country, about 81 percent have also passed the State licensing examination.

In total, registered nurses who obtained their basic education in foreign countries are not a high proportion of the U.S.- registered nurse population. The November 1980 Sample Survey of Registered Nurses (Bentley, et al., 1982) estimates that 59,935 ( 3.6 percent of the 1.7 million total nurses) fell within that group.
3. Characteristics of the Licensed Fractical/Vocatiorial Nurse Population

According to a national sample study of licensed practical/vocational nurses (LPNs/LVNs), coislucted by the kesearch Triangle Institute urder contract with the Divisican of Nursing, BHPr, in November 1983, there were an estimated 781,506 indıviduals with licenses to practıce as practıcal nurses in the United States (Jones, et al., 1984). About 3 percent of these, or 24,500, were men. Eighteen percent, or 140,800 , were froul raciai/ethnic minority backyrounds. Blacks (non-Hispanics) in the practical nurse popalation nimbered 103,500 while there were an estimated 18,700 Hispanics.

An estimated 539,463 were employed in nursing as practical nurses, 69 percent of the total number with current licenses to practice (see table 10-7). Almost three-quarters of those employed as practical nurses were working on a full-time basis. Those employed on a part-time basis were more likely to be fourd anong the married nurses than among those who were never narried or were fomerly married. Thirty percent of the married employed LPN/LVNs were working on a part-time basis compared to 15 percent
of the others. 'this was particularly the case for those marrien nurses with any children under the age of six. About 42 percent of these married nurses with young children who were employed were working part tinne.

The median age of the licensed practical nurse population was 38.6 years. Employed licensed practical nurses tended to ve younger on the average than those who were not employed. The median age of enployed LPN/LVNs was 37.7 while the median age for the others was 41.3. About one in four of the enuloyed LPR/LNNs were under 30 years of age; about two-thirds were 44 years or younger.

An estımated 37,440 of the 781,506 with licenses to practice as practical nurses were also licensea as registered nurses. Tiherefore, almost 12 percent, or 28,640 of the 242,042 individuats with licenses to practice as practical nurses who were not employed in 'hat capacity, were working as registered nurses. In addition, there were about 12,245 of those not employed as LPIV/LVNs who were in other health-related occupations and 39,655 who were in non-health related occupations.

About 9 percent $(22,344)$ of LPNs/LVNs who were not employed as practical nurses were actively seeking nursing employnent. These individuals represented 2.9 percent of all those with licenses to practice as practical nurses. Sane of those who were seeking employment as practical nurses were also working in same other occupation.

Aside from those who were seeking LPN/LVN employment or who were employed in non-LPN/LVN pusitions, there were an estimated 142,162 inactive LPN/LVNs. About 7 out of every 10 were married. Fifty-five percent had children at home and almost half were at least 50 years old.

In sumary, the enployment distribution of the licensed practical nurses as of November 1983 was as follows:

	Estirnated inumber	Percent
Total LPNs with licenses to practice as LPNs	781,506	100.0
tmployed as L.DNs	539,463	69.0
Erployed in other occupations	82,701	10.6
Licensed and employed as Rlvis	28,640	3.7
Employed in other healtnrelated occupation	12,245	3.7 1.6
tmployed in a non-healthrelated occupation	39.655	1.6 5.1
Type of empluyment not known	2,161	. 3
IVot employed	159,342	20.4

## 4. Characteristics of the kegistered Nurse Population

According to the latest estimate, there were $1,404,200$ registered nurses employed in the United States as of December 31, 1983 (see table 10-9). A national sample survey, one in a series of studies of the registered nurse population, was conducted in November 1984 by westat, Inc. under a contract with the bureau of Health Professions. The data from that study will ie avaiiable in late 1985. Therefore, the latest information available on the characteristics of the registered nurse population is from the secund in the series, which was conducted in November 1980.

The November 1980 sample survey estimated that $1,272,851$ registered nurses were employed in nursing, alnost 77 percent of the estinated $1,662,382$ with licenses to practice (see table 10-8). In the Septenber 1977 sample survey of registered nurses, 70 percent of those with licenses to practice were employed in nursing (Roth, et al., 1978). Tnus, the activity rate for registered nurses in 1980 was significantly higher than the rate for 1977. An examination of various data sources suggests that the gains made in the proportions of those currently licensed and employed are directly due to increasing numbers of nurses remaining in or returning to the nurse work force. The November 1980 survey estimated that about three-quarters of the 1.7 million in the registered nurse population were employed as RNs at least 60 percent of the time since tney were graduated fran their basic nursing education and most indicated they worked for at least 90 percent of the time.

The November 1980 data show a continuing increase in the number of men and the number of racial/ethnic minorities in the reyistered nurse population. The total number of nurses with racial/ethnic minority backgrounds in 1980 was estimated at 119,510, an increase of over 32,000 or 37 percent, cver the number in 1977. In 1980 an estimated 45,060 men were among the registered nurse population, about 18,000 or two-thirds more than in 1977.

The 1980 population of registered nurses was somewhat younyer than the 1977 population. The median age of RNs in 1980 was 38.4 ; in 1977 it was 39.8 . Almost half of all registered nurses in 1980 had graduated fram their basic nursing educational programs within the last decade. At each aye level, the proportion of registered nurses who were enployed in nursing increased significantly between 1977 and 1980. These increases were particularly evident in the mid-level age group, the thirties and forties, when, usually, sone tirne is taken out for family responsibilities.

With the increase in the proportion of actively employed nurses among nurses at all age levels, there was a slight, but insignificant, increase in the proportion of employed nurses working part time. Given the higher overall activity rate, however, there was actually an increase between 1977 and 1980 in the proportion of all registered nurses with licenses to practice who were employed on a full-tine basis. In 1977 less than half,
or 47.5 percent, of the 1.4 m llion registered nurses were employed full time in nursing; in 1980 the count was uver one-lalt, or 51.4 percent, of 1.7 million.

About 32,000 of the 388,500 reyistered nurses in Noveniber 1980 who were not employeu in nursing were actively seeking nursing enployment. These nurses represented 2 percent of the 1.7 million registered nurses. Nore tuan twu-thirds of those seeking employment were looking for part-time work. About 75,700, includiry $6, j 00$ who were looking for nursing employment, were ermployed in non-nursing occupations.

Apart from those seeking nursing employment or those who were erquloyed in a nor-nursing capacity, there were about 287,000 who were inactive in terns of employment. Most of these, 80.7 percent, were married and most had children living at home. Abciut half of the total inactive nurses, 142,000, were married with children at home. Among the group not accounted for by the married persons with children, almost 118,000 , or 41 percent of the 287,000, were at least 50 years old. 7hus, at most, about 27,000 inactive registered nurses were both under 50 years of age and were not married with children at hame.

## 5. Geographic Distribution of Nurses

Althougn the supply of both registered and licensed practical nurses has yrown over the years in all parts of the country, there is still a disparity in their distribution among the various geographic entities wituin the country as measured by nurse-population ratios. The ratio of nurses per 100,000 pop,ulation is used to examine the distribution patterns because of the large differences in population sizes. These ratios, however, are rot a true measure of the nursing services provided to the population. The concentration of nurses in a particular area is dependent in part upon the types of facılities ui crganized service settings in which they can practice. Therefore, an appropriate evaluation of differences in services provided should take into account the facilities available to provide these services.

On a State-by-State basis, as can be seen in table 10-9, according to estinates of the registered nurse supply as of December 31, 1983, the ratio of employed registered nurses per 100,000 population ranged from 358 in Oklahoma to 1,300 in the District of Columbia and 1,040 in massachusetts. The New England area had the highest ratio, 948, while the West South ventral area had the lowest, 380.

The relative variation in the State ratios was samewhat higher for registered nurses than for licensed practical nurses. Data from the lvovenber 1983 National Sample Survey of Licensed Hraclical/Vocational Nurses provided estimates of employed licensed practical nurses per 100,000 population ranging fran 119 in Alaska to 384 in ctio. The Mountain area had the lowest ratio, 173, and the Pacific area the next lowest, 176. The

West liorth Central area, with a zatio of 280 employed licensed practical nurses per 100,000 population, and the East South Central area with a ratio of 278 , were the regions with the highest ratios.

Along with differences found among States, the distribution within States also varies from area to area. A review of the distribution of nurses on a county level suggests that employed registered nurses are more likely to be located in those counties with hiyh concentrations of population than are licensed practical nurses or the general population. According to data from the 1980 Sample Survey of Registered Nurses, about 45 percent of the registered nurses were employed in counties with at least 500,000 population. About 39 percent of the total resident population in the country reside in such counties while estimates based on the data from the 1983 licensed practical nurse sample survey indicate that about 32 percent of the LPN/LVNs were employed in settings located in such counties. The ratio of employed nurses to population in these counties for registered nurses was over three times more than that for licensed practical nurses. In the smaller size counties, the fil ratios were less than two times nore than the LPN ratios.

Registered nurses with minority backyrounds were even more likely to be found in those counties witn the largest concentrations of population than were all registered nurses. About 68 percent of the employed black (non-Hispanic) registered nurses and 52 percent of the Hispanic rergistered nurses were in counties of 500,000 or more population. Black licensed practical nurses as well were also concentrated in such counties. Both Black and Hispanic registered and licensed practical nurses wert most likely to be found in those areas with the heaviest concentrations of population of the respective racial/ethnic background. Thus, the ratios of employed Black registered and licensed practical nurses per 100,000 total population in those counties with the highest proportions of black residents were more than twice the overall ratios of employed Black nurses per 100,000 population in the country. Similarly, the ratios of employed Hispanic registered and licensed practical nurses were more than twice the overail ratios for all Hispanic nurses in counties where the highest proportion of Hispanic residents were found. A comparison of the hursepopulation ratios for all employed registered and licensed practical nurses indicates that the ratios were about the same in those counties with high concentrations of Black residents as for the country as a whole and somewhat lower in those counties with the highest concentration of population with Hispanic background.

The effects of the types of area health facilities on the conce tration and distribution of nurses can be seen fran an examination of the enployment setting distribution of nurses in counties of varying population sizes. For example, in those counties with $1,000,000$ or more resident population where' the largest, host complex hospitals are likely to be located, about 71 percent of the registered nurses were employed in hospitals. In the Smallest counties, those with less than 50,000 population, about 59 percent of the registered nurses were employed in hospitals. Lonversely, about 10 percent of registered nurses employed in those smallest counties were

Figure 10-2-: URSE POPULATION RATNOS BY POPULATION SIZE UF COUNTIES N WHICH THEY ARE EMPLOYED, 1980


SOURCE Compiled from data collected in the National Sample Survey of Registered Nurses. November 1980, and the FirsI National Sample Survey of Licensed Practical and Vocational Nurses .- 1983. County level population data are from the Area Resource File, Eureau of Health Professions, U.S. Department of Health and Human Services $10-239$
working in public/carmunity health settings while only 6 percent of the nurses in counties with 1,000,000 or more population were in public/ conmunity health settings. However, when the population within each of those county groupings was taken into account, the supply of nurses was similar. There were 33 public/community health emiloyed nurses per 100,000 population in the largest size counties compared to 35 per 100,000 population in the smallest.

Migration is another factor that would affect the number of nurses that might be in a given locality at any one point in time. The sauple surveys have shown that reqistered nurses are more mobile than licensed practical nurses. Among re : sitered nurses, those with baccalaureate degrees and graduate degrees an : be more likely to be mobile than others. for both licensed practical. egistered nurses, the younger nurses were more apt to move than the oluer ones.

## 6. Educational Preparation of Registered Lurses

Elucational Background of the Registered Nurse Population
As of November 1980, the majority of the registered nurse population had received their basic nursing preparation in diploma proyrams (Bentley, et al; 1982). but a comparison between 1980 and 1977 data shows a significant decline in the proportion these nurses were of the total population, from 75 percent in 1977 to 63 percent in 1980. Furthemore, the 1900 stidy showed that two-thirds of the diploma graduates had completed diploma education more than 25 years before that date. Thus, it can be anticipated that diplona graduates will be a rapidly decreasing proportion of the total nurse population. Graduates fran associate degree and basic baccalaureate programs will became increasingly larger segments of the population. At the time of the 1980 stuay, associate degree graduates accounted for 19 percent of the registered nurse population and basic baccalaureate graduates, 17 percent.

The education which registered nurses receive in the basic program preparing them for licensure provides the foundation for their practice. once licensed, many nurses obtain additional education, either in formal academic programs providing preparation for advanced clinical, admunistrative or teaching positions or in continuing elucation programs providing preparation for specialızed skills or new techniques.

The 1980 study estimated that about 13 percent, or 213,000 of the 1,662,000 registered nurses with licenses to practice had graduated fran additional acadenic programs. tourteen percent of the diplana graduates, 9 percent of the associate degree graduates, and 13 percent of the baccalaureate graduates had obtained additional academic degrees. Almost two-thirds of the diploma graduates who had gained additional education had as their highest degree a baccalaureate, and about 9 percent had associate deyrees as their highest degree. Among the graduates from basic associate degree programs who had gone on for additional education, 82 percent indicated that their highest degree was a baccalaureate. Given these data,
it is not surprising that 42 percent of those with master's or doctoral degrees had taken their mitial nursing education in a baccalaureate progran, even though unly 17 percent of the total registered nurse population recelved basic nursing education in a baccalaureate program.
'faking into account all the formal nursing education progrouns from which the registered nurse populdtion had graduated, both the basic and the education taken after KN licensure, it was estimated that the highest degree held by 18 percent of the nurses was an associate ciegree; 54 percent had diplonas and 22 percent, baccalaureates. Five percent, or 81,752, were estimated to have master's degrees and less than 1 percent, or 4,108, were estimated to have doctorates. The numbers of nurses with baccalau:eate, master's, or doctorate degrees show sizeable increases since the Septembei 1977 study. Baccalaureate nurses numbered 367,816 in November 1980, a 50 percent increase over the 245,60 estimated for 1977. Master's-preparea registered nurses increased 48 percent over 1977 when the estimated total was 55,096 . The number of nurses with doctoral degrees increased from 2,304 in 1977 to 4,108 in 1980. Together, these three groups, however, represent less than 30 percent of registered nurses.

As snown below, among those in the nurse population who had master's or doctoral degrees, duout one-third najored in education and 18 percent in supervision or administration. Forty-three percent, or 36,055 nurses, had advanced education in clinical practice areas. Over a quarter of these rpecialized in psychiatric/mental health and another quarter in medical/surgical nursing. The remaining subject areas specifically identified included comnunity/public health, maternal-child, midwifery, and geriatrics/yerontology. Of these, the maternal-child and comunity/public heal th were most often mentioned.

	Estimated	
Primary focus	Number	Percent
Total	83,735	100.0
Education	28,091	33.5
Supervision/administration	14,823	17.7
Clinical practice	36.055	43.1
Conmunity/public health	4,457	5.3
Maternal-child	6,483	7.7
Midwifery	1,025	1.2
Geriatrics/gerontology	420	. 5
Medical/surgical	8,777	10.5
Psychiatric/mental health	9,888	11.8

According to the information provided by the respondents to the 1980 survey, an estimated 167,230 registered nurses, or 10 percent of the total population, were enrolled in a fornal educational program leading to an
academic degree with a nursing or nursing-related major. 3 Among those whose highest education was a diplama, 8 percent were estimated to be attending school. Fifteen percent of those ws th associate degrees and 11 percent of those wiLl baccalaureates were enrolled in formal educational programs.

Seven out of every - J RN students were in baccalaureate programs and about, one-quari $s$ were working toward a master's degree. Three percent were attending prograns leading to a doctorate and 2 percent were estimated to be attending associate degree programs. Over 80 percent of the errollees were attending school on a part-time basis. Most were also employed in nursing, 65 percent on a full-time basis and 24 percent on a part-time basis.

The study shows that financial support for their schooling most likely carne from their personal resources, such as savings, earnings, and their spouses's earnings. About 30 percent of the stulents received sane firlancial support from employee tuition plans. Differences in the types of financial support used were noted for those both in graduate and undergraduate programs. About 10 percent of the doctoral students received scme support from university teaching or research fellowships. Almost 18 percent of inaster's deyree and 12 percent of doctoral students received some support from Federal traineeships, scholarships or grants, compared to only 3 percent of the baccalaureate degree students. Federally assisted loans also figured more prominently for master's and doctcral students than for baccalaureaic students: 9 percent of : ster's and doctoral students, but only 4 percent of baccalaureats ,tudents, cited these loans as providing some financial support.

In addition to formal academic prof:ams, continuing education proyrans provide a metnod for maistaining and improving campetencres as a registered nurse. In the Nioveniber 1980 study, continuing education was described as "...a formal learning program designed to update and increase knowledge and skills in health care." Study for an academic degree was excluded from this definition. Most klss who were employed in nursing had participated in same type of continuing education during the year epoding November 1980. About a third of those who were not employed at the tine of the survey had also participated in continuing educational programs during that year. Over half ( 53 percent) of those who took continuiny education had their employers pay for all or part of it. A majority of all students also personaliy paid for sane or all of the courses they took.

[^14]
## Programs Providing Advanced Nursing Preparation

A vital aspect of the mursing educational system is that segment which provides for master's ard doctoral degrees. It is from these programs that nursing obtains its new leaders and teachers and those who have advanced clinical srills. Whether these individuals function in administrative leadership positions, as teachers of nursing in formal educational prograns, as researchers investigating tire theoretical nursing base or studying nursing phenamena to improve care provided, or as clinical specialists providing expert care, they provide the management structure and the guidance nece sary to the sound praciice of nursing throughout the health care system.

Annual data collected by the National League for Nursing show tnat the number of master's degree programs in nursing has more than doubled between 1970-71 and 1983-84, going from 73 to 154 (NW, 1984). In the fall of 1970, 15 States were without masters's degree programs (ANA, 1970-71). In the fall of 1983, all itates e'cept New Hampshire a ud Vermant had at least one master's degree program. A new master's program funded by the Advanced Nurse Training Program will open in New Hampshire in 1985.

Total nrollments in master's aegree prograus show an even greater increase than that occurring in the number of programs. Between the fall of 1970 and the fall of 1983, enrollments increased fourfold, from 4,765 to 18,112. However, most of the increase in this period came from students attending these programs an a part-tire basis. The number of full-time enrollments rose from 3,529 in the fall of 1970 to a high of 7,306 in the fall of 1980 and subsequently declined to 6,478 , the fall of 1983. Part-time students, on the other hand, went fron 1,236 in 1970 to 11,034 in 1983. Thus, in 1970, full-time students were 74 percent of the total curollment, winile in 1983 they were only 36 percent of the total.

The dramatic increase in part-tink students, coupled with a much slower growth rate in the number of full-time students, are reflected in the trend apparent in the number of graduations from master's degree programs. rwaster's degree graduates in the 1982-83 academic year, the last year for which data on graauates were available, numbered 5,039. In 1970-71, there were 2,082 graduates, showing an overali growth rate in the period of about half that of total enrollments. In fact, the number of graduates in 1982. 33 is less than the 5.149 who graduated in 1981-82 despite the continuing large increases in total enrollments.

Not only has there been significant change in the number of naster's degree L. oyrans dua students in recent years but there have aiso beer: changes in tree functional areas of study emphasis. The majority of those graduating in 1970-71 speciallzed in teacining or administrative management with almust 40 percent of the total graduates specializing in teaching. Seven out of every 10 of the 1982-83 graduates, however, specialized in advanced clinical practice areas. In 1970-71, 42.5 percent of the graduates had majoreu in advanced clinical , ractice areas.

F'gure 10-3-FALL ENROLLMENTS AND GRADUATIONS OF REGISTEFिER NURSE: N MASTERS DEGREE PROGRAMS N THE UNTED STATES DURNG SELECTED ACADEMIC YEARS, 1970.71 THROUGH $1982-83$


SOURCE - National League for Nursing. Divisicn of Public Policy anc Fiesearch,
Nursing Student Census. New York. 1584

When aeveloping graduate level curricula, the nursing education system has consistently responded to the changing health care needs of the Nation; to the requirements for nursing care exhibited by various population groups, including the acutely and chronically ill, those with developmental disabilities, and the elderly; and to advances in technolcyy that can both facilitate and change nursing practice (McCloskey and Grace, 1981; Diers, 1985). In the past, nurses were prepared at the baccalaureate level for advanced practice positions, as managers of nursing services and as teachers for same levels of nursing education. As the knowledge base and technology for advanced practice increased, there was increasing realization that baccalaureate preparation would no longer be sufficient for enployment in positions that require mastery of complex content, sophisticated tools and use of complicated data bases. The profession, recognizing these changes, developed master's programs to educate nurses for specialty practice in a number of clinical areas as well as nursing administrators and educators. These programs were designed to build on the generalized nursing content taught at the baccalaureate level.

By the mid-1960s most of the master's proyrams had a major embhasis on aavanced clinical practice with supporting preparation as teachers or managers of nursiny services though the number of these programs was small. Graduates of these proyrans filled clinıcal specialist and managenent positions in community/public health and acute care settings and teaching positions in nursing education programs. 'the principal employers of advanced nurse specialists were schools of nursing and hospitals. Major emphasis at this time was on developing strong clinical master's proyrams.

By the 1970s, there was a growing interest in better preparation of nurse managers and administrators, resulting in the develounent of a stronger focus in nursing administration in some master's programs. This strengthening of educational programs has occurred through the develoment of new majors ani ninors in this area of specialization. Separately, preparation of nurse educators has been influenced by the general requirenents of acaaenic settings in which nurse faculty worked as well. as ky tremds within the protession itself. Early master's programs prepared nurse eaucator in the art of teaching in the belief tinat these individuals already had a ung knowledge of nursing gained through clinical practice. with the developnent of nursing science and the integration of advanced technologies into the clinical master's programs, a change has occurred in programs that prepare nurse educators. A consensus seems to have developed within the acadenic community that teaching in a professional discipline requires a background in the specialized content to be taught. This content is provided at the master's level in nursing. During the past two decades, as the inainstream of nursing education has inved to collegiate level programs, the doctoral degree, already required of most other disciplines, increasingly has become a requirement for nurse faculty in these settings.
'There has been considerable growth in the number of master's and doctoral programs in nursing science since the beginning of Federal support for advanced nurse training in 1975. New master's programs have been
establisned, existing ones exparded, and substantial increases in enrollments have occurred. Program content in chese new and expanded proyrams has emphasized hi.gh priority clinical areas such as yerci:tological, perinatal, and community health nursing, prinary care, home health, nurse-midwifery, rehabilitation and care of the chronically ill. Each of these programs ircorporates health promotion and disease prevertion principles. Home health care enables full integration of the family into health care of individual members and facilitates the carrying out of heal th teaching and assessments by nurses when providing care in the home (Mundinger, 1983). Primary care is a particular area of advanced practice that has developed into a specialized practice area and is frequently offered as an option within other specialty areas of clinical graduate programs. Nurses with these competencies have been clearly demonstrated to have more satisified clients, provide more cost effective care and have better outcanes from their practice (Fagin, 1982).

In addıtion to the advanced clinical areas, there has been considerable growth in programs for the preparation of nurse managers and administrators. Nurses are now educated for middle and executive management practice in a variety of nursing service settings. The purpose of these piograms is to prepare effective nurse managers who are able to assess the clinical environment, manage people and integrate clinical and organizational decisionmaking. In recent years, as the health care industry has expanded and became more cumplex and has experienced growing econamic coustraints, findncial management and ethical decision-ataking content have become integrated in these programs. Educational programs burld on available faculty expertise, resources for practice sites, role models and entering student interest and competence in deciding on the level of the management focus within the curriculum. Some programs educate nurse managers for both levels of management practice, some for only one. Nurses prepared for middle management usually also have advanced clinical practice within their programs because it is at this level of management that nurses are increasingly require ${ }^{3}$ to olerd these two nursing specialties.

As was the case for the master's deyree programs, the number of prograns in nursing education departnents providing doctoral degrees has increased significountly. In the fall of 1970, there were 6 prograns with student enrollment. In the fall of 1983, there were 27 such prograns and the National League for Nursing reported in 1984 that 36 schools without doctoral urograns plan to offer programs in the future (NLN, 1984). The rapid increase in the number of programs to date started in the latter part of the 1970s. Enrollments, too, have shown significant increases duriry this perioa, from about 500 doctoral students in the mid-1970s to 1,495 in the fall of 1983. Graduations, however, which are dependent upon both course work and considerable independent study, do not show a consistent. trend from year to year. On an overall basis, the number of graduates has increased. However, the rate of increase is far less than the one shown for enrollments. In academic year 1982-83, for example, there were 139 graduates, only 2 more than the year before in which 137 were graduated.


#### Abstract

A study conducted in 1979 by the American Nurses' Association under a grant from the Bureau of Health Professions provides some insight into the educational preparation of nurses who are doctorally prepared and the evolution of this education (ANA, 1980). Analysis fram the 1,964 respondents to the survey questionnaire indicated considerable diversity in types of doctoral education. Before 1965, the Ed. D. was the most common doctoral degree eamed by nurses; since that time the number of nurses earning the research dergree (Ph.L.) mad increased steadily to constitute une-half of all those who nad completed doctoral study.


The shift from Ed.D. to Ph.D. as the degree of choice followed the establishment in 1962 of the federally supported Nurse Scientist Training Proyrain designed to finance research training at the doctoral level in basic science departments or disciplines related to nursing. currently, most nurses seeking doctoral degrees enroll in programs awarding the degree in the field of nursing. Most of these nursing programs offer the Ph.D. degree. The Doctor of Nursing Science, a professional degree, has also been awarded since the early 1960s, and the number of graduates from proyrams offering this degree, although not large, has shown a fairly steady increase. Ine shift toward doctoral programs in nursing parallels the profession's recognition that a solid and substantial body of nursing knowledge is being developed, bassd on a foundation in the social, behavioral and biamedical sciences as well as the educational and organizational fields (Howard and Knofl, 1981). A small number of nurses held other degrees such as the Dr.P.H., Sc.D., and D.P.A.

The growth of doctoral proyrams has highlignted the necessity of having a cadre of established faculty who are seasoned researchers in place before the program opens. The increase in doctoral programs has stimulated many nursing faculty groups to rethink the purpose of master's level education, resulting in a tendency to shorten the length of sane programs fran 2 years to 3 smesters or 1 calendar year. This change represents faculty decisions that master's education in nursing no longer results in a tenninal degree. Additionally, schools that have doctoral programs or are developing them have tended to integrate both master's and doctoral levels in + ) one graduate progran with two exit points.

The newly developed doctoral prograns build on the specialized base at the master's level to enable the development of nurse experts in ciinical research and nursiry science. Graduates are prepared to conduct nursing research and for advanced practice, to teach in collegiate nursing proyrans, or to adminjster complex nursing services. It has been recognized that considerable time will be needed for universities offering nursing doctorates to build their capacities to prepare greaver numbers of quality graduates likely to devote their careers to teaching and research (IOM, 1983, p.137). The recent growth in this level of program reflects tnis capacity builaing. Plarming and implementation of all but a few of the doctoral programs beyun since 1975 have been supported by the Federal Governinent.

The Inscitute of iledicine's 1983 study on nursing and nursing education recamended an expansion in programs at the graduate level to assist in increasing the rate of growth in the number of nurses with master's and doctoral degrees in nursing and relevant disciplines and cautioned that Federal support for doctoral level programs should be taryeted prinarily to strengthen existing programs in nursing, not to encourage the proliferation of new and possibly weak ductoral offerings. A national conference was held in 1984 to examine the yrowtin and to develop a consensus about quality indicators for doctoral prograns in nursing. The purposes of the conference, which was supported by the Division of Nursing, were to reach consensus regarding issues of quality in doctoral programs in nursing; to define areas in the newly developing doctoral programs in which quality control is critical; to develop statements of criteria for assessing quality; and to identify resources and extra-university relationships crucial to the operation of such a program.

In additic ${ }^{2}$, participants addressed criteria for assessiny the adeyuacy of the nursing base for carrying out substantive research, guidelines for readiness of faculty to guide and supervise research by doctoral students, criteria for detemmining the strength of the cognate fields in relation to the doctoral study and research in nursing, and the appropriate balance between the coynate field and the professional discipline. The report of the proceedings of the conference (AACN, 1984) describes the purpose of doctoral education in the development of nursing knowledge and indicates that the primary emphasis of doctor of philosophy programs is researcn and creative scholarships while the professional doctoral degree (D.N.S.) amphasizes advanced clinical practice with integration of research to improve nursing care. A total of 45 quality indicators for the areas of faculty, programs of study, resources, students, and program evaluation were agreed upon by the croup of nursing deans and senior doctcral faculty who were present. The proceedings are currently being reviewed by all existing doctoral programs and those about to open to complete the consensus development. Final decisions will be disseminated by the American Association of Colleges of Nursing.

## C. THE NURSING WORK FORCE

## 1. Sumary of Current Developments in Practice Settings

The health care delivery system in this country is undergoing significant changes, more so now than at any other time in the recent. past. An in-depth discussion of these changes is beyond the scope of this report, but there is little doubt that they will influence nursing practice in the future. one of the major chang?s is in the findncing of healtu care. The potential impact of this charge is expected to be enormous for the providers, the payers and the patients (Anderson, 1985). Numerous reports already suggest that the prospective payment system and other cost containment policles are having an effect. Hospital admissions and patient days are down and these trends are expected to continue. Patients in hospitals are sicker and require nighly specialized intensive care. With advances in technology
being integrated into the daily care of patients, it is predıcted that nurses will be challenged to do more with less in an environment that is demanuing, stressful and becoming progressively more limited in its resources. The impact of these trends on employment opportunities for nursing is still uncertain because, as the rumber of patients in hospitals woline, the acuity level of patients increases.

While patients in hospitals tend to be sicker, they are staying for shorter periou's of time. The pressure to control costs has led to efforts to discharge patients earlier. The technological advances which have affected the levei of care in hospitals have also made significant changes in the kind of care provided in the hame. It is no longer unusual for hame care patients to require highly specialized care. Cormunity health nurses and home care nurses are now taking care of clients on respirators, dialysis machines and hyperalimentation. As a result of these changes, the demand for home care services has increased and home health nurses are being ciallenged to provide a level of care previously only given in hospitals.
associated with the slift to out-of-hospitals care, is the corresponding increase in ambulatory services and the development of new and alternative delivery settings such as: surgicenters, aiagnostic centers, hospices and HNOs. The ;rowth in these types of settings is significant and is expected to continue, especially for Hios. Al though the impact on requirements for nurses in these settings is unknown at this time, it is ss eculated that these expanding areas will require more nurses. HMOs have been identified as potential growtn inarkets for nurse practitıoners and nurse midwives.

Some of the traditional practice setting; such as nursing hames and extended care facilities are also undergoing cinanges. The clients in these settings have more chronir health problems, are older and tend to have fewer resources. In the past, efforts to move the elderly and chronically ill back into the community have met with varying degrees of success, but today there seems to be a renewed commitment and a strong movennent throughout this country to returning patients to their homes and maincaining the elderiy in their hanes as long as possible. As a result of this trend and comnitment, employment opportunities for nurses in conmunity-based programs for the elderly are expected to increase even more in the future.

Anotiner change expected to affect nursing practice in all settings is the increased emphasis on collaboration between nursing education, practice and research. Increasing collaboration has been identified from both within and outside of the profession as an urgent need in nursing. because of this emphasis, a recent expert panel was convened to consider the issues and problens related to increasing collaboration in all settings and to develop recommendations for the Federal Government as well as for other public and private sectors (USDHHS, 1985).

The overwhelming majority of nursing personnel are employed in institutional settings (see tables 10-10 and 10-11). The November 1980 national Sample Survey of Registered Nurses showed that about three-quarters of employed reyistered nurses were in hospitals, nursing homes or extended care facilities (USDHHS, OLAM, 1983). Camparable data on
licensed practical/vocational nurses from the First National Sample Survey of Licensed Practical/ Vocational Nurses: November 1983, (USDHIS, DN, 1984) indicate that about four cut of five employed LPNs were in such settings. Most positions for ancillary personnel, such as nursiny dides and attendants, are in hospitals and nursing hames or other extended care facilitıes.

## Hospitals

Hospitals are the foremost employer of the 2.8 million nursing personnel in the country. Approximately 6 out of 10 nursing personnel, or 1,667,404, were employed in hospitals in 1983, the latest year for which there are counts of hospital personnel (see table 10-12). These individuals represented 40 percent of the 4.2 million total personnel employed in hospitals. More than half the nursing personnel in hospitals were registered nurses, 18 percen:. were licensed practical/vocational nurses, and 27 percent were ancillary nursing personnel (nursing aides, orderlies, attendants, operating room technicians, and others) (ALA, 1984).

Eighty-seven percent of hospital nursing personnel were employed in communty hospitals (non-Federal, short-term general and other special hospitals whose facilities and other services are available to the public). Carmunity hospitals are more likely than other types of hospitals to employ licensed practical nurses. Almost 92 percent of registered nurses were employed in community hospitals, along with 90 percent of licensed practical nurses, compared to 76 percent of ancillary nursing personnel.

In the 1981-83 period there was an almost 3-percent increase in the total employees in cammunity hospitals. To sane extent, this increase is apparently related to a greater availability of personnel since the budgeted vacancy rate declined from 4.2 percent in 1981 to 3 percent in 1983. The vacancy rates for registered nurses also declined in that period but still remained greater than those for all hospital personnel. In 1981, the vacancy rate for registered nurses was 7.6 percent while in 1983, it was 4.4 percent. The total number of community hospital full-time equivalent positions for registered uurses in 1983, including both the number of full-time equivalent employed and the budgeted vacant positions, was 729,740; 7 percent higher than the 680,881 full-time equivalent positions for registered nurses in 1981. Taking vacant positions into account, the total licensed practical nurse positions in community hospitals in that period declined by 5 percent, from 247,892 in 1981 to 236,374 in 1983. A gain of 4 percent was noted for the ancillary nursing positions, from 289,011 to 301,019. For the most part, vacancy rates in budgeted positions showed decreases trroughout the country between 1981 and 1983. The southern ar sa of the country continues to show the highest vacancy rates for registered nurses as it did in 1981 with a rate of 5.4 percent in 1983 compared to 9.1 percent in 1981 (see table 10-13).

Since the latest available cornprehensive data on hospital parsomel is for 1983, the impact that the newly instituted prospective payment system for medicare may have on the amployment of nursing personnel is not captured in the data presented here. This impact may come frall two different

$$
10-27 \quad 350
$$

influences resulting fram the new payment system. First, a decrease in adnissions and or the length-of-stay of the patient, resulting in a uecrease $n$ the tctal number of patient days for which nursing personnel are requirea. Second, the decrease in the length-of-stay will result in patients being in hospitals only for those particular days they need the type of care provided by an inpatient facility. Thus, the nursing hours required per day for each patient may increase as patients need a more comparable level of services on each day of their stay, including teaching regarding care following discharge. The types of services required on a more sustained basis may also increase the level of the skill mix amory the required nursing personnel.

Taking all nursing personnel into account, whether supervisory, administrative or direct patient care staff, in 1983, there were 141 full-time equivalent nursing personnel per 100 patients in cormunity hospitals; 57 percent were register $\leadsto$ nurses, 19 percent were licensed practical nurses, and 24 percent, anclılary nursing personnel. The 1983 data reflect the trend toward both the growth in numbers of nursing personnel and in tine skill level of personnel. In 1981, there were 131 full-tine equivalent nursing personnel per 100 patients in cormunity hospitals; 55 percent of whom were registered nurses, and 20 percent, licensed practical nurses. This suggests that cammunity hospitals are caring for patients with more complex problems requiring more skilled nursing care.
while camplete data for 1984 are not available as yet, information fron two Anerican Hospital Association survey sources suggest a decrease in the number of patient days in 1984 over 1983. both the results of the National Hospital Panel Survey, which collects data from a sample of community hospitals selected to be representative of the total, and the Monitrend study, which sumnarizes data developed from an adninistrative survey in which carmunity hospitals choose to participate, indicate a ciecline in adnuissions to hospitais and in patient lengtn-of-stay. The Panel survey does not provide any data on nursing personnel. The Monitrend stuady does contain same data on nursing hours. Based on a comparison of tine meadian paid nursing hours per patient day for June 30, 1983 and 1984, the data suggest that sone increase in those hours took place during that period. based on the data provided for medical-surgical, nonintensive care units, it would appear that there may have been an increase in the proportion ot the total nursing hours per patient day that was provided by registered nurses in that period. Data on the skill mix of the nursing persomel are not provided in other areas of the survey.

Questions about the adequacy of the approach within the diagnostic related groups, the metnot used in the Medicare prospective payment reinbarsement system, to neasure nursing care resource requirements and, thus, to reimburse nursing costs adequately have been raised by a nuaber of groups. nost recently in a report to the Secretary, the Prospective Payment Assessnent Comnission, established as an independent group to analyze the prospective paynent systen and make recamendations to improve it, indicated that the method used to allocate nursing costs within diagnostic
related groups, which assumes that every patient uses the same anount of nursing resources per day, may have introduced serious inaccuracies. They further hypothesize that if improvements were made in measuring nursing resources use, it nay minimize the "need perceived by sone to adjust the system otherwise for severıty of illness" (PPAC 198'5, p.55).

Decisions about questions such as chose raised above can have a material effect on nursing resources nospitals may establish which will affect tie number of nursing personnel in hospitals. These yuestions are first being expiored and only the initial reactions to this new reimbursement systent can be ineasured at this time. Furthermore, the system is not fully in place yet. It is probable that it will take several years before adequate judgments can be made of the overall results on the employnent of nursing personnel in hospitals.

Another factor which might affect the number and skill mix of the hospital nursing staff is the type of nursing care delivery system used. A 1983 hospital nursing personnel survey conducted by the American Hospital Association which collected data on staffing and registered nurse employment conditions from a sample of comnunity hospitals provided some insight into that area.

The study indicates a wide diversity in the approaches to nursing care systems. About one-quarter of the hospitals indicated that no one specific delivery system was used for most of their inpatients. In response to the question asking for the percent of the hospital inpatients who were cared for under various systems, the largest single group of the hospitals, about 4 out of every 10 indicated that at least 75 percent of their inpatients were cared for under a team nursing delivery system. Teaun nursing was described as the "provision of nursing care for a group of patients in which a registered nurse teain leader directs and supervises a group of nursing personnel." While this approach to nursing was indicated far more frequently than any other in all parts of the country, it was least likely to be indicated as the approach used for most of the patients in the northeastern sector of the country. Another approach, functiondl nursing, in which the provision of care is accomplished through nurses being assigned specific tasks (e.g., one might anly take temperatures while another might give out medications), was used for at least 75 percent of the patients in about 9 percent of the hospitals. 'Ihis approach was more likely found in the southern part of the country than in other areas.

About 2 b percent of the hospitals used sane type of "primary nursing" to provide nursing care to most of their patients. In the American Hospital Association study, data were solicited on the following approaches to this form of nursing care: total patient care described as "Provision of patient care whereby each of the nursing staff is assigned to give complete care to a grous of patients during a given shift" (reported by 13 percent of the hospitals as covering most of their patients); modular nursing descriveri as "Provision of patient care in which a primary nurse-to-patient relationship exists for a group of patients in a given location "(reported by 5 percent of the hospitals); and primary nursing described as "Provision of patient

Care in whicn a registered nurse assuikes responsioility tor all nursing care proviued to a group of designated patients throughout the duration of their h spitaiization" (reported by 7 percent of the hospitals).

The primary nursing method of clinical practice has increased autonamy in practice, participation with other providers in clinıcal decisionnaking and full responsibility for implementing tine nursing process for a group of pacients. 'inis is tne most integrated method of nursing practice with full deleyation of authority to the prinary nurse and strong collegial relationships for support as requested. It was the single most frequently identified practice methodology used by hospitals identified by the Arkerican Academy of Nursuny in its study of magnet hospitals in that they are good places to practice nursing and they have an ability to recruit in a campetitive situation (American Academy of Nursing, 1983). Frimary nursing ac a method of nursing practice has been clearly linked to improved clinical decisionmaking but its successful imslementation requires increased clinical knowledge and competence ant the availability of a surficient number of quallfied professional nurses (brown, 1981). It is a system of nursing care delivery that usually includes responsibility and accountalility by an individudl nurse for a caseload of patients, an organized system of conmunications amony care yivers, and decentralization of authority to allow for substantial autonany of the primary nurse.

A descriptive study of primary nursing practice in six hospital settings nas recently been campleted (USDHIHS, Did, 1982). This study has shown that the phases of development an institution goes through in successfully inplementing prinary nursing leacis to a model of professional nursing practice when fully completed. The study also demonstrated that changes are necessary in the entire patient care system and that the style of leadership of top management and the head nurse is crucial to successful implenentation of this professional nursing practice model.

Further analysis of the study has identified seven key organizational variables of a nursing service and demonstrated how they change following the introduction of primary nursing (Deiman, Noble and Russell, 1984). These variables included impetus to change; oryanizational configuration, leadership monels, and authority structure of the nursing departrent; knowledge ut_lization pattern of staff and management; staff performance evaluation procedures and measures; nursing departanent locus of control for decisiomnaking and planning; and contrul of information sources. These variables changed considerably with the implementation of primary nursing to the point that when it was fully untegrated as the method of practice, a model of professional nursing practice emerged. In this practice model, the oryanizational conflguration of the nursing department is designed to continually support and reinforce primary nursing. This results in the implementation of the primary nursing philosophy and uniform standards on all nursing units, and the power and authority within the nursing department being redistributed to the point of inqlementation of a collaborative leadership model with a shared value in professional growth of all nurses. The nurses in a setting using this model establish nursing as a professional entity within the organization, and the clinical staff
impose goverance standards on themselves, with primary nurses selecting their patients and choosing associate nurses who will be responsible for carrying ont the nursing plan in the aosence of the primary nurse.

Staff performance evaluation includes peer review using measures focused on clinical expertise. Hospitals with a model of professional practice nust be carmitted to the value of the practitioner at the bedside, and individual initlative and professional accountability must become the basis of measuring performance with rewarcs in keeping with proven competencies.

The estailishment of a professional model of practice through the implenentation of primary nursing provides a means for nursing departments that wish to provide their nursing staff with more authority while increasing individual nurses' accountability for their practice. Some nursing departments are noving to increased self-goverance with plans to grant staff privileges to nurses who wish to practice in that setting. Accrediting groups are placing more emphasis on planning and documenting care, teaching patients effectively, developing quality assurance programs and incorporating discharge planning (Homan: 1980). The standards of the Joint Commission on Accreditation of Hospitals (1983) require that the nursing department be organized to meet the needs of the patients for whom services are provided, that each nursing department set up a scope and standards for practice, detemine practice privileges and implement the nursing process. The model of professional practice has the features necessary to meet these requirements and it offers quality nursiny care, cost effectiveness and staff nurse job satisfaction (Burn and Tonges 1983).

Nurses and nurse administrators are deeply involved in aeveloping nethocis to assure that quality care will be provided with fewer resources in shorter periods of hospitallzation with appropriate transition to out-ofhospital care. Changes in practice are being introduced to accormodate rapid advances in health care delivery, medical technology and knowledge of the basic sciences. Aydelotte (1983) notes that many of these changes increase the costs of personnel and equipnent instead of reducing them and that new technology often creates higher levels of acuity, thereby increasing the requirements for professional and technological care. Patients come to the hospital for two reasons: the availability of high techuology equipment and services; and hagh quality nursing care.

The changing hospital environment has influenced the restructuring of nursing services, the realignuent of nursing adminnstrative priorities, the reevaluation of nursing departnent goverance, choice of nursing practıce methodology, prisrities in care delivery and the information and knowledge needs for decisionnakiny (Colenwn, Dayanic and Simmons, 1984; Grazman, 1983). Increasing requirements for nurses to absorb aduitional functions in their practice, to prove the effectiveness of their practice and to demonstrate the cost effectiveness of their care have led to greater interest in nursing research on clinical and care delivery problems. A small but growing number of nursing depar intents in hospitals thave opened nursing research units staffed by well prepared nurse researchers who are aole to lead the nursing statf in the identification of researchable problens, development of protocols and acquisitions of funding (Brown, et aì., 1984; Lancaster, 1984; MacKay, et al., 1984; Anderson, et al., 1985).

Clinical decisions are increasingly being made on the basis of what will provide the most effective outcane with the least cost ( $O^{\prime}$ Conner, 1984). The managenent and practice o'. nursing are rapidly changing as issues of cost contalnment, ethics, quality, and marketing are examined. Nurse administrators and researchers are now involved in developino valid and useful means of separating out the cost for nursing services from the basic daily hospital cost charged to a patient (Thampson, 1984). Historically, the cost of nursing services has not been separated from room or other charges. Neither patients nor the publli.c, consequantly, are aware of the cost of nursing care or of the differ... ies in cost vetween intensive and general hospital care. There have been several studies to examine methods for costing nursing services but none has yet yielded a model that can be used across hospitals (Curtain, 1983; Booth, 1985). Most methceds use a data base derived fran patient classification systems arnd most of these systems have been developed to meet the unique needs of nursing services within individual hospitals.

The impetus to examine the cost of nursing services comes fran the belief among many in hospital management that the current reimbursement system will require costing of nursing services in order to make caretul budget decisions. Two States have enacted legislation relative to nursing costs: The State of Maine requires that nursing care costs be identified on a patient bill and the State of New Jersey will require a costing system for nursing as of 1985. The need to examine the cost of nursing services has brought into focus the increasing requirement that nursing administrators and middle managers have competence in financial management and budget planning in order to advise and appropriately participate in decisionmaking when uwisigning or snifting of resources become necessary. Nurses in leadershif positions in hospitals can assume a crucial role in making necessam managenent decisions within an ethical framework that effectively preservs the quality of the care provided (DeJoseph, Petree and Ross, 1984; Mason and Daugherty, 1984; McClain and Selhat, 1984; Staley and Luciano, 1984; Sovie, Tarcinale, Van Putee and Sturden, 1985).

Recently a number of acute care settings have instituted a variety of approaches to the blending of teaching, practice, and research resfonsibilities, and they have developed inodel roles whereby a nurse can furiction simultaneously as teacher-practitioner, as teacher-researcher, or in all three roles (Hollshwander, Kinsey and Paradowski; 1984). These combined roles enable a pattern of nursing care that emohasizes the promotion of health and the prevention of illness, with a concanitent concern for the quality of life. The camm tireads anong the new roles are the concem for better care through improved practice and education, the greater ability to expedite clange within the health care delivery system, the necessity for strong adninistrative support to achieve the potential of these roles, the advisability of variability in the types of appointments, and the benefits of access to colleagues who represent a variety of clinical irterests. The institutions that have nurses in these combined roles are frequently in large metropolitan university medical centers where both nursing education and service components exist within the same settinys and where there is a significant ;ool of nurses with
baccalaureate preparation. This pool facilitates the development and appropriate utilization of nursing spec. alists in inproving clinical services and in facilitating clinical research.

## Mursing Homes and Exterded Care Facilities

These types of facilities providing care to a resident population of 1,378,702 are the secous largest enployer of nursing personnel. Of the apuroximately 667,000 who work in these facilities, 12 percent are registered nurses, 16 percent, licensed practical nurses, and 72 percent nursing aides. In terms of full-time equivalents in 1982, the ratio of total nursiny personnel per 100 residents was 40.4i for reyistered nurses, the ratio was 4.6; for licensed practical nurses, 6.2; and for nursing aides, 29.6. Same regional variations were noted in stofifing ratios; the widest variations were in registered nurse ratios, the least were in nursing aide ratios (see table 10-14).

Nursi.:- cure is, by definition, the principal type of service needea by residents of nursing homes and extercied care facilities. The resident population includes individuals of all ages ranging fram children handicapped by birth defects to the elderly who need assistance in coping with infimities or who are totally dependent an caretakers for maintaining vital functions. The elderly, however, constitute the most rapidly growing segnent of the population, requiring care over long periods of time. By the year 2000, it is estimated that 35 million people will be 65 years of age or oッr, an increase of 9 million over 1980 (USIC, BC, 1982). There is, however, only a limited amount of current data regarding the types and levels of nursing care needed by those who are cared for in these facilities.

According to a recent analysis of data from 37 States on residents in beds certified under Medicare as skilled nursing faciliti, 9 , le Health Care Financing Administration detenmined that 56 percent of $t s=$ residents were confused or disoriented, 48 percent were incontinent, and 30 percent required special skin care. Evidence presented to the Sracial Comnittee on Aging of the U.S. Senate supported the widely reported observation that increasing numbers of medicare patients are being discharged fram hospitals with needs that require skilled nursing care, and that 95 percert of nursing hame residents require sane assistance with activities of daily living.

Most of the nursing care in nursing hanes and long-term care facilities is provided by personnel with lesser training than registered nurses, few of wham have had fomal preparation or continuing education in gerontological/geriatric nursing. Nursing aides provide six times as much nursing care as do regisicered nurses and five times as much as licensed practical nurses (as shown in table 10-14). Since nurse aides are minimally prepared for their responsibilities and are unlicersed, they require more instruction and supervision than more experienced staff. The need for supervision of inexperienced personnel is compounded due to their high turnover rate. This has the effect of diluting still further the amount of professional nursing time for direct patient care.

## Public/Community Lealth Nursing

This section deals with nurses employed by local and State boards of health, visiting nurse services, agencies providing home health care and nurses providing service in public schools and occupational settings. Numerous titles have been used to identify nurse, whose practice is in the community, as opposed to institutionally based. Lack of clear operational definitions, for terms such as "community health setting," "public health nurse" and "community health nurse," nas complicated the task of collecting and analyzing work force data.
'ithe need to reach consensus on definition of these terms was one of several ssues addressed in a national invitational conference convened under the auspices of the Division oi Nursing in September 1984. Agreenent was reached that "cormunity health nurse" should be used as a generic term to descrive an individual providing care in the hame, school, or place of work. The tem "public health nurse" would refer specifically, at the Lasic level, to individuals whose practice focuses primarily on health pramotion, disease prevention, and health education, and with management, coordination, and c ntinuity of care within the cormunity. The distinguishing characteristic of the care they provide is the focus on health care needs of individuals and families who are most valnerable to illness and disability. A baccalaureate degree in nursing is a prerequisite to carrying out those functions and most nurses so prepared are employed by official agencies. At. the advanced level, the term "community health nursing specialist" would be used to designate an individual prepared it the master's level in any one of several clinical areas and practicing in a nouinstitutional setting. The temn "public health nurse specialist" would reter only to nurses with advanced preparation in public health whose practice is cormunity-focused and population-based and utilizes the body of knowledge and skills ois both public tealth and nursing.

Three sets of data provide information on nurses in cormunity heal th settings: the November 1980 National Sample Survey of Registered Nurses (USDHHS, ODAM, ;933); the January 1979 Survey of puolic Health Nurses (USDIIIS, DN, 1982) and the November 1983 liational Sample Survey of Licensed Practical/Vocational Nurses (USDHS, DN, 1983). Because of the definitional problems described and differences in methods of data collection, the numbers from each of the studies vary. However, these data serve to set parameters around the number of nursing personne]. employed in settings where community health activities are carried out.

The November 1930 sample survey of registered nurses, which collected data fram indiv:duals holding licenses to practice as registered nurses, estimated that almost 7 percent, or 83,000 , of the 1.27 miliion employed registered nurses were working in cormunity health settings (see table 10-10). An additional 2 percent, or 31,000, were estimated to be working in public schools (boards of education). The November 1983 sample survey of licensed practical nurses reported that an estimated 2.5 percent or 13,600 of the 539,500 licensed practical nurses amployed in nursing were jn
cannunity health settings (see taple $10-11$ ). A reldively small number of the employed licensed practical nurses, 1,700, worked in school settings.

The January 1979 Survey of Conmunity lkalth Nursing, which surveyed state and Territorial Nursing Directors and same local agencies, provides another set of data on nursing employment in camnunity health settings. In addition tr) pro:iding data on reyistered nurses, this study contains data on the licerised practical nurse complement and on auxiliarles to nursing personnel. It should be pointed out that che data on registered nurses provide a count whish is significanty lower than the one found in the 1980 sample Survey. Even though the National Sample Survey was carried out about two years after this study, it cannot be assumed that the differences between the two studies are solely due to the passage of time.

According to the January 1979 study, there were 56,993 registered nurses employed in camunity health settings, exclusive of boards of education, in the United States and the territories of Guam, Puerto Rico, and the Virgin Islands. Also employei were 6,513 licensed practical nurses and 35,073 staff person identified as auxiliaries to nursing. Over three-quarters of the auxiliaries were part-time workers in contrast to 32 percent of the licensed practical nurses and 19 percent of the registered nurses. on a full-time equivalent basis, there were 51,438 registered nurses, 62 per .... of all full-time equivalent nursing personnel. The 5,456 full-time equivalent licensed practical nurses represented 7 percent and the 26,107 auxiliaries, 31 percent.

Substantial differences were noted in the distribution according to the types of settings in which different categories of nursing personnel were located. The majority of the registered nurses ( 56 percent) and 39 percent of the licensed practical nurses were employed by official State and local agencies while only 30 percent of the nursing care auxiliaries were employed in such agencies. The largest single employer of nursing auxiliaries was the organized hame health agencies. Forty-four percent of these workers were employed in these agencies.

These same agencies employed another 39 percent of the licensed practical nurses but only 18 percent of the registered nurses. It should also be noted that more tilan half of the part-time auxiliaries and 77 percent of the part-time licensed practical nurses worked in these oryanized hame health agencies. Therefore, on a full-time equivalent basis, these agencies had 8,521 registered nurses ( 28 percent: of the nursing personnel), 1,723 licensed practical nurses ( 6 percent), and 20,310 auxiliaries ( 66 percent).

In addition to those employed in the types of aqencies identified above as agencies in which community health services might be delivered, the practice of nursing within the occupational health area may be subsumed under the broad category of cormunity health services. The November 1980 sample survey of registered nurses estimated that 29,162 nurses, or 2.3 percent of the 1.27 million employed nurses, were working in occupational health settings (see table 10-10). In the September 1977 sample survey,
there were an estimated 24,317 registered nurses employed in such settings. Thus, nurses employed in occupational health areas had increased 20 percent between 1977 and 1980. The Novenber 1983 sample survey of licensed practical nurses estimated that about 6,000 LPNs or about 1 percent of the almost 540,000 employed at that time, were working in occupational health settings (see table 10-11).

## Other Ambulatory Care Settings

Given the multiplicity of settings in witich nursing personnel are employed throughout the health care delivery system, the earlier discussion on employment settings covers only a portion of nursing persomnel. (The other areas of employment are shown in tables 10-10 and 10-11). The November 1980 Sample Survey of Registered Nurses estimates tiat about 6 percent, or 72,000 of the 1.3 million registered nurses in practace at that time, were employed in physician/dentist ambulatory care settings. For licensed practical/vocational nurses, the lkvember 1983 sample survey of those nurses estimates that about 9 percent, or 49,000 of the almost 540,000 enployed at that time, were in physician/dentist ambulatory care settings. 0 . H registered nurses and licensed practical nurses were more likely e'ployed in offices in which more than one physician is practicing than in offices of solo practice physicians. Only about 4 out of 10 of these nurses were employed by solo practice physicians. Among those in multi-physician practices, about 3,000 registered nurses in 1980 and 3,800 licensed practical nurses in 1983 ware employed in health maintenance organizations.

Student health services in private elementary and secondary schools and in colleges and universities engaged about 11,000 of the registered nurses in 1980 and about 2,200 licensed practical nurses in 1983. A final group providing ambulatory care service to the population are those who are self-employed. While still a relatively small segment of the registered nurse work force, numbering about 11,000 in 1980, the number of those nurses had about doubled in the 3 -year period between 1977 and 1980.
2. Selected Areas of Practice

## Nurse Practitioners

Federal support for training of nurses for expanded roles has existed since the rid-1960s. During the sixties and early seventies, a general nursing legislative authority provided Federal support for projects to define the role, document tive quality of care provided, and evaluate and test the safety and efficiacy of the nurse practitioner role. The outcomes from these projects stimulated interest in the development of a discrete authority for nurse practitioner projects.

In 1975 a separate authority for nurse practitioner training was included in the Nursing Training Act of 1975. Fran 1973 through Fiscal Year 1984, $\$ 97.3$ inillion have been invested by the Federal Government in nurse practitioner training.

Nurse practitioners are registered nurses who have advanced educational preparation beyond the basic requirements for licensure. They have successfully completed a formal proyram of study as preparation for an expanded nursing role in the delivery of primary health care in a variety of settings. Their functions include: health assessment; physical examination; development of a plan of care; management of minor acute self-limiting conditions and chronic illnesses; instruction and counseling of individuals, families and groups; health promotion and disease prevention activities; coordination of services and referral. The focus of their practice depends on their specialty area such as: children, family, the elderly, and wamen's health. The nurse practitioner's scope of practice is necessarily broad since they facilitate access into the health care delivery system and provide continuity within the system as the patient moves from one part of the system to anotiver. Because they are licensed as nurses, they are accountable for their nursing practice, which includes numerous functions based upon independerit nursing decisions.

In the perfonnance of those camponents of their role traditionally provided by physicians, nurse practitioners function within the protocols for practice establisked collaboratively by the physician and nurse practitioner. Thus, nurse practitioners can independently manage a client without the client necessarily seeing the physician; however, it is always in the context of a system which provides for consultation, collaborative management or referral.

Nurses who practice as nurse practitioners or nurse midwives represent a relatively small segment of the registered nurse work force. According to the National Sample Survey of Registered Nurses, November 1980 (USDHiS, CDAki, 1983), there were an estimated 16,757 reyistered nurses who were in nurse practitioner and nurse midwife positions. This number represented 1.3 percent of all employed registered nurses. Seventy-eight percent of the nurse practitioners and nurse midwives in this group received formal training. About 85 percent of those with formal training had certificate preparation and 11 percent had master's education.

Proyrams to prepare nurse practitioners and nurse midwives have increased with Federal support for such training. Programs are characterized by variations in duration, content, type and educational philosophy and are offered at two levels of preparation, certificate and master's. The certificate prograns are a minimum of 9 months of full-time study; the graduate programs l-2 years of full-time study. Both types of programs combine the theory and practice necessary for conducting health assessment and physical examinations, diagnosis and treatment, and management and provision of services to restore health. Emphasis is placed on health maintenance, disease prevention and health education and counseling. The physical and psychouccial courses in the master's program are usually taught at an advanced level, building on the basic science courses required for the baccalaureate degree. Master's degree programs include a research component and frequently a minor in teaching or adninistration. The certificate programs generally award continuing education credit; a limited number award academic credit.

In an attempt to evaluate educational efforts to prepare nurse practitioners, the Division of lvursing has supported a series of studies tu provide national dati on nurse practitioner proxrauls, the graduates of these programs and their employers. These stuales, carried out under contract by the State Lniversity of New York at Buffalo (SUNY), have rade it possible to make comparisons and document trends based on data collected over 10 years.

In 1973, tne SUNY study identified over 130 programs; in 1980 this figure had increased to about 200 programs. The estinated number of graduates produced from these progiams between 1970 and 1981 is approxinately 20,000. As of early 1985, the number of programs is approxinately the same, representing stabilization in their growth. In FY 1964 about 45 percent, or 86, of these proyrams received Federal support under the nurse practitioner legislative authority.

There are same major trends that can be noted from these studies. In the early years of the nurse practitioner movement (1973), 65.5 percent of the proyrans were short-term certificate programs. By 1984, 77.2 percent of the procrams funded under the nurse practitioner training authority were at the master's level, 19.3 percent at the certificate level and 3.4 percent were RN/ESN prograns. (This shift nas evolved because of the growing recognition tirat primary care practice requires the breadth of education available primarily at the graduate level.)

The number of graduates fron master's programs had also increased significantly. Fifty-nine percent of the total number of master's-prepared graduates completing proyrams frum $\perp 70$ to 1981 graduated in the last 4 years. According to the 1980 SUNY study, 43.7 percent of the estimated number of nurse practitioner graduates completing the program from 1978 through 1981 would be prepared at the master's level and 56.2 percent at the certificate level.

The primary care specialty areas for which nurse practitioners are prepared have reflected a sensitivity to perceived health care needs and the employment market. The pediatric nurse practitioner proyrams established in the early years focused mostly on well child care. Today, sume of the master's PNP programs have expanded their focus to include content and clinical experiences to prepare their graduates to work with children who are chronically ill, physically handicapped or learning disabled. These children were identified as one of the most underserved groupe in need of primary health care. Increased efforts in providing primary care for these children was recamended in the Surgeon General's report, Health People (USDHEW, OASH). Another area of potential growth for PNPs and school nurse practiticners is school healtin. The recent report on the four-State demonstration project supported by the Robert wood Johnson Foundation showed that school nurse practitioners can diagnose and treat many health problems, can increase access to health care and can improve the health of school children (Robert wood Johnson, 1985).

Over the years, the SUNY studies have shown that there has been a significant increase in the percent of farnily and adult programs preparing nurse practitioners. The broad category of adult programs includes the gerontoloyical programs which focus primarily on the elderly. riscal year 1984 funding of nurse practitioner prograns also reflects this trend. Approximately 60 percent of the projects funded were for these specialty areas. Twenty-five percent of these proyrams focused specifically on the elderly. Unfortunately, the actual growth in the number of programs preparing gerontological nu-se practitioners has not changed significantly over the past few years, despite the Federal Government's and private sector's emphasis in this area. The limited job market for the graduates and the bi rriers to reimbursement for nurse practitioner services affect not only the growth in the number of programs but also the enrollments.

Data gathered from the latest SUNY study indicated that the proportion of graduates engaged entirely in nurse practitioner practice ( 65.4 percent) has decreased slightly fram 1973 ( 69.1 percent) with a corresponding increase in the proportion who reverted to practice in traditional roles ( 19.5 percent). This, according to some studies (Lazarus, et al.), could be a reflection of same of the constraints to the nurse practitioner movenent that come from physicians, from restrictive State licensing and from urfavorable reimbursement practices. is barriers continue to increase in some areas of the country, job opportunties for nurse practitioners decrease. Other graduates ( 2 percent) practice as nurse practitioners and teach in nurse practitioner training programs or provide consultation to other nursing staff.

Changes have also occurred in the practice setting locations in which nurse practitioners work. The porion employed in rural areas (2,500 or fewer population) has substantially decreased from 21.6 percent in 1977 to 9.4 percent in 1980, while the proportion working in inner cities has increased from 22.6 percent to 47.3 percent. Over one-tinird of nurse practitioners practice in commanities of fewer than 25,000 population, including rural areas. Certificate-prepared nurse practitioners were more likely to practice in rural areas and towns $(2,501$ to 5,000$)$. Master's-prepared nurse practitioners were more likely to practice in large cities (over 100,000 ), specifically inner-city areas.

Regardless of the area of practice, whether inner city or rural, over half of nurse practitioners' patients had annual incanes of under $\$ 10,000$. Higher income ( $\$ 20,000$ and over) patients represent a relatively small segment of the NP patient population (less than 14 percent) but there is a significant increase in this direction. Nurse practitioners are still moving into new health care delivery sites. In 1980, 45.6 percent of the certificate graduates and 36.1 percent of the master's graduates were the, first NPs in the setting.

Approximately 87 percent of the graduates responding in the SUNY studies reported they were amployed as nurse practitioners: inore than 64 percent in ambulatory practices such as community clinics, HOB, physician offices; 14 percent in public offices, schools systems, and schools for the mentally
and physically handicapped; 8 percent in health departments or hame health agencies; and almost 3 percent in extended care facilities. The number of nurse practitioners working in extended care facilities almost doubled. As noted in the IOM study, there is a continuing need for the services of nurse practitioners in these settings.

For the nurse practitioners surveyed in the SUNY studies, salary was +!e major, if not the only, source of income. Their average range gross annual income was fram $\$ 20,251$ to $\$ 21,278$. In all instances, the graduates' anticipated increase in salary as a result of their education, was less thar the actual increase received when employed as an NP. The 1980 National Sample survey found that salaries of Revs with master's degrees averaged \$22,000 (Bentley, et al., i982).

As the expansion of the nurse's role evolved, so did the credentialing process for nurse practitioners. State licensure as a reyistered nurse, granted by the individual states on the basis of passing a uniform examination, is the mininam legal requirement for all professional nurses, and is the basic legal requirement for practice as a nurse practitioner. According to a survey by C. LaBar (1983), about 43 States have statutory or regulatory references to advanced nursing practice in their nurse practice acts or th: rules which allow nurses to function in the expandea role. Almost all States recognize the role of the nurse practitioner. In addition to their license, some nurse practitioners have obtained "certification". Certification provides tangible recognition of professional achievement and clinical expertise in a particular field of nursing practice. Several professional associations or boards "certify" nurse practitioners.

There have been numerous studies to document the impact and effectiveness of nurse practitioners. The report of the Graduate Medical Education National Advisory committee concluded that "... nurse practitioners and nurse midwives can make positive contributions to the health care system, can enhance patient access to services, decrease cost and provide a broadened range of services. Certain consumers prefer the non-physician provider" (USDEHS, HRA, 1980). The study titled "The survey and Evaluation of the Physician Extender Reimbursement Experiment," conducted by Systern Science Incorporated, strowed that physician practices which included nurse practitioners provided more visits per $\$ 1,000$ of practice cost than solo physician practices and at a higher level of quality care (USDHEW, HCFA, 1977).

In another study, salkever et al. (1982) concluded that care by nurse practitioners for many ailments is less costly than care by physicians but just es effective. This study used a new way of assessing the cost effecciveness of health practitioners based on time spent by providers, (weriead charges for space, and costs of ancillary serrices and drugs. Ramsey et al. (1982) showed that nurse practitioners not only provide primary care equivalent to that of physicians, but also offered something special that increases adherence. Punyan's (1975) studies of nurses in extended roles, caring for chronically ill patients, have shown outcames of care that often elude physicians. The National School Health Service
project showed that when school nurse practitioners were placed in school settings to provide health care that "... medically underserved children had access to care ... a significant amount of illness was found," and that "almost all the health problens fourd ( 96 percent) were followed up and resolved or still under treatment" (Robert Wood Johnson, 1985).

After reviewing numercus studies about nurse practitioners' and physician assistants' performance, the Congressional Budget Office concluded that they provide high quality primary medical services, improve access to care, and are potentially cost effective (The Congress, (180, 1979). An Office of Tecl.ology Assessment report confims these findings but states, "while experiences show that nurse practitioners and other physician extenders can lower average expenses per visit by as much as over one-third, the manner in which the physician or institution uses then and the way in which time freed through task delegation is used, will detemine whether potential saving is realized" (LeFoy and Solkowitz, 1981).

## Clinical Specialists and Nurse Clinicians

In responding to the 1980 National Sample Survey request to indicate the nature of their nursing position from a list of 26 position titles, an estimated 19,070 nurses had the position title of clinical nursing specialist and an estimated 8,005 had the title of nurse clinician. The estimated number of clinical specialists has almost doubiad since the 1977 sample survey; however, the number still represents less than 2 percent of employed registered nurses. Among the estimated number of nurses with position titles of clinical nursing specialist, 27 percent had at least a master's degree, and of the nurse clinicians, 15 percent had at least a master's degree. Although advanoed educational preparation in nursing is recommended by the nursing profession for practice in specialized areas, these percentages suggest the majority of nurses now functioning in these roles developed their expertise on the job, through programs of continuing education, or through independent study. Nurse clinicians and clinical nursing specialists, as the titles imply, are expected to be experts in clinical practice related to a field of nursing science. The Institute of Medicine report and the National Commission on Nursing stuay recomend that clinical specialists, in addition to their basic preparation, have formal education, generally at the master's level.

Clinical nursing specialists practice in a variety of settings, and hold a variety of position titles, many of which have no commonly agreed upon role definition. For example, nurses with master's-level, advanced clinical education (in certain areas of nursing) may be called primary care specialists by position title when they practice in an expanded role; or they may be called cilinical managers when they hold positions that combine advanced clinical practice with management of a service unit. Attention has recently been directed toward the potential of advanced clirical education for meting the particular health problems of geriatric and nursing hane patients, as well as for providing primary care in hones, ambulatory facilities, long-term care facilities, and other health care institutions (IOn, 1983).

In creating clinical specialist prograns to develop various new kinds of nurse specialists, the nursing profession responded both to market signals that indicated a denand for new services from nurses, and to factors external to the profession that signaled the need for change in advanced practice methods or foci. It is typical, however, that the educational and experiential qualifications and job content in the market place are not always well defined witen educational programs are being designed to meet an innovative challenge in the health care arena. A current example is the growing role of nurse specialist in hame care. This role blends aspects of cammity health, acute care and nursing adrainistration. It is a unique area of nursing practice that is now developing and appears to be different from the three areas fran which it is ennerging.

The primary characteristics of nursing practice at an advanced level are professional authority, accountability, responsibility, and collegiality with others (Diers, 1985). Clinical nurse specialists interweave the art and science of nursing at an advanced level by using their expertise in patient care to increase excellence in the delivery of nursing care to a specialized group of patients (Holt, 1984). í person practicing in such a manner has specialized at the master's level in a selected clinical nursing area and prepared for a functional role in advanced clinical practice, management or teaching.

Sone clirical specialists practice through using their furctional role preparation as teachers in staff development and in direct teaching positions. clinical specialists in such teaching positions can work collaboratively with siaff nurses to improve the quality of patient care and patient outcomes as well as to advance the state of nursing practice (Sparacino, 1983). More often, when this collaborative arrangement does not occur there is little change in nursing practice. But it has been demonstrated in several studies that when a clinical nurse specialist (a) is perceived as a clinical expert, (b) has a leadership position and (c) either a designated or acquired authority base which is visible, familiar and acceptable to nursing staff and the specialist alike, then the specialist can positively affect nursing practice and patient care outoomes (Little und Carnevali, 1967; Georgopoulos and Jackson, 1970; Georyopoulos and Sana, 1971; Ayers, et al., 1971; Nurphy, 1971; pozen, et al., 1977; Girouard, 1978; Linde and Janz, 1979). The major difficulty described by Stevens (1976) is that the clinical specialist role was not conceived or designed to fit into the typical bureaucratic, nierarchical management system of health care institutions. Further, she descrives the original, loosely defined role as an administrative anomaly, grafted to a system in which it does not comfortably fit.

The issue of ner/his authority in a practice setting is one of the many challenges or problems a nurse specialist encounters. Hiealth agency and hospital oryanizat al patterns above the first-level care unit are based on functional roles, rather than clinical relationships. It is not so much an issue of being in a line or staff relationship, as it is having a position of functional authority (Elrenreich and Steward, 1979). Adaitional ingredients for facilitating the specialist's role are: clearly defined position descriptions, use of a title consistent with the functions

## BEST COPY AVAILABLE

expected, and oryanizational sanction of the nurse spechalist's authority to make chanye where and when appropriate (Baker and Kranner, 1970; Colerick, Mason ami Proulx, 1980).

In the study to identify magnet hospitals that consistently attract and retain professional nurses in practice, the directors of nursiny wind were interviewed identified several factors that facilitate their nosprtals' success. Among these were the avallability of clinical nursing specialists as patient care and staff rescurces, clinical dudancement (career ladder) piograms, and joint practice camnttees. Nany of the magnet hospitals enploy master's-prepared clinical specialists, who are descrived as adding a dimension of nursing care that wiculd otherwise not de available to patients and their families (Arierıcan Acadenly of Nursing, 1983). The IOM report on nursing and nursing exucation notes that the demand for specialists has not abated, that the rate of increase in technological complexity of care has not declined and that yreater collaboration and shared responsibility anong the various segments of nursing is recomnended (IOM, 1983).

Sume clinical specialists practice in a managerıai role, and same intormation indicates that the use of clinical specıalists in this role is increasing, particularly at the midale management level. Clinical and management responsibilities for a nurse in a clinical mandgement role, such as a clinical unit coordinator or head nurse, are not discrete and separate activities. The essence of this type of cole is integration of comicul and organizational management expertise and responsibilicies so that optimal patient care becones the focus of the organzation ana so that nursing rescurces are managed in a manner that facilıtates yuality patient care (Williams and Cancian, 1985). Nurses in positions blending clinicat specialist and mandgement risles have been found effective when administrative and protessional authority are combined because the power of each is enhanced (Wallace ard Carey, 1983). The placelkent of clinical nurse experts who lave knowledge of the nursing manayenent role in madule management positions retains clinical expertise in the institutional setting when budgetary cutbacks are necessary.

## Nurse Adminıstrators

A nurse administrator exercises authorıty and responsibility for allocation of resources, introduces changes that retlect current practice, develops and implements findings from clinical and orydnizational research, and exercises appropriate judgment in the manayement of human resources. rithe majur perspective is on policy, long range plaming akk fiscal affairs. The environnent in which nurse administrators work today is one of uncertainty, hallmarked by change in which many forces are operating. Adrainistrators are urged to exanine effectiveness and efficiency of personnel, wastage of both supplies and personnel, and the relation of departnental structure to function, while akintaining high yuality services to patients, institutional solvency ard ability to meet competition have becaile of paranount importance (Aydelotte, 1983; beyers, 1984). In the new competitive arena of the health care industry, tile challenge to the nurse administrator is to maintain both quality care and a soumd financial
base for the nursing department. The power of the nurse executive to shape the practice of nursing is the crux of change in nursing services. Accepting that power, understanding its nature and using it to achieve desired outcomes are recognized as essential for nurse executives in the current climate of change that pervades the health care system (Beyers, 1984).

A study of a sample of the membersinip of the American Society for Nursing Service Administrators (now known as American Organization of Nurse Executives) conducted in 1982 indicates that the role of the nurse executive has been broadened to increase involvement in general hospital affairs (Aydelotte, 1983). The senior nursing administrator in a hospital reports to the highest administrative officer, has major responsibility for preparation of the nursing budget and its management, participates in planning the overall hospital budget and in setting its priorities, and attends hospital governing board meetings and medical executive comnittee meetings. On average, this nurse administrator has taken course work in administration, engages in community and professional affairs and has recently accrued continuing education hours. Tenure in current position was from one to five years and responsibility for areas other than nursing, such as those closely related or having a high component of nurses on staff, was not uncamon. Additionally, the report indicates that certain trends were beginning to become evident, such as the movement toward requiring higher credentials for nursing service administrators, the appointment of nursing service administrators to hospital governing boards, the use of titles that reflect administrative and corporate responsibilities, the adaption of primary nursing as a methodology of choice for delivering care, the assumption of responsibility for out-of-hospital units or departments, the inst.. Ition of bylaws for the nursing department, and the use of faculty titles to indicate educational responsibilities.

The ecunamic and organizational changes in the health care system are leading to more streamlined organizational structures, more accountability and more responsibility for the senior nurse executive and for nurses in midale management roles. Continued campetence in clinical nursing skills is beconing less emphasized for senior management positions than are leadership ability, knowledge of financial management, organizational functioning, long range planning and knowledge of the general health cere system. Not infrequently, the senior nurse executive in a setting has responsibility for departments other than nursing which relate to caring functions. These nurse executives usually hold academic degrees at the graduate level and usually have had administrative content in their programs (Aydelotte, 1983).

Middle managernent positions in a nursing department may be at the department hear! level for which there are various titles, such as supervisor in a cammunity or home health setting; clinical director, clinicial cooruinator, head nurse or clinical manager in an acute care secting. Appointmert to these types of positions frequently requires canpetence in a clincal nursing specialty at an advanced level and competence in the managenent of a nursing service unit. The nurse with
these competencies would hold a master's degree with a major focus in a clinical speciality with role preparation in administration or a major in nursing administration with a minor in a clinical specialty. Specific education provides only part of the requirements for a nurse to function successfully in a management role. It is to the hwalth care organization's benefit to train ard prepare nurses in their employment who are entering management. is a nurse moves fran clinical to management specialty practice and up the management ladder within an organization, there is increasingly less emphasis on technical skills and more on human resource management skills and conceptual ability. The nurse manager must be able to see the overall goals of the heaith care organization, appoint people who are best able to realize these goals and give them the incentive, guidance and support needed to fulfill the goals (Gleeson, Nestor and Riddell, 1983).

Nursing directors and middle managers have been identified as pivotal to the success of the nursing department, to the develomment of professional nursing practice within an agency, to the enhancement of collegial relationships through decentralized authority and to retention of nurses through policies and practices that provide a caring climate for staff as well as for their patients. (American Academy of Nursing, 1983; National Camission on Nursing, 1983; USDHHS, 1982.) With changes in reimbursement there are fewer hospitalized patients but those that are hospitalized require increasing intensity of care and services and are discharged sooner to be cared for in the home and community.

These changes have resulted in an expansion of the number of kinds of coordination activities for the nurse to carry out. It has been documented that the nurse has the knowledge and responsibility required of the integrator of patient services, but infrequently also has the appropriate authority to carry out this aspect of the nursing role in the eyes of representatives of otner departments. To improve this situation and return the central focus of the nurse to the caregiver role, the top administrator of nursing should be in a position in the organizational structure to facilitate gaining a high degree of responsiveness of the respective department heads to patient needs (McClure and Nelson, 1982; National Commission on Mursing, 1983). There is indication that increasing numbers of nursing administrators are achieving authority cammensurate with their responsibilities and are decentralizing their control within the nursing organization to middle level managers acting as department heads and to staff nurses for clinical decisiomaking (Lancaster, 1985; Beyers, 1984; Fuszard, 1983; Poulin, 1982; Fourcher and Howard,1981).

## Nurse Educators

Registered nurses engaged in the teaching of students in schools of nursing are an important segment of the nurse supply. Although a relatively small group, about 4 percent of the total registered nurse supply, they are key to the assurance of a sufficient and appropriately qualified source of practitioners of nursing. As pointed out earlier in this report, the availability of those qualified and appropriately prepared to undertake the teaching role has long been a concern of the profession as well as of policymakers at all levels.

Preliminäry data fron a January 1984 National League for Nursing study of faculty and administrators in nursing educatıonal prograns provided a count of 26,771 taculty wembers in nursing educational prograns for registered nurses. Forry-seven percent of these were teaching in baccalaureate and/or nugher degree prograns; 35 percent in associate degree programs, and 18 percent in dipland programs. In addition to the nuniver erployed, the nursing education proyrans reported a total of 694 budgeted vacaut positions for a vacancy rate of 2.9 percent. the vacancy rate was highest in the Daccalaureate and higher degree prograns. About 3.5 percent of the budyeted full-tine equivalent positions in these prograns were vacant comparec to 2.3 percent in associate degree prograns and 2.2 percent in diploma prograns.

For all types of proyrams except diplana proyrarns, the vacancy rates were lower in 1984 tian in 1982 and 1980; the rates in baccalaureate and higher degree proyrams were consistently higher in all three years than were the rates for the other types of prograns. iv some extent this may be a reflection of the availability oí appropriately qualified nurses for these faculty positions. The November 1980 Natiunal Sample Survey of Registered Nurses estimated that 33 percent of nurses with master's degrees and 66 percent of nurses with doctoral degrees held positions in nursing education. Faculty enployed in baccalaureate and higner degree programs are more likely to have advanced preparation than faculty in otner types of
 17 percent of the baccaldureate and higher degree proyram faculty, or 2,137, had doctoral dergrees. In total, 91 percent of the faculty with doctoral preparation in education programs were employed in baccalaureate or niyher degree prograns. The remainirg faculty in the baccalaureate and higher degree programs nostly had master's deyree preparation. The naster's degree is considered the minimum acceptable level of preparation for tedaning in institutions of ingher education. About 32 percent of the associate deyree progran faculty and 47 percent of tine diploma proyran faculty had less thain inaster's deyree preparation.

Data from the January 1984 study descrionny the administrators in nursing educational proyrams and the faculty in the practical nursing proyrans were not available at the tine of this writing. January 1982 data on adnuinistrators of nursing educational proyrans, both registered nurse ana practical nurse programs, reported 2,339 administrators. Of these, 20 percent had doctorates and 59 percent had master's degrees. Administrators in baccaldureate and higher deyree prograns were more likely to have doctorates than tiwse in other programs; 71 percent had doctorates while 16 percent of those in associate degree prograns had doctorates. Four percent of the diplona proyram administrators and 3 percent of the practical nursing prograrn administrators were doctorally prepared. About 47 percent of the practical nursing program administrators had less than master's dergree preparation.

The January 1982 study also reported tinat a large majori'y of the faculty in prac'ical nursing programs were also prepared at less than baccalaureate level. Of the 5,464 reported nurse faculty in practical nursing programs, 81 percent had no more than a baccalaurate degree. Fifty-two percent of all the faculty had baccalaureate degrees while 22.5 percent were diplana-prepared and 6.7 percent had assiciate degree preparation (NIN, 1983-84).

## Nurse Researchers

Although a relative newoomer to the research arena, nursing research is well established as a distinct area of scientific inquiry. In its 1977 report, the Committee on a Study of National Needs for Biomedical and Behavioral Research Personnel of the National Academy of Sciences, published the following definition of "nursing research:"

Nursing research focuses on the role of nursing care in the prevention of illness, care of the sick, and the promotion and restoration of health. Although it relies lipan and utilizes the substartive scientific information and methodology provided by the other biological and behavioral sciences, it differs from those other scientific areas in that it focuses on their relevance to nursing ratiner than other aspects of health care.

By tradition, natural inclination, and previous training, nurses have a special interest in and potent ial competence for research in this area and it is natural that they sloould wish to play a part in its advancement. Nurses view health problems differently and direct the results of their research to quite different audiences than other biamedical and behavioral scientists. Hence, nursiny research is usually done by nurses. 'The comnittee therefore concurs that nursing research is properly regarded today as a d'stinct area of scientific inquiry (Camittee, 1.977, p.152).

The Camission on Nursing Research of the American Nurses' Association, the forenost professional policy-making isdy for nursing research in the United States (now called the cabinet on Nursing Fesearch) published the following definition of "nursing research" in 1980:

Nursing research. develops knowledge about health and the promotion of health over the full life span, care of persons with health problems and disabilities, and modalities to inurove the gality of life for individuals regardless of nealtn state, but particu'arly for groups such as the frail elderly, the chronically ill, and the temainally ill. These foci complement bicmeaical research, which is primarily concerned with causes ann treatments of disease (Cominission on liursiny Research, 1950, p. 219).

The Bureau of Health Professions serves as the Federal focal point for support of nursing research and for the training of nurse investigators. foth the extramural nursing research program and the fellowship program for predoctoral and postdoctoral study by nurses were established in 1955 as a joint responsibility of the Division of Nursing Kec,uurces (DNR) and the National Institutes of Health (NIH). 4 Since that time, the Federai Goverment has been the single most important source of support for research and research training. Early research focused primarily on studying ways to imprcve procedures and on educational and adrninistrative issues. By the mid-1970s there was a discernible shift toward systematic inquiry designed to evaluate the extent to which practice strategies are effective in improving care and in extending the scientific base of nursing prartice.

Research productivity has increased as the cadre of nurse researchers has grown; research itself has become more fimly anchored in a theoretical frameworn, and research methodologies have become more sound and sopnisticated. These changes have been fostered through the program of research support administered by the Division of Nursing. In addition to supporting discrete projects subuitted by individual investigators, awards have been made to rchools of nursing offering doctoral programs to stimulate nursing research in areas tuat emphasize special health needs of the Nation and to advance research efforts and resources of faculty. program grants have been a mechanism for supporting clusters of studies around a single theme. In order to help new investigators establish themselves as bona fide researchers, new investigator nursing research awards have been made to support small studies of high quality. Lang recognized as a need, :losing the gap between research and practice by translating research outcames into clinical knowledge for use in practice settings is now a nursing research program pri rity. This emphasis is aimed not only at utilization of research findings but also at creatiny a climate of inquiry to ncurish research interest of students and practicing nurses.

Despite these efforts, the IOW study (IOM, 1983) concluded that lack of a stable base of adequate funding for research and tire scarcity of nurse researchers have inhibited the development of nursing investigation. The 1980 National imple Survey of Registered Nurses estimated that approximately 3,000 nurses, 0.2 percent of the J .27 million employed registered nurses, held doctoral degreus, the generally accepted credential for research capability. Nine out of 10 so prepared are employed, most an a full-time basis, in teaching or administrative positions. Less than 5 percent reportei research as their major function. In order to expand the cadre of nurse researchers and provide impetus for the initiation, coordination, monitoring and dissemination of clinical and operational nursing research, the IOM study recrannended establishment of an entity or center at a level in the Federal Government that would have organizational visibility and scientific prestige.

[^15]During 1984, congressional interest in creating a more prominent organizational identity for nursing research was strongly endorsed by the nursing cormunity whicin worked for passage of a House bill to establish an Institute for Nursing at the National Institutes of Health or, as an alternative, for a Center for Nursing Research in a Bureau of Nursing as proposed in a Senate Bill. The House bill, ultimately passed by the Congress, was pocket-vetoed in October 1984. Subsequently, several activities were undertaken by the Assistant Secretary for Health and the Director, N NH , to determine what efforts could be undertaken administratively to strengthen nursing research within the Public Health Service. Acting on one of the recommended actions, the Secretary announced the establishment of a Center for Nursing Research in the Division of Nursing on January 14, 1985.

The Center's objectives were to facilitate: (1) building of the body of scientific knowledge that underlies nursing practice, nursing services administration, and nursing education; (2) strengthening these areas through the utilization of such knowledge; (3) career developmert of nursescientists; and (4) developing ressarch resources in settings where nursing research is carried cut.

## 3. Rates of Campensation

The respective sample surveys are the sources of information on the distribution of earnings of registered and licensed practical nurses according to location of practice. For registered nurses, until the data from the November 1984 survey becomes available, the latest information is for November 1980. For licensed practical nurses, the data are for November 1983.

Registered nurses working on a full-time basis averaged $\$ 17,398$ a year in November 1980 (see table 10-15). Same variation was noted in salary level according to type of work setting and the position level. The lowest average salaries in the 1980 study were for full-time nurses employed in physicians' offices, $\$ 12,048$, and for staff nurses in nursing homes, $\$ 13,921$. Salaries for hospital staff nurses averaged $\$ 16,521$. Within the hospital area itself, salaries of nurses in top administrative positions averaged $\$ 24,486$, only 48 percent above the average salary of staff nurses. Salaries of clinical nursing specialists and nurse slinicians averaged only about 19 percent more than staff nurses.

Salaries of licensed practical nurses working on a full-time basis in November 1983 avaraged $\$ 14,395$ a year (see table 10-16). As was true for the registered nurses, their average earnings variea according to their work setting. Those working in student health service settings on a full-time basis averaged the least, $\$ 11,053$. Those in hospital settings had a higher average salary than licensed practical nurses as a whole. The average salary for practical nurses employed in houpitals was $\$ 15,106$. Similar to the findinys for registered nurses, those in nursing homes and physicians' offices averaged less than licensed practical nurses as a whole, $\$ 13,463$ and $\$ 13,068$, respectively.

Average earnings also vary according to the geographic location of nurses. For both registered nurses and licensed practical nurses, the highest average earnirgs for full-time employment were found in the Pacific region. For registered nurses, the average earnings in the Pacific region were about 14.3 percent higher than in the councry as a whole; for licensed practical nurses, they were 14.8 percent higher. For both groups, the lowest average sarnings were found in the East South Central region. Here, however, registered nurses' averige earnings were closer to those of the country as a whole than were those of licensed practical nurses. Registered nurses averaged 5.8 percent less in the East South Central area than in the country as a whole while the licensed practical nurses averaged 9.8 percent less. In general, salary levels ranked about the same in all regional areas when compared to the national average salary for each occupational group except in the Middle Atlantic and the West North Central region.

In the Middle Atlantic region, the average earnings for full-tine registered nurses in their principal position was lower than the average ror all nurses, ranking fourth fran the bottom among the nine regions. For licensed practical nurses, the average in the Middle Atlantic region was higher than the national average, ranking seventh from the bottom among the nine regions. Both registered nurses and licensed practical nurses in the West North Central region averaged less than the nurses in the country as a whole. However, the average salary for registered nurses ranked fifth from the bottom while the average salary for licensed practical nurses was second from the bottom.

## D. A LOOK TO THE FUTURE FOR NURSING PERSOINEL

## 1. Future Supply of Nurses

In order to meet the requirements of P.L. 94-63, staff in the Bureau of Health Professions developed a model fram wisich the projection of the supply on a national and State basis can be made. The model was built around the dynamics of the flow of nurses in and out of licensure and the work force. For registered nurses, the model also takes account of tie varying educational levels which these nurses achieve and the progres'ion from one level to another.

Since there are several dinensions to the study of the nurse supply, the model develops data on the population of nurses--ail those with State licenses to practice as of the date in question; the suppiy itself-all those enployed or available for employment if sufficient positions are not available at the time being considered; and the full-time equivalent supply which expresses employment independently of full- or part-time status. To the maximum extent possible, the model integrates and draws upon a number of discrete surveys describing various phenamena impacting on the nurse supply, most of which have been used in this report's earlier discussion on the supply of nurses. Central to the data base for the model, however, are the sample surveys of nurses. A methodological description of the modeling approach being used can be found in the Third Report to the Congress (USDHHS, DN, 1982) and ir. the Source Book: Nursing Personnel (USDHHS, BHPr, 1981).

## Licensed Practical/Vocational Nurses

The availability of data from the November 1983 National Sample Survey of Licensed Practical/Vocational Nurses provided a base to develop a new series of projecrions of licensed practical nurses which would take account of current characteristics of and trends in the supply of these nurses. A number of assumptions are required for these projections. Most important among these are assumptions about what graduations might be in the future and about what proportion of the nurse population inight be employed or available for employnent (activity rates). Earlier in this chapter, the trends noted over the years in graduations from practical nursing educational programs were presented. In making projections of graduations for the future, it was assumed that there would be no fundamental change in the way individuals are prepared to becone practical nurses. However, recognition was given to the changing employment situation discussed earlier through an assumption that the number of practical nursing programs and students would decline, showing as much as a 15 - to 20 -percent decrease, because higher proportions of potential students for these prograns would choose to attend associate degree prograns preparing for registered nurse licensure rather than practicaì nursing prograns. These overall assumptions along with the past statistisal trends in practical nursing education led to a projection of 39,200 practical nursing graduates by 1989-90 and 35,000 graduates by 1999-2000 (see table 10-17).

The proportion of the licensed practical nurse population that might be available for enployment in the future was based on the data fron the November 1983 survey. The basic assumption was made that licensed nurses would be inclined toward employnent as practical nurses in the same proportion as, the 1983 population, given the age distribution of the population at the date for winich the projection would be made.

Based on these assumptions, along with giving consideration to such other areas as the proportions that might no longe: be licensed or may reactıvate an expired license, mortality, the proportion of graduates that seek and attain licensure, and interstate movement, it was projected that there would be a national supply of 693,500 licensed practical nurses by December 31, 1990, see table 10-18. A total of 859,000 was projecterl for Décember 31, 2000. Thus, it was projected that the number of licensed practical nurses that would be available to practice would increase by about 29 percent between 1983 and 1990. By the year 2000, the number availaible to practice would be 59 percent greater than the 539,500 employed in 1983.

The general direction of some of the changes in supply are of interest (see table 10-19), although actual projections on a State-by-State basis should be viewed with some caution. The data base used to develop the data for each State is a sample subject to variances. "ese variances could be sizeable in the smallest States because of the relatively small samples. All but five States and the District of Columbia are f.. Dected to increase their supply during the projection period. Among $t \cdots$; itates showing a decrease was New York, which in 1983 was estimated to . ve a total of 38,300 employed LPNs. The number available for employment was anticipated
to be 37,200 by 1990 and 34,900 by 2000. The Middle Atlantic region, in which the State of New York is located, along with the East North Central region of the country showed the smallest overall proportionate increases over the projection period. The largest proportionate overall increases were noted for the South Atlantic and Mountain regions.

It was projected that the age level of the licensed practical nurse population would increase over the period. By the end of 1990, it is expected that the relative proportion of those who were at least 40 years old would increase to about 50 percent from the estimated 46 percent in 1983. By the year 2000, the proportion of those in the population who were 40 years of age or over is anticipated to increase to 59 percent. The median age of the licensed practical nurse population at the end of 2000 is expected to be about 43 or 44 in comparison to a median age of about 39 in November 1983. Because of the concentration of the population in the mid years throughout the period however, the ages at which these nurser had the greatest propensity to work, it is not expected that there would be any decrease in the activity rate, which remained at about 69 percent through the year 2000.

## Registered Nurses

Many of the assumptions upon which the projections of registered nurses available for employment through the year 2000 are based were derived from trends noted in the 1977 and 1980 national sample surveys of registered nurses. As was true for the licensed practical nurse projections, the assumptions about graduations from nursing educational programs, both for entry-level and post-RN graduates, and the assumption about the proportion of the population that might be available for employment, are the major factors in the projections.

In looking toward the future, past historical trends in numbers of educational programs and students as well as sume general assumptions about the direction that admissions to nursing educational programs might take, formed the basis for projections of the number of graduates to the year 2000. Working under a general assumption that there would not be any fundamental charges in the educational system preparing for registered nurse licensure, projections were based on statistical trends developed under the following assumptions about each of the program types.

For diplama programs it whs assumed that the rate of decline in the number of programs would it.crease, particularly if the reimbursement of educational costs under Medicare is eliminated. It is expected, however, that there will 'e some remaining diploma programs at the end of the projection period. For associate degree programs, in line with past statistical trends, it was assumed that the number of these programs wouid continue to increase but at a declini.g rate until the year 2000. At the same time, it was assumed that the average number of admissions to these prograns would increase somewhat given, among other influences, the increased attraction of these programs to students fram the practical nurse arena. Associate degree studenis were assumed to come from che female population, ages 17-44 years old; the predominant group attending these programs in the past.

For baccalaureate programs, it was assumed that the trends evidenced in the last few years for new, basic student entrants into these programs would sontinue. Eaccalaureate students are primarily from the female high school graduate segnent of the population. The proportion that the generic admission to baccalaureate programs is of the new female high school graduates has been declining. Furthemore, in looking at the trends in graduations from baccalaureate programs, consideration should be given as well to those students in baccalaureate programs who are already registered nurses, having taken their basic education in an associate dergree or diplana program, and are subsequently seeking a baccalaureate degree. These students are an increasingly higher proportion of the students in baccalaurcate programs. As of October 15, 1983, there were 21,192 such students in addition to the 98,941 generic baccalaureate students.

While the number of graduations of generic baccalaureate students decreased in each of the 4 years from 1980-81 to 1982-83, the number of post-RN baccalaureate graduates fran these programs continued to increase. In 1982-83, there were 5,654 such graduates in addition to the 23,855 basic student graduates, 19 percent of the total graduates from those programsi. Therefore, it was assumbs that the trends in the number of post-RN st:xdents attending baccalaureate programs will continue and that these students will continue to tale an increasing proportion of the total spaces available for baccalaureate students.

These assumptions coupled with projections of decreases in the size of the population groups from which the nursing students are drawn led to an overall decline in the number of graduates from programs preparing them to become registered nurses. As shown in table 10-20, it was projected that for 1989-90 there would be 75,300 graduates and for 1999-2000, 66,400 graduates. As can be expected, the sharpest desline in graduates occurred in the diploma programs. By the end of the projection period, academic year 1999-2000, there were 6,000 diplam graduates. Generic baccalaureate graduates decreased to 19,800 in 1989-90 ard to 16,000 in 1999-2000. Associate degree graduates, however, show little change over the projection period and actually were increased over current levels. Therefore, the prnjected 46,100 associate degree graduates for 1989-90 represented 61 percent of the total graduates. For 1999-2000, about two-thirds of the projected total graduates were from a ssociate degree proyrams.

The projection of the number of registered nurse graduates from master's degree programs was based on the 3 tatistical trends described earlier in this chapter. Thus, the increase- in the form of the linear trend not.ed over the past few years in the total number of students were assumed io continue in the future. At the same time it was anticipated that the proportion of those who would be part-time students would also continue to grow: to 75 percent by the year 2000. A final asrumption that the rate of graduations to part-time enrollments will increase over the years lad to an estimate of 11,800 graduetes from master's degree piograns for academic year 1999-2000.

The assunption about the activity rates to be used was similar to that for the practical nurse supply. That is, nurses who had licenses to practice as registered nurses would be inclined toward employnent in the same proportion as that for the population of 1980, the latest such data available, given the age and nighest educational distribution of the population at the date for which the projection would be made.
based on these assumptions, it is anticipated that the supply of registered nurses enployed or available for employnent by the ed of 1990 would be $1,739,000$ and by $2000,2,079,000$. Thus, it is expected that the number of registered nurses in the supply would increase by 63 percent over the estimated number of rurses in the November 1980 sample survey (see table 10-21).

The laryest morease is anticipated for thuse with at least a master's degree. by 2000 it is anticipated there would be 186,000 suca nurses in the supply, more than twice the estimated 67,000 in i980. However, because it is currently anticipated that a greater proportion of master's degree students will attena school on a part-time basis than previousiy expected within prior assumptions, the projection of the number of nurses with at least master's degree preparation in the year 2000 is lower than $t$ ' $=$ previous projection for this yroup. 5 This point, coupled with about a 5percent increase in the projected overall supply over the previous projection, leads to an estimate of abnut 9 percent of the total supply in 2000 having graduate degrees compared to an earlier estimate of about 11 percent.

It is projected that the number of nurses with baccalaureate degrees in 2000 would be about double the number in November 1980. The 539,700 Daccalaureate-prepared nurses would be 28 percent of the total supply in 2000. Those whose highest level ot preparation is an associate degree or diplona would increase about 43.5 percent over the Novenber 1980 level to a total of $1,303,500$.

The same cautions indicated for the licensed practical nurse State-iy-State projections should be kept in mind when viewing the registered nurse projections. However, these data provide same interesting insight into the direction of the anticipated changes in supply. Unlike the case of licensed practical nurses, all but one of the states are anticipated to increase their registered nurse supply by 1990 (see table 10-22). New York shows little increase in the number of employed registered nurses in 1990 over 1980, and by 2000, the supply of registered nurses actually decreases. similar to the conclusion drawn for licensed practicai nurses, the Middle Atlantic region shows the least increase during the projection period. Highest increases were found in the southern ard western parts of. the country.

[^16]
#### Abstract

As was true for licensed practical nurses, the age level of registered nurses is also expected to increase over the projection period. while the median age of the registered nurse population was about 38 in November 198c, it is anticipated that it would increase to about 45 by the year 2000. Over one-third of the registered nurse population in 2000 is expected to be 50 years old or over campared to about one-quarter in 1980.


The age level for each of tire highest educational level groups within the nurse population als, increases over the projection period to about a median age of 47 for those whose highest educational preparation is an associate degree or diplama, 42 for thuse with vaccalaureates, and 48 for those with master's or doctorates. Although baccalaureate-prepared nurses were anticipated to be younger on the average than the other two groups, tise median age for those nurses showed the greatest increase within the projection period. This was due to the assumption that increasingly larger proportions of the new baccalaureate graduates would come from the group that entered nursing practice through the associate degree ar diploma route and achieved their baccalaureate as a result of post-RN education.

The increase in the age level of the registered nurse population is accompanied by a decline in the activity rates. Although at least three-quarters of the nurse population at each age group level are employed in nursing until the age group of 55-59 is reached, nurses are most apt to be enployed at the youngest age levels. By 2000, it is anticipated that tive overall activity rate would be about 72 percent compared to the rate of 7e sercent found in the 1980 study.

- he licensed practical nurse and registered nurse supply projections a. : oased on assumptions which relate to trends in the behavior patterns of the nurse population. These trends indirectly take into account the labor market in which chey were practicing or were entering. In general, this has been an expanding market characterized by periodic shortages, particularly for registered nurses. one result of this expanding labor market has been the ability of nurses to temporarily withdraw fram the work force and then return as their family or economic couditions warranted. Studies have shown that family income requirements impacted on decisions of female married registered nurses to work or not (Ruth, et al., 1978). Since the late 1970 s were characterized by high inflation rates, $i$ was hypothesized that this was one of the major factors that caused the increase in the activity rates for these nurses during that period. on the basis that continuing inflation can have the same effects in the future glven the same labor market conditions as in the past, an examination was made of the impact of an annual 3 to 4 percent increase in the consumer price index on the supply of registered nurses. Under these circumstances, the supply of registered nurses would be about $2,264,400$ by 2000 , about 3 percent higher than the actual projection for that year of $2,079,000$.

> 2. KEQULREMENIS FOR NURSING PERSONNEL

The examination of flture requirements for this report, as in the previous repurts to the Congress, is based on two approaches. Ore, the historical trend-based model, provides a view of requirements in the future based on
an extension of past and current trends of services and resource utilization into the future modified by assumptions about how systen changes might impact on these trends. The other, the criteria-based model, examines what requirements might be if judgments of aprropriate resources necessary to achieve health care goals were the detenrinants of requirements in the future.

The basic modeling structures for both approaches evolved from a series of studies undertaken in the mid-1970s which have been described in the prior reports in this series and in individual reports of those studies. (USDEIEN, DN, 1979; USDHHS, DN, 1982; USDHES, BHPr, 1984) These models have been maintained and updated through work carried out by staff in the Bureau of Health Professions, to ensure that the resulting projections would reflect the latest trends and thinking about future directions in the health care system. The results from both models have been reviewed and revised in the interim between these last two reports to take account of new strategies within the health care system and their possible effect on requirements for nursing personnel.

## The Historical Trend-Based Model

The basic structure of the historical trend-based model examines requirements for nursing personnel according to the major sectors of the health care system in which these personnel are employed: community hospitals, all other hospitals, nursing hames, physicians offices, cormunity health, health maintenance organizations (HMOs), nursing education, and the other miscellaneous settings as a group.

In the model as it is currently revised and updated, projections are based on trends in three major categories: camponents of the population, provided services on a per capita basis (inpatient days, outpatient visits, etc.): and numbers of full-time equivalent registered and licensed practical nurses per unit of provided services. A large number of data sources providing information on a national basis and disaggregated to the State level are required to sustain the model and proluce the necessary requirements projections. As in the supply model, data collected in the national sample surveys provide the unifying base for the discrete studies of particular aspects caning from other sources. Thus, while previously no specific projections an licensed practical nurses were produced from this model, the availability of the data from the 1983 National Sample Survey of Licensed Practical/Vocational Nurses enabled the preparation of such projections for this report.

Assumptions Underlying Projections: The dominant assumption, as indicated by the title given to the model, is that historical trends will detemine the future trends that will occur in the health care system. The validity of such an assumption is dependent upon the extent to which the system is modified either directly, deliberately or as a result of scme utside event impacting on the system. The base assumptions made at this time are that the utilization of health care services would maintain entablished trends; that the rate of FN utilization would remain at current levels or increase depending Lpon the trends; that licensed practical nurse to registered
nurse ratios would not increase or, in same instances, would be fixed at current levels. It is also assumed there would not be licensed practical nurses employed in intensive care units or as nurse educators.

Some modification in the base line assumptions were made in order to provide what might be considered a more realistic view by taking account of occurrences in the future, given the full implementation of the Medicare prospective payment system and its effect on noninstitutional segments of the system. These were based on the evidence in data available during the initial implementation phase and on infonnation contained in discrete reports of health care system changes. Among the modifications made were a decrease in the rate of growth in the number of patient days in intensive care units; a decrease in the rate of growth in the utilization of registered nurses in commuity hospital nonintensive care units after 1986 and a decrease in the licensed practical nurse to registered nurse rates in commity hospitals during the early part of the projection period; a substantial increase in the rate of growth of health mai enance organization enrollments; and a substantial increase in the rate of growth for the numbers of home health visits to be made. The data resulting from the base assumptions as modified form the basis for the historical trend-based model projections summarized in the tables at the end of this chapter.

Projections to the Year 200L: The annual projections of the number of full-time equivalent registered nurses required according to historical trends, as modified by the assumutions to reflect the effects of the full implementation of the Medicare prospective payment system, indicate that by the year 2000 a total of $1,683,000$ full-time equivalent nurses would be required (see table 10-23). This is about 58 percent higher than the estimated requirement for the year 1980. The projected requirements fo: licensed practical nurses under these circumstances were for 719,600 full-time equivalent LPN/LVNs by 2000, 68 percent more than the estimated requirements in 1980.

> The requirements for registered nurses increase at a faster rate in the early part of the projection period, through 1990 , and at a slower rate between 1990 and 2000 . In the case of the licensed practical nurse, the rate of increase is larger in the latter part of the projection period than in the former. fequirements for licensed practical nurses in community hospitals actually decline between 1980 and 1990 as the ratio of IPNs to rNs in these hoepitals declines. The number of LPNs required, in the latter period, 1990 to 2000 , increases, however, as this utilization rate stabilizes. In 2000 , however, the number of full-time equivalent positions in hospitals for licensed practical nurses would be lower than the requirments in the early 19808 . The slack in those positions is more than made up in nursing homes and the physician's office area (which insludes the requirements for about 5,750 in 2000 in health maintenance organizations).

Although there are no areas which strow losses of positions for resistered nurses, the number in hospitals increases by only 23 percent by 2000 under the assumption that there would be a constraint in the rate of growth in the utilization rates of registered nurses in nonintensive care units and that the rate of increase in the number of patient days in intensive care
units would decline. Large gains in the number of positions for registered nurses are shown for the nursing home area and in the conmunity health area as the number of home health visits are expanded significantly (see table 10-24).

When the requirements for nursing persomel were projected on the base assumption that future requirenents would continue changes evidenced in the treuls of the last few years, the overall requirement for full-time equivalent registered nurses by the year 2000 was $1,816,000$ and for licensed practical nurses, it was 794,000. Hospitals would have a requirement for about 1,042,000 full-time equivalent registered nurses and $\mathbf{3 2 0 , 0 0 0}$ full-time equivalent licensed practical nurses. On the other hand, a projection which takes into account the types of assunptions that were made on the results of the full implementation of the Medicare prospective payment system, which hypothesizes that the effect on overall patient days and intensive care patient days in cormunity hospitals would be a dramatic decrease, resulted in a total requirement for about 1,581,000 full-time equivalent registered nurses and 692,000 licensed practical nurses by 2000.

The projections of national requirements are essentially an aggregate of the State-by-State projections (see table 10-25). Fbr each of the States and the District of Columbia, trend identifications for the various employment settings are developed. Governing these trends, however, is the availability of data an a national level. Thus, in a number of instances the data used are based on sample surveys providing varying degrees of accuracy on a State level, depending upon the sampling procedures and the size of the samples. While to the best extent possible, each State's trends as evidenced by the national data source is captured, balance is maintained between these trends and the overall national trends shown for the particular health service area. Thus, while there may be differences between the total requirements obtained as a result of the aggregation of the individual State data and national requirements developed solely from national trends, these differences are not marked; a little difference is seen in the early proj.rction years with increased differences occurring toward the latter part of the projection period.

State projections generally showed the same pattern as the national ones. There was a greater growth in the registered nurse requirements in the 1980s than in the 1990s. The licensed practical nurse pattern was the reverse of this. In all but two States and the District of Columbia the requirements increased during the course of the projections. New York, one of the two States, maintained about the same level of requirements for registered nurses throughout the projisction period, although requirements continued to increase for the licensed practi:d nurses. The slowest rate of growth in requirements was found in the Middle Atlantic area followed by Now England and the North Central portions of the country. Requirements in the South showed the greatest rate of growth triroughout the projection period.

## Tive Criteria-Eased Model

In this approach, requirements are a measure of the number and levels of educational preparation of nursing personnel needed to meet a particular set of health care goals. The model is dependent upon an expert group to
establish the pararketels underlying the requirements projectıons. The planning group, wurking from a review of past and present practıces and experience, uses its expert judgment to develop the crıteria in the fonn of staffing and service utilization ratios, which will best accomplisn the health care yoals.

In the summer of 1984 such a group, consist,ing if experts in various areas in which nurses practice and representatives of a number of the nursing and health care services associations, was convened by the Divisıon of Nursing. The specific charges to these individuals was to examine the criteria established previously in the light of health care goals and neets for the years 1990 and 2000, taking into account new and revised forms of delivery of care and concern about the cost of delivery of care. This was the third time the criteria have been exannined since the model structure was established. The initial Panel of Expert Consultants met in 1977 and provided criteria relevant to 1982. A second Panel was called together in 1980. That Fanel': orientation was toward 1990. Fuller accounts of these Panel's activities are given in previous reports.

Assumptions Underlying the Criteria: The examination of the criterıa at this time preserved the same structure as the previous criteria (see tables 10-26 and 10-27). Recoynizing new types of approaches to the delivery of care, e.g., "surgicenters," the Panel subsumed the needs for those under the categories traditionally incluaed. Due to the recency of these developments, it was felt it would be difficult to distinguish between those services that would now be carried out in the new settings and those that would remain in the traditional settings. They did, however, in their single criteria, try to present an "average" which would capture the effect of what each type of setting would require. They maintained the same level and titles for nursing personnel as established in the previous criteria and in existence at the present time.

The panel expressly looked toward establishing a set of criterid which would be a chievable, yet might also be a statenent of what would be ideal or desirable to accomplish the health care goals and level of care they believed was needed. Thus, in same instances, staffing levels were lowered from those identified ini prior reviews. These revised criteria were thought to be more achievable and realistic goals given currene existiny conditions.

In other instances, criteria were set at a level which might not be obtainable by 1990 or 2000 given present circumstances but it was important that the direction for change be establisned. This point was particularly noted in the case of the educational levels identified for registered nurses. In general, though, they ascribed to the definitions used by prior panels in establishing criteria. There is a "lower bound" and an "upper bound." The "lower bound" is defined as that which all States can achieve. For the "upper bound," it is assumed that same States will achieve the criteria and others will work toward them.

The Panel stressed that the criteria might be considered as "averages." The levels of nursing care indicated for the institutional area would apply to settings on the average but it was recognized that there would be large
variation from one setting to another. Similarly, number of visits per day were meant as national averages and did not allow for geographic differences such as sparsely populated versus heavy population density areas.

The largest influence on nursing noted in the hospital area was that of the significant increase in the intensity of care required. lt was assumed that, because of measures being taken to hold down costs in hospitals, the care provided in the past at the onset of a hospital stay, such as tests administered before surgery, would be carried out samewhere else in the health care system. Sinilarly, the care that was provided toward the end of the hospital episode would now be given in nursing homes, or in an ambulatory care setting, or through home heal th care. This, in effect, leaves the hospitals providing the highest level of care to 'ntensely ill patients rather than the spectrum of care needs evidenced in the past.

Furthermore, it was thought that hospitalizations of "lower-acuity cases" would be less likely to occur as these problems would be handled differently. The elimination of these kinds of cases from the broad range of patients who were hospitalized in the past would add to the overall increases in the intensity of care level required for those who would be hospitalized.

The increases in the intensity level within the hospitals would require an increased use of nursing resources but this would be offset by a decrease in the total number of inpatient days. It was pustulated that by 1990, the total number of inpatient days would decrease by about 15 percent from present levels, based on declines in admissions and decreases in the length-of-stay. similarly, given the general increase in the level of care envisioned for patients throughout the hospitals, it was anticipated that che number of intensive care units and patient days within these units would no longer conzinue to grow as they had in the past. It was telt that very shortly, by 196j, the numbers would stabilize and hold at a steady level through the 1090s.

In reexamining the criteria for nursing homes, the group indicated that the increasing intensity of institutional based care in general, coupled with an increasing responsibility to provide extended/recuperatıve care fter hospital discharge, would require an increase in nursing hours per resident day above thit reflected in previous criteria. In addition, the average age of patients in long-tenn care facilities is increasing. Nursing homes serve a dual purpose -- providing maintenance care and a sophisticated level of care involving considerable technology. The inability of the prese.at data to address these different acuity levels in the general category identified as nursing homes, hampers the development of criteria which woulu recognize each of these levels. Furthermore, the constraint in the monies available to finance nursing homes precludes eyperimentation with different types of staffing patterns. 'inus, staffing in nursing hanes has followed the traditional model with predominant reliance on care by licensed practical/vocational nurses and nursing aides.

To take accuunt of the various trends and the levels of care required in nursing hames $\mathrm{c} \cdot$. an aggregate basis, the group did increase the total number of nursing hours slightly over those indicated in the previous criteria. However, because of present and anticipated future econonic conditions as well as accounting for the total sipectrum of care requirements, a significant shift was made in the nursing raix from the previous criteria toward the use of lesser skilled nursing personnel. The group felt, that even with these current adjustments, the criteria still represented important gains over the 7 to 12 minutes of FN care per resident day currently provided in nursing homes. For the upper bound, and for the year 2000, the proportion of registered nurses withir the nursing complement was increased. In making these adjustments in the criteria, it was stressed that these criteria represent more realistic goals which would be definitely achievable. It was pointed out, however, that professional nurses, particularly those with specialty education in geriatrics, can make a difference to the care provided in the nursing home area.

The group felt that the examination of requirements for nursing personnel within physicians' offices had to be considered within the context of a different organizatioral structure for this area. They hypothesized that by 1990, 50 percent of the physicians would be in group practices of same type; and by 2000, 70 percent would be. They felt that various kinds of persornel inight be present in these expanded practice settings but only registered nurses would be used among those catc jories considered as nursing personnel. They saw increased use of nurse practitioners, particularly by the year 200c.

The group anticipated a definive increase in the use of various forms of community health care arising from current trends toward deinstitutionalizing pursons with a number of types of disabilities, both physical and mental, and efforts to contain costs by treating and caring for individuals in the hame and ambulatory care settings. Drawing upon the current experience of those who have direct involvement in home health care programs, the group envisioned a sharp increase in the proportion of those discharged fram hospitals who would require hame health care over that indicated in previous criteria. As a result of shorter lengths-ot-stay in hospitals, a considerable number of patients will be sent home still requiring care of a sophisticated nature. The aging of the population, coupled with increased numbers of older people living alone, was also seen as adding to the requirements for home health care, as was the increase within the community of those under 65 with disabilities which prevent them from caring for themselves completely.

In viewing the care needs oi. the population for hame health care, the group felt that inadequate consideration had been given in the past to the use of hame health aides. Both registered nurses and home health aides were considered inportant in caring for the needs of these individuals. The inclusion of this cadre of home health aides led to increased needs for registered nurses in the inservice, staff development area as well because of the necessity to train and maintain the skills of the home health aides as well as provide educational support for registered nurses.

Fn area viewed as maportant to the prevention of disease and promotion of heaitis was vocupational nealti mursing. In reviewing tiose ariteria in the ligint of what would be required tor a comprehensive occupational health program, the pantel examned particularly the reconamendations put forth by the Armerican Association of Occupational liealth lurses (AAUHN) in 1982 arm felt that these fonned a reasondble basis for staffing criteria. In considering how these criterla could be achneved realistically, it was recognized that three-fourtins of tie industrial settings had fewer than 20 enployees. However, it was felt that an approximation of the criteria set down can ie achieved turough monovative daproacles sucu as a groui of plants getting together to obtain nursing services througin contractuai arrangements with cummunty health service ayencies, such as the visiting nursing services and officlal health agencies (Moses, 1985).

The criteria were considered in terns of whether they would be appropriate for 1990 and/or 2000 according to goals for the two time franes and in colsiuleration of possible changes between those two dates. Therefore, in same instances different criteria were established tor 2000 thin for 1990. butn sets of criteria are reproduced in tins report in the tables following this chapter.

Projections to the Year 2000: In establishing the criteria, the yoals for a particular date are set and, therefore, annual projections would not be dpuropriate for the intervening years vetween the date on which the criteria were set up and the date for which they were established. Thus, projection of requirenents for the future, using the criteria-based model, are expressed only for the specific years under consideration when the crıteria were set.
based on the criteria established for 1990, and the underlying assumptions the panel made about the decreases in inpatient days, the projection of requirements for 1990 in the "lower bound" was 1,733,000 full-time cquivalent registered nurses; 321,000 full-time equivalent licensed practical nurses, and 1,398,000 full-time equivalent aides. For the year 2000, the respective totals were $2,328,000 ; 423,000$, and $1,493,000$. See able 10-28.

As shown in table 10-29, about 33 percent of the registered nurse positions, or 568,000 full-time equivalent positions in 1990 would be for associate degree or diploma nurses. About 46 percent of the positions, or 803,000, called for baccalaureate prepared-nurses while 339,000 (20 percent) would require master's-prepared nurses. About 3 out of every 10, or 101,000, of the master's-prepared nurses would be expected to have nurse practitioner preparation, as that would be the number required to function as nurse practitioners. The 1990 projections also called for 22,000 doctorally preparsd full-time equivalent registered nurse positions.

For 2000, the proportion of nurses with different levels of education would be sanewhat similar to the 1990 requirements. Positions for associate degree or diploma-prepared nurses numbered 732,000; positions for baccalaureate-prepared nurses, 1,080,000; and master's-prepared nurses, 479,000. Thirty-five percent, or 167,000 , of the master's-prepared nurses would be nurse practitioners. A 61 percent increase, though, would be required for the doctoral y prepared nurses for a total of 36,000 full-time equivalent positions.

The State-by-State requirement; projections for the "lower bound" criteria are included in tables 10-29 and 10-30. Also tables $10-30$ and $10-31$ show the projected requirements under the assumption that all States would neet all the "upper bound" criteria for each of the 2 respective years for which the criteria were established.

## 3. National Requirements from Two Perspectives

The two approaches taken to requirements are fundamentally different. The view of the historical trend-based model of the future is governed by past utilization. While to some extent system changes in the future are recognized, the impact of these evolves out of the past trends. Requirements projections from the criteria-based model, on the other hand, are based on judgments by an expert group as to what would be the most appropriate use of resources to accomplish their established health care goals. To examine what effect these two approaches have on anticipated requirenents in the future, the lower bound projections are used for the criteria-based model since those criteria were established at a level the expert panel felt all States should achieve by the given year.

For the year 1990, the total full-time equivalent registered nurse requirements projected under the criteria-based model of $1,733,000$ was about 22 percent higher than the projection of $1,414,000$ for the historical trend-based model. For the year 2000, the difference between the two projections for full-time equivalent registernd nurses increased to 38 percent. The projections for full-time equivalent licensed practical nurse positions were much further apart. Thus, the projection from the historical trend-based model which carried forward into the future past trends in the use of licensed practical nurses, was 64 percent higher tilan the projection under the criteria-based model assumptions for 1990. For 2000, the difference inreased to 70 percent. Looking at these totals only does not indicate where the major differences between the two projections series occur, nowever.

In 1990, the criteria-based model projection for hospital-based registered nurses is lower th 1 the projection under the historical trend-based assumptions. In 2000, the situation is reversed, with the criteria-based projectior. being slightly higt.er than the other. To sane extent, this is related co the panel's assumptions of very significant declines in overall patient days and intensive care days in community hospitals. When these assumptions are taken into account in the historical-trend based model, requirenents for registered nurses in hospitals also declined
significantly so that the criteria-based model projection for registered nurses in hospitals was about 10 percent higher than that in the historical trend-based model, and in 2000, the difference increased to 16 percent. Both models, however, project a fundamental change in the proportion of the overall requirements for all registered nurses that would be involved in hospital-based practice from the current proportion. According to the historical trend-based model, 52 percent of the full-time equivalent positions would be in hospitals in 2000. The criteria-based model placed 39 percent of the positions in hospitals.

The historical trend-based model provided large increases in the number of nurses to be employed in nursing rome and oommunity health settings. However, these two areas show large differences between the projections from the two models. In their review of the criteria for staffing in nursing homes, the panel looked to strike a balance between the economics of the nursing humes, current staffing patterns, and the necessary requirements to improve conditions in the homes and move from a mode of primarily custodial care to one which would increase the therapeutic content of the nursing care provided. The historical trend-based model, on the other hand, essentially maintains current staffing trends.

In the cormunity healti area, the panel not only gave particular attention to tine expanded needs for home health, which were also taken into account in the historical trend-based model projections, but they also examuned specifically those areas thar contribute to the Nation's goals of nealth promotion and cisease prevention. For example, the criteria for the cccupational health area leads to a requirement of about 141,000 full-tirue equivalent registered nurses in 1990 in order to provide a comprehensive oscupational health proyram, far beyond what an extension of current trends would provide.

On the other hana, the criteria-baseci model calls for sharply fewer nurses in physicians' offices (including HMOs ) than does the historical trendbased model. This is true even when both registered nurses and licensed practical nurses are considered together.

Ultimately the extent to which future requirements for nursing personnel would more nearly approximate the projections from the criteria-based model or the historical trend-based model rests on the degree to which historical patterns or expert judgment of desirable health care goals and rejources govern in the health care of the future. Furthermore, the conclusions drawn by both these modeling efforts need to be considered within the context of the fundamental changes that the system is undergoing at this time and the lack of sufficient data to be able to capture what definite impacts these changes will have on resource requirements. Neither past trends nor current judgments about care needs and delivery may reasonably reflect the future. It may be several years before clear indications of things to come can be determined.

## 4. Camparative Analysis of Supply and Requirements

Taking intu account the future projections of requirements fram the two perspectives presented and the availabie supply, glven the anticipated flow of graduates and current trends in the work patterns of the registered and licensed practical nurse population, the following picture emerges of the full-time equivalent nurse supply and requirements for 1990 and ?.000:

Registered Nurse	$\underline{1990}$	$\underline{2000}$
Supply   Historicai trend-based   requirements	$1,454,000$	$1,750,000$
Criteria-based requiranents   (lower bound)	$1,414,000$	$1,683,000$
Licensed Practical/Vocational Nurse	$1,733,000$	$2,328,00$
Supply   Historical trend-based   requirements	508,000	756,000
(riteria-based requirements   (lower bound)	527,000	720,000

From these data, it would appear that no real imbalances exist between the potential available supply and the historical trend-based requirenents projections fur registered nurses. The criteria-based model presents a sonewhat different picture in that requirenents for registered nurses are somewhat higher than the potential supply. In the main, however, as indicated in the section on requirements, the differences between the two requirements projections can be attributed to a large extent to concerns leading to fundamental changes in the objectives for nursing care in such areas as nursing homes and community health. Thus, in examining the differences between the supply and the criteria-based requirements, consideration should be given to the extent to which the premises and goals upon which these requirements are based could and will be achieved.

For licensed practical nurses, conclusions drawn from the historical trend-based model find that by 2000 supply and requirements appear to be in balance, although there would be an oversupply for 1990. Under the assumptions in the criteria-based model, however, the potential supply of licensed practical nurses would exceed the requirements. As pointed out earlier in the discussion on issues in licensure, nursing groups, both professional and practical, envision fundamental changes for practical nurses in the future. The impact of these on supply and requirements is dependent on the degree to which these changes are accepted and can be implemented.

Significant imbalances can be noted, however, when comparisons are made between the projected full-time equivalent registered nurse supply and the criteria-based requirenents projections when they are examined according to the education preparation levels of the nurses. In summary, the projections are:

Figure 10-4 - PROJECTIONS OF SUPPLY Of FULL-TIME EQUIVALENT REGISTERED AND LICENSED FRACTICAL/VOCATIO IL NURSES. HISTORICAL TREND BASED REQUIREMENTS AND 1990 AND 2500 CRITERIA-BASED REQUIREMENTS


SOURCE • Projections prepared by Division of Nursing. Health Resources and Services Administration. Department of health and Human Services. 1985


As can be seen, projected requirements for full-time equivalent registered nurses with baccalaureate degrees are about twice the projected supply for 1990 and 2000. For nurses with graduate degrees, the requirements are about three times higher than the projected supply.

These requirements reflect both the aggregated nursing resources resulting from the criteria the expert panel developed in relation to their health care goals and their judgment of the appropriate level of qualification to carry out these goals. In relation to the latter, point as noted earlier in this report, the panel recognized that the major revision in the educational system that would be required is unlikely to be obtained by 1990 or even by 2000 but that the expression of these goals provide a clear direction for change. In addition, as was noted for the practical nurses, the fundamental changes envisioned by the nursing groups outlined in the licensure issues can have a major impact on both the educational distribution of the supply and the requirements in the future. The implications of this professional and practical nursing resolution have not been directly taken into account in the assumptions underlying the projections.

The historical trend-based model does not measure the educational preparation required of registered nurses. However, projections from that model show significant growth in requirements for the same two employment areas as the criteria-based model shows: nursing homes and community health. The community health area, particularly, would nave a direct influence on the number of nurses required with baccalaureate degrees. Baccalaureate programs are the only types of nursing education program that prepare students to function in community settings as well as in institutional facilities.

The data quoted above relate to an aggregate of individual State supply and requirements projections. Each State experience- different growth and development patterns. In same cases, individual States may be in balance or may be surplus or deficit States when future projections of requirements are compared to future available supply projections. These data should be examined within the context of the fact. that the data on available supply provide no recognition or adjustment for what a clanging employment situation may mean to a nurse's decision to enter, or more importantly, reenter nursing employment. The available supply at same future point in tine would really be related to the cumulated effect of nursing employment decisions over the years.

According to the estimates for 1983, approximately 30,000 full-time equivalent registered nurses who had been inactive for more than 5 years returned to employment in the country. Under the assumptions used to project the available supply for the future, this number grew to about 36,000 by 1990 and over 40,000 by 2000. The total difference between the estimated full-time equivalent supply and the historical trend-based requirements projection for 1990 would be eliminated if the rate of return to practice of those nurses who had been inactive for a fairly long time had been reauced by 25 percent. In the three-fifths of the States that were "surplus" States, i.e., the available supply was greater than the requirements, the differences between supply and requirements for the most. part were of the magnitude where shifts in the decision of a group such as this could be tra factor in the balance between supply and requirements. The full-time equivalent requirements projected by the lower bound criteria in the criteria-based model show that there are some 37 "deficit" States in terms of available registered nurse supply aind 14 "surplus" by 1990.

These figures would increase to 40 and 11 , respectively, in 2000. In a little over half of the 14 States that are projected to have a surplus in 1990, the surplus would be eliminated by a change in the rate in which the long-term inactives returned to practice. Furthermore, in all these instances, changes in mobility patterns may materially affect the balance in supply and requirements in any one State.

Further uncertainties as to the future balance between supply and requirements rests in the changes in the health care system itself. The emerging and evolving health care settings are at this point anly beginning to evidence themselves and have as yet to be described quantitatively; therefore estimates of the future requirements for nurses, as stated in historical-based terms, cannot be fully taken into account. The desline in the amount of care to be provided in hospitals seems certain. But until factors suich as migration, new and growing areas of employment and the need for nore highly skilled and intensive nursing care services in established care settings outside of the hospital are quantified, the question of the balance between supply and requirements remains to same extent unanswered.

## E. SUMMARY AND CONCLUSIONS

## 1. Recammendations

## kecamendation 1: Supply and Requirements

'iwenty years of Federal support to increase the Nation's supply of well prepared nurses has brougint supply into balance with dennand in so far as agyregate numbers are concerred. States, the health care industry, and the private sector must now assume responsibility for using resources developed througn Federal assistance to assure a continuing supply of entranis into the profession and to rectify imbalances in geographic and specialty distribution. In order for Federal and State policy-makers to have accurate and timely information for making manpower decisions, the Federal Goverment supports the conduct of national studies, the retinement of

10-68
forecasting metiodologies, and the collection and analysis of data w.th special attention to filling identified deficits in currently available infrmation. Federal intervention will continue to be directed to stimulating the non-Federal sector to address national priorities such as increasing the representation of minorities and individuals from non-traditional backgrouncis in the nursing work force. Student assistance will be maintained through programs administered by the Department of kducation and through anticipated resources from the lvursing Student Loan Program revolving fund accounts.

## Recummendation 2: Nursir.g Eaucation and Research

The Nurse Education Amendments of 1985, (P.L. 99-92) were enacted on August 16. 1985. The reports accompanying this newly enacted leyislation recognize that unprecedented advances in scientific knowledge and the application of new technologles have increased tne complexity of patient care and have created a critical need for nurses with specialized education in administration, prinary care, geriatrics, name and community based nursing and for other areas of our healtl care system. Since these authorities have so recently been enacted, no further legislative action is recammended at this time.

The liealth Research Extension Act of 1985 (P.L. 99-158) createā a Natıonal Center for Nursing Research at NIH. In keeping with the statutory requirement, prograns supporting nursing research and research training administered by the Division of Nursing will be relocated at NIt.

## F. RLFERENCES

Anerican Acaderry of Nursing. Task Force on Nursing Practice in Hospi'cals. Magnet Hospitals: Attraction and Retention of Professional Nurses. Americar: Nurses' Association, Kansas City, MO, 1983.

American College of Ilospital Administrators. Health Care Trends in Lhe 1990s: Trends and Strategies. Arthur Anderson and Campany, Dallas, TX, 1984.

Anericar Nurses' Association. Facts About Nursing, 1970-71. Kansas City, MO, 1972.

Anklerson, E., et al. "A National Survey of the Need for Dnctorally Prepared Nurses in Academic Settings and Health Services Agencies." Journal of Frofessional Nursing 1:1:23-33, January - February 1985.

Aydelotte, llyrtle K. Report of the 1982 Survey of Nursing Eiervice Administrators, American Society of Nursing Service Administrators. American Hospital Association, 1983.

Ayers, R., et al. The Clinical Nurse Specialist: An Experiment in Role Effectiveness and Role Development. Duarte, California: City of Hope National Medical Center, 1971.

Baker, C. and Kramer, M. "To Define or Not to Define: The Role of the Clinical Specialist. Nursing Forum 9:1:41-55, 1970.

Bentley, Barbara S., el al. National Sämple Survey of Registered Nurses II, November 1980. Accessic: No. HRP 0904375, National Technical Infonnation Services, Springfield, VA, September 1982.

Booth, Rachel Z. "Financing Mechanisms in Health Care: Impact on Nursing Services." Journal of Professional Nursing 1:1:34-40, January-February, 1985.

Brown, B.J. "Reorganizing Hospital-Based Nursing Practice: An Analysis of Patient Outcomes, Provider Satisfaction and Costs," in Aiken, L.H., ed., Health Policy and Nursing Practice. American Nurses' Association, Kansas City, $10,1981, ~ p p .119-139$.

Brown, J.S., et al. "Nursing's Searcil for Scientific Knowledge." Nursing Research 33:1:26-32, January-February 1984.

Burn, E.D. and Tonges, M.C. "Professional Nursing Practice in Acute Care Settings." Nursing Administration Quarterly 8:1:65-75, Fall 1983.

Beyers, Marjorie. "Getting on Top of Organizational Change: Trends in Nursing Service." The Journal of Nursing Administration 14:11:31-37, November 1984.

Beyers, Marjorie. "Getting on Top of Organizational Change: The Corporate Nurse Executive." The Journal of Nursing Achinistration 14:12:32-37, December' 1934.

Clifford, J.C. "Professional Nursing Practice in a Hospital Setting," in Aiken, L.H., eū., Nursing in the 1980's: Crises, Opportunities, Challenges. J.B. Lippincott, Phillacielphia, 1982, pp. 121-130.

Commission on Graduates of Foreign Nursing Schools. News release, Philadelphia, PA, April 1985.

Coddinçton, D.C., et al. "Strategies for Survival in the Hospital Industry." Harvard Business Review May-June 1985, p.129-138.

Coleman, J.R., et al. "Nursing Careers in Emerging Systems." Nursing Management 15:1:19-27, January 1984.

Colerick, E.J., et al. "Evaldation of the Clinical Nurse Specialist Role: Developnent and Implementation of a Dual purpose Framework." Nursing Leadership 3:3:26-34, 1980.

The Congress of the United States, Onngressional Budget Office. Physician Extenders: Their Current and Futire Role in Medical Care Delivery. U.S. Government Printing Office, Washington, D.C., April 1979.

Curran, C.L. and Metcalf, C. "Combining Resources." Nursing Management 14:1:33-36, January 1983.

Curtain, L. "Detemining Costs of Nursing Services for DRGs." Nursing Management 14:4:16-20, April 1983.

Deckert, B., et al. "Clinical Ladders." Nursing Management 15:3:54-62, March 1984.

Deiman, P.A., et al. "Achieving a Professional Practice model: How Primary Nursing Can Help." The Journal of Nursing Administration, July-August 1984, p.16-22.

DeJoseph, J.F., et al. "Costing and Changing: Pricing Care in OB." Nursing Management 15:12:36-7, December 1984.
Diers, D. "Preparation of Practitioners, Clinical specialists, and Clinicians." Journal of professional Nursing 1:1:41-47, January-February 1985.

Ehrenreich D. and Stewart, P. Clinical Nurse Specialist Perceptions of Role Facilitators and Inhibitors in the Practice Setting. American Nurses' Association Division of Practice: Clinical and Scientıfıc Sessions. Kansas City, MO. Amerıcan Nurse's Association, 1979.

Fagin, Cleire M. "Nursing as an Alternative to High Cost Care." American Journal of Nursing 82:56-60, January 1982.

Fagin, Claire M. "Nursing's Pivotal Role in American Health Care" in Aiken, L.H. and Gormer, S.R., eds., Nursing in the 1980's: Crises, Opportunities, Challenges. J.B. Lippincott, Philadelphia 1982.

Farran, carol J. Report of the 1983 Survey of Hospital Nursing Personnel. Amerisan Hospital Association, Chicago, IL, 1984.

Fitzmaurice, J.M. "A Statistical Analysis of the Medicare Hospital Routine Nursing Salary Cost Differential." Health Care Financing Review 5:1:45-64, Fall 1983.

Fourcher. L.A. and Howard, M.J. "Nursing and the Managerial Demiurge." Social Science and medicine 15A:299-306, May 1981, part 1.

Fuszard, B. "'Adhcracy' in Health Care Institutions?" The Journal of Nursing Administration January 1983, pp. 14-9.

Georgopoulos, B. and Sana, J. "Clinical Nursing Specialization and Intershift Report Behavior." American Journal of Nursing 71:3:538-545, 1971.

Girouard, s. "The Role of the Clinical Specialist as Change Agent: An Experiment in Preoperative Reaching." International Journal of Nursing Studies 15:2:57:65, 1978.

Gleeson, Susan, et al. "Helping Nurses througli the Management Threshold." Nursing Administration Quarterly 7:2:11-16, Winter 1983.

Gornick, J.C. and Lewin, L.S. "Assessment of the Organizational Locus of the Public Health Service Nursing Research Activities." Report of contract number 282-83-0072 between the Office of the Assistant Secretary for Health, U.S. Department of Heal th and Human Services and Lewin and Associates, Inc., September 1984.

Grinaldi, P.L. "Public Law 97-248: The Implication of Prospective Payment Schedules." Nursing Maragement 14:2:25-27, February 1983.

Grazman, T.E. "Managing Unit IMman Resources: A Microcomputer Model." Nursing Management 14:7:18:22, July 1983.

Hohman, J. Focus an Nurse Credentialing. American Hospital Association, Chicago, 1980.

Hallshwandner, C.H., et al. "Practitioner Researcher." Nursing and Health Care 5:3:144-149, March 1984.

Holt, Frieda M. "A Theoretical 1 Hadel for Clinical Sperialist Practice." Nursing and Health Care 5:8:445-449, Octover 1984.

Howard, M.J. and Knafl, K.A. "Generating Nursing Knowledge: Whose work?" in McCloskey, J.C. and Grace, H.R., eds. Current Issues in Nursing. Blackwell Scientific Punlications, Boston, 1981, p.105-114.

Institute of Hedicine, Division of Health Care Services. Nursing and Nursing Education: Fublic policies and Private Aotions. National Academy Press, Washington, D.C., 1983.

Joint Cammission on Accreditation of Hospitals. A Guide to JCAH Nursing services Standards JCAH, Chicago, 1983.

Knaus, W.A., et al. "The Use of Intensive Care: New Research Initiatives and their Implications for National Healti Policy." Milbank Memorial Fund Quarterly 61:4:561-583, Fall 1983.

LaBar, Clare. The Regulation of Advanced Nursing Practice as Provided for in Nursing Practice Actes and Administration Rules. American Nurses' Association Center for Research, Kansas City, MO., August 1983.

Lancaster, J. "Bonding of Nursing Practice and Education Through Research." Nursing and Health zire 5:7:379:382, September 1984.

Lancaster, J. "Creating a Climate For bxcellence." The Journal of Nursing Adninistration 15:1:16-19, January 1985.

Lazarus, W., et al. Competition Among Health Practitioners: The Influence of the Medical profession on the Health Manpower Market. Volume I: Executive Sumnary and Final Report. Accession Number PE 82-235904. National Technical Infcrmation Services, Springfield, VA, February 1981, p. xlv.

Little, D. and Carnevali, D. Nurise Specialist Effect on Tuberculosis. Nursing Research 16:4:321-326, 1967.

Linde, B. and Janz, N. "Effect of a Teaching Program on Knowledge and Compliance of Cardiac Patients." Nursing Research 28:5:282-286, 1979.

MacKay R.C., et al. "Building a Hospital Nursing Research Department." The Journal of Nursing Administration 14:7\&8:23-27, July-August 1984.

Mason, E.J. and Daugherty, J.K. "Nursing Standards Should Determine Nursing's Price." Nursing Management 15:9:34-38, September 1984.

McClain, J.R. and Selhat, M.S. "Twenty Cases: What Nursing Costs Per DRG." Nursing Management 15:10:26-34, October 1984.

McCloskey, J. $\dot{C}$. and Grace, H.K. Current Issues in Nursing. Blackwell Scientific fublications, Moston, 1981.

MoClure, M.L. and Nelson, M.J. "Trends in Hospital Nursing," in Aiken, L.H., ed., Nursing in the 1980's: Crises, Opportunities, Challenges. J.B. Lippincott, Philadelphia, 1982, pp. 559-73.

Mundinger, H.C. Home Care Controversy: Tou Little, Too Late, Too Costly. Aspen Systems, Fuckville, MD, 1983.

Nurphy J. "If P (Additional Nursing Care): Then Q (Quality of Patient Welfare)?" in M. Batey, ed., Cammunicating Nursing Research. Western Ir..erstate Comission for Hicher E $\overline{d u c a t i o n, ~ B o u l d e r, ~} \infty$ 1971, P.4, l-12.

National Camission on Nursing. Summary Report and Recomendations. The Hospital kesearch and Educational Trust, Chicago, April 1983.

National League for Nursing. Nursing Data Book, 1983-54. New York, 1984.
Nati nal League for Nursing. Nursing Student Census, 1984. New York, 1984.

National League for Nursing. State-Approved Schools of Nursing--LPN/LVN 1984. New York, 1984.

National League for Nursing. Unpublished data. New York, 1985.
O'Connor, P. "Health Care Financing Policy: Impact on Nursing." Nursing Administration Qurrterly 8:4:11-20, Summer 1984.

Poulin, M.A. "A Structural anc Functional Analysis of the Role of the Nurse Executive:" Boston University, 1982. Unpublished manuscript.

Pozen, M.W., et al. "A Nurse Rehabilitator's Impact on Patients with Myocardial Infarction." Medical Care 15:10:830-837, 1977.

Pro spective Payment Asses ment Commission. Report and Recommen' ations to the Seuretary, U.S. Department of Health and Human Services, April 1, 1985.

Prospective Payment Assessnent Commission. Technical Appendixes to the Report and Recammendations to the Secetary, U.S. Department of Health anu Human Servires, April 1, 1985.

Ramsey, Janice A., et al. "Physicians and Nurse Practitioners: Do They Provide Equivalent Health Care?" American Journal of Public Health 72:1:55-57, January 1982.

Rchort inood Johnson. Special Report: National School Health Services Program. Princeton, NJ, 1985.

Roth, Aleda, et al. 1977 National Sample Survey of Reg. stered Nurses. Accession No. HRP 0900603, National Technical Information Service, Springfield, VA, 1978.

Rıley, W. and Schaefers, V. "Costing Nursing Services." Nursing Management 14:12:40-43, December 1983.

Runyan, J.W., Jr. "The Memphis Crıronic Disease Program: Comparisons in Outcome and the Nurse's Extended Role." Journal of the American Medical Association 231:264-267, January 1975.

Salkever, David S., et al. "Episode-iased Ffficiency Camparisons for Physicians and Nurse Practitioners," Medical Care 20:2:143-153, February 1982.

Sparacino, Patricia. "The Clinical Nurse Specialist," in Holzemer, William, ed., Review of Research in Nursing Education. Slack, Thorofare, New Jersey, 1983, p. 14C-158.

Sovie, N.D. et al. "Amalgam of Nursing Acuity, DRG's and Costs." Nursing Management 16:3:22-42, March 1985.

Staley, M. and Luciano, K. "Eight Steps to Costing Nursing Services." Nursing Management $15: 10: 35-8$, October 1984.

Stevens, Barbara J. "Accountability of the Clinical Specialist: The Actninistator's View point." The Journal of Nursing Administration, 5:2:30-32, February 1976.

Sultz, A., et al. Longitudinal Study of Nurse Practitioners: Phase I (DHEW Pub. No. HRS 76-43); Fhase II( HRA 78-92, 1978): and Phase III (HRA 80-2, 1980). U.S. Government Printing Office, Washington, D.C.

Thampson, J.D. "The Neasurement of Nursing Intensity." Health Care Financing keview, November 1984 (Supplement), p. 47-55.

Trandel-Korenchuk, Darlene M., and Tradel-Korenchuk, J.D. "Current Legal Issues Facing Nursing Practice." Nursing Administration Quarterly, 5:1:37-45, Fall 1980.
U.S. Department of Health, Education and Weltare, Division of Nursing. Survey of FOreign Nurse Graduates. DHEW Pub. NO. (HRA) 76-133, U.S. Government Printing Office, Washington, D.C., March 1976.
U.S. Department of Health, Education and Welfare, Livision of Nursing. second Report to the Congress, March 15, 1979 (Revised). Nurse Training Act of 1975. DHEW Fub. NO. HRA 79-45. U.S. Government Printing Office, Washington, D.C., 1979.
U.S. Department of Health, Education, and Welfare, Health Care Financing Administration. "Survey and Evaluation of the Physician Extender Reimbursement Experiment." keport of contract number SSA-600-76-0167 with Systems Sciences, Inc., Bethesda, MD. Accession No. PB 281722AS National Technical Information Services, Springfield, VA 1978.
U.S. Department of Health, Education, and Welfare, Office of the Assistant Secretary for Health and Surgeon General. Healthy People. DHEW Pub. No. 79-55071, U.S. Government Frinting Office, Washington, D.C., 1979.
U.S. Department of Health and Human Services, Bureau of Health Professions. Source Book: Nursing Personnel. DHHS Pub. No. HRA 81-21. U.S. Government Printing Office, Washington, D.C., 1981.
U.S. Department of Health and Human Services, Bureau of Health Professions. Report to the President and Congress on the Status of Health Personnel in the United States, May 1984. DHHS Pub. No. HRS-Y-OD-84-4, U.S. Government Printing Office, Washington, D.C., 1984.
U.S. Department of Health and Human Services, Divisicn of Nursing. Nursing Supply, Distribution and Requirements. Third Report to the Congress, February 17, 1982. DHHS Pub. NO. HRA 82-7. U.S. Goveriment Printing Office, Washington, D.C., 1982.
U.S. Department of Health and Human Services, Division of Nursing. of Cormunity Health Nursing, 1979. Accession No. HRP 4904449. National Technical Information Service, Sprıngfield, VA, 1982.
U.S. Lepartment of Health and human Services, Division of Nursing. "Descriptive Study of the Application of Primary Nursing in a Hospital Setting." DHHS Publication NO. HRS-P-DN-83-1. U.s. Government Printing Office, Washington, D.C., 1983.
U.S. Department of health and Human Services, Division of Nursing. Study of Nurse Practitioner Programs, Students, Graduates, and Employers of Nurse íractitioners. Accession NTO. HRP 0904775. National Technical Information Service, Springfield, VA, 1984.
U.S. Department of Health and Human Services, Division of Nursing. First National Sample survey of Licensed Practical and Vocational Nurses, 1983. Accession No. HRP 0906278 National Technical Infomation Service. Springfield, VA, 1985.
U.S. Department of Health and Human Services, Division of Nursing. The 1984 Evaluation and Update of the Staffing Criteria for the CriteriaBased Model. April 1985.
U.S. Department of Health and Human Services, Health Resources Administration. Report of the Graduate Medical Education National Advisory Comittee to the Secretary, Department of Health and Human Services. Volume 1. GMENAC Summary Report. DAHS Pub. NO. HRA 81-651. U.S. Government Printing Office, Washinyton, D.C., November 1980.
U.S. Department of Health and Human Services, Office of Data Analysis and Manayement. The Registered Nurse Population: An Overview. From National Sample Survey of Registerea Nurses, November 1980. DHHS Pub. NO. HRS-P-OD-83-1. U.S. Govemment Printing Office, Washington, D.C., January 1982.

$$
39: 3
$$

Vaughn, Joinn C. "Educational preparation for Nursing - 1981." Nursing and Health Care, October 1982.

Vestai, K.W. "Financial Considerations For Lareer Ladder Proyrans." Ivursing Administration Quarterly, 9:1:1-8, Fall 1984.

Walker, D. "The Cost of Nursing Care in Hospitals." Journal of Nursing Administration 13:3:13-18, march 1983.

Wallace, Mary A. and Corey, Linda J. "The Clinical Specialist As Manager: Hyth Versus Realities." The Journal of Nursing Administration 13:6:13-15, June 1983.

West, M.E. "Keeping Talented Kis in Hospital Practice." Nursing Management 14:8:38-44; August 1983.

Williams, Lillian B. and Cancian, Dianne W. "A Clinical Nurse Specialist in a Line Management Position." The Joumal of Nursing Administration 15:1:20-26, January 1985.

Table 10-1. EDUCATIONAL PROGRAMS PREPARING REGISTERED NURSES IN THE UNITED STATES, 1970-71 TO 1983-84

Academic year	Programs 1	Enrollments 1	Admissions 2	Graduations 2

TOTAL:

1970-71	1,340	162,924	78,524	46,455
1975-76	1,362	248,171	112,174	77,065
1976-77	1,358	247,044	112,523	77,755
1977-78	1,356	245,390	110,950	77,874
1978-79	1,358	239,486	107,476	77,132
1979-80	1,374	234,659	105,952	75,523
1980-81	1,385	230,466	110,201	73,985
1981-82	1,401	234,995	115,279	74,052
1982-83	1,432	242,035	120,579	77,408
1983-84	1,466	250,553	(3)	(3)

associate degree:

$1970-71$	437	43,855	29,433	14,534
$1975-76$	608	88,121	52,232	34,625
$1976-77$	632	91,004	53,610	36,289
$1977-78$	645	91,102	52,991	36,556
$1978-79$	666	91,527	53,366	36,264
$1979-80$	678	92,069	53,633	36,034
$1980-81$	697	94,060	56,899	36,712
$1981-82$	75	100,019	60,423	48,289
$1982-83$	742	105,324	63,947	$(3)$
$1983-84$	764	109,605		$(3)$

DIPLOMA:

1970-71	636	70,412	28,792	22,065
1975-76	428	60,213	23,622	19,861
$1976 . .77$	390	56,091	22,243	18,014
1977-78	367	52,858	20,611	17,131
1978-79	344	48,059	18,499	15,820
1979-80	333	43,651	16,905	14,495
1980-81	311	41,048	17,494	12,903
1981-82	303	41,009	18,928	11,682
1982-83	288	42,348	19,368	11,704
1983-84	281	42,007	(3)	(3)

## baccalaureate: 4

1970-71	267	48,65\%	20,299	9,856
2975-76	326	99,837	36,320	22,579
1976-77	336	99,949	36,670	23,452
1977-78	344	101,430	37,348	24,187
1978-79	348	99,900	35,611	25,048
1979-80	363	98,939	35,414	24,994
1980-81	377	95,858	35,808	24,370
1981-82	383	93,967	35,928	24,081
1982-83	402	94,363	37,254	23,855
1983-84	421	98,941	(3)	(3)

[^17]Table 10-2. PRACTICAL NURSING EDUCATIONAL PROGRAMS AND STUDENTS IN THE UNITED STATES, 1970-1971 TO 1983-1984

Academic year	Programs 1	Enrol lments 1	Admissions 2	Graduations 2
1970-71	1,233	52,526	59,128	37,954
1975-76	1,315	58,460	61,353	47,145
1976-77	1,318	58,423	60,166	46,614
1977-78	1,319	56,943	60,610	45,350
1978-79	1,310	54,543	57,081	44,235
1979-80	1,298	52,202	56,316	41,892
1980-81	1,299	52,565	58,479	41,002
1981-82	1,305	55,024	60,426	43,299
1982-83	1,292	57,367	61,453	45,174
1983-84	1,292	55,446	(3)	(3)
1 As of October 15.   2 Time period is from August 1 through July 31.   3 Data not available.				
SOURCE: National League for Nursing, NLN Nursing Data Book 1983-84 and State-Approved Schools of Nursing LPN/LUN 1984.				

## BEST COPY AVAILABLE

Table 10-3. nCMISSICNS TO ND GRADUATIONS TROM NUNING DTUCATIONAL PROGRANS PREPARING ROGISTERED NURSES, BY TYPE of PROGRM AO GEOGRAPHIC AREA, 1982-83

Geographic area	Admasions				Graduationa			
	Total	Becca leurents 1	Aanociate degree	Diplom	Total	Baccelaurente !	Aesociats degre	Diploma
United States	120,579	37,264	63,947	19,368	77,408	23,855	41,149	11,704
$\frac{\text { mandand }}{\text { connmeticut }}$	$\frac{7,705}{1.359}$	3.034 474	3,008	1,663	4,921	1,879	2,016	1,036
Connmeticut	1.359 625	183	550 286	335 156	9.4	143	333	238
Massecturexts	4.057	1,657	1,474	156	2.612	122	242	82
Now Hepehirs	506	209	2.474 218	79 79	2,612 292	967 127	1,047	604
Whode Is land	822	405	250	167	292 480	127 252	94 191	71
Vernont	336	. 106	230	-	177	6\%	109	37
Madde Atlantic	- 22,708	6,016	10,033	5,374	13,928	4,613		
New Jerevy	-3,653	- 3313	1,656	1.159	2,014	4,623	6, 980	$\frac{3,057}{535}$
Nam York	11,699	3,330	7.242	1,265	7.111	2,380	4.014	709
Pemmylvania	7,156	1,848	1,935	2,950	4,873	1,675	1,405	1,793
South Atlantic	19,083	5,183	11,909	1,905	11,406	3,293	7,075	1,031
Delanare District of	597	295	203	99	-395	$\frac{184}{184}$	$\underline{147}$	$\frac{1,038}{64}$
Colvibia	4, $\begin{array}{r}563 \\ 4.359\end{array}$	443 812	3.278	181	284	227	57	
Grsegia	2,350	589	3,278 1,568	201	2,917 1,310	451	2,346	120
Maryland	2266	627	1,346	293	1,441	392 443	788	130 157
North Carolina	3.179	775	2,082	309	1,946	667	1,090	187
South Caroline	1,391	294	$\underline{1.021}$	32	1.946	232	1,090 459	189 14
Virginia	2,901	997	1,237	635	1.612	539	7\%	277
West Virginia	1,559	351	1,053	155	7\%	150	551	27
East South Contral	10,130	3,118	5,916	1,068	5,809		3,524	649
Alabe	3.297	1,318	1.793	18\%	1,7\%	2, 706	$\frac{3151}{\text { KI }}$	649
Kentucky	1,970	385	1.585	30	1,250	189	984	107
Mississippi	1,794 3,069	562	1,202	30	949	293	630	26
Tennester	3,069	853	1,336	852	1.792	448	959	385
What south Ontral	10,671	3,873	5,786	886	5, 324	2,242	3,062	520
Archnes	1, 375	430	759	186	- 765	263	3,062	
Loulsima Oklaho	1,929 1,345	738 476	795 869	396	957	193	374	186
texas	1,345 5,977	2,235	869	-	930	306	303	41
	5,977	2,235	3.363	304	3,16	1,380	1.564	224
Erat Morth Concral	23,016	7,392	11,239	5,139	16,095	4,792	1,047	3,256
Illinois Indiana	6,393 3,180	1,703 1,291	3,155	1,405	7,479	1,162	- 2,337	-1,259
Michigan	4,214	1,161	2,537	4316	2.140 3.229	771	1.143	226
Ohio	6,609	1,577	2,704	2,328	3.229 4.317	945	1.961	423
Wisconein	3,399	1.660	1,257	4.357	4,937 1,930	932 902	1,985 747	1,367 281
$\frac{\text { mest North Coitral }}{\text { lowe }}$	11,24t	3,277	5,139	2,832	7,874	2,522	3,533	1,819
Kamesm	2,454	579	1,261	627	1,702	T17	- 692	$\frac{193}{}$
Minnetote	1,434	530 677	709 1.412	195 251	1,029	483	438	108
Mrseour 1	2,669	584	1,037	1,047	1,722	588	919	215
Nebraska	1.029	299	304	${ }^{2} 26$	782	140	705	623
North Datota	603	328	133	142	398	110	294	308
South Dekota	720	230	296	14.4	433	191	94	113
Mountalin	4,930	1,941	2,900					
Mrisona	1.401	63	703	14	$\xrightarrow{3,197}$	912	2,243	42
Coloreda	1,20t	546	501	81	669 607	255	614	-
Idano	369	43	375	81	607	227	338	42
Montana	459	307	102	-	293 212	437	252 85	-
Mevada	309	50	191	60	186	127 34	$\begin{array}{r}35 \\ 152 \\ \hline\end{array}$	-
Mremman	601	153	44	0	384	34 74	152	-
Utah	439	69	371	-	384 567	128	310 439	-
myening	205	71	134	-	77	128 24	439	-
pecific	10, 218	2,656	7,212	420				
Alatiforna	169	104 1.756	-5,229	-	-7,38	$\frac{1,966}{36}$	6,031 42	357
Hemili	7,263 284	1.756 144	5,229 144	278	5,956	1.139	4,495	274
Otugon	981	118	721	142	180	70 710	110	-
Hachington	1,507	534	1,053	142	686 1,272	210 461	573 811	83

[^18]source: Mationsl Cengus for Mursing, Mrsing Students Oneve, 1984.

Table 10-4. ADMISSIONS TO AND GRADUATIONS FROM PRACTICAL NUPSING EDCATIONAL PROGRAMS BY CIDOGRAPHIC AREA, 1982-83

Geographic area	Adruissions 1	Graduations 1	Geographic area	Admissions J	Graduations 1
United States	61,453	45,174	East North Central	9,763	7,854
			Illinois	2,780	2,259
New England	2,405	1,829	Indiana	1,119	857
Connecticut	420	229	Michigan	- $\mathbf{1 . 7 4 9}$	1,488
Maine	235	247	Ohio	3,056	2,333
Massachusetts	1,206	913	Wisconsin	1,059	917
New Hanpshire	208	200			
Phode Island	130	111	West Morth Central	5,599	4,711
Vermont	206	129	Iowa	882	809
			Kansas	562	716
Midale Atlantic	9,692	6,800	Minnesota	1,573	1,118
New Jersey	1,745	1.171	Missouri	1,312	1,073
Hew York	4,386	2,924	Nebraska	636	468
Pennsylvania	3,561	2,703	North Dakota	339	282
			South Dakota	295	245
South Atlautic	10,379	7,288			
	193	82	Mountain	2,282	1,987
District of			Arizona Colorado	424 628	384 511
Columbia	144 2,713	71 2,148	Colorado	628 138	174
Georgia	2,066	1,461	Montana	240	132
Maryland	618	387	Nevada	59	67
Morth Carolina	1,200	929	New Mexico	258	294
South Carol ina	935	515	Utah	428	339
Virginia	1,825	1,149	Wyoming	107	86
West Virginia	685	546	Pacific	5,823	4,793
East South Central	5,234	3,527	Alaska	2, 24	12
Alabama	2,078	1,226	Cal ifornia	4,471	3,489
Ken_uck!	1,098	708	Hawaii	122	128
Mississippi	912	657	Oregon	228	358
Tennessee	1,146	936	Washington	$97 \varepsilon$	806
West South Central	10,232	6,421			
Arkansas	1,331	1,181			
Lovisiana	2,122	1,109			
Oklahoma	1,097	721			
Texas	5,682	3,410			

1 Time period is August 1 through July 31 for the academic year.
SOURCE: National League fo. Nursing, State-Approved Schools of Nursing, LPN/LWN 1984.

Table 10-5. NURSES ADMITTED TO THE UNITED STATES, BY IMMIGRATION STATUS, SELECTED FISCAL YEARS, 1974-1984


SOURCE: Annual reports of Immigration and Naturalization Service, Department of Justice.
$4: 6$

Table 10-6. PROFESSIONAL NURSES ADMITTED AS IMMIGRANIS, BY COUNIRY OF LAST PERMANENT RESIDENCE, SELECTED FISCAL YEARS, 1974 - 1984

Country of last residence	1974	1976	1978	1982	1984
All countries	5,331	6,421	3,779	4,701	3,643
Europe	834	965	646	735	614
Germany	111	128	145	128	96
Ireland	95	50	12	30	36
United Kingdom	394	456	312	380	328
Other	234	331	177	197	154
Asia	3,457	4,460	2,153	$\underline{2,716}$	1,994
Taiwan	125	72	1 C 2	83	72
India	827	1,236	79	429	162
Korea	988	821	319	171	111
Philippines	997	1,748	1,372	1,685	1,393
Thailand	235	230	33	32	18
Other	285	353	248	316	238
Africa	124	155	53	97	100
Oceania	73	82	36	66	70
North and					
Central America	715	607	781	977	776
Canada	333	293	399	456	380
Jamaica	105	87	124	186	159
Trinidad and					14
Other	277	177	236	309	224
South Amer ica	128	92	105	110	94
Guyana	-	38	36	67	38
Other	-	54	69	43	56

1 Pemanent resident aliens.
SOURCE: Annual reports of Immigration and Naturalization Service, Department of Justice.
table 10-7. licensed practical/vocational hurge population in each state and area, BY NCTIVITY STATUS: HOVEEER 1983

coouraphic eree	Total nuriber in sarple	Lacensed practical nurse population					
		Total	Erployed   LP/VN   Mumber	sast	Not empl as LP/WN Number	yed   rcent	Buployed mursea per 100,000 1 population
United States	17,235	781,506	539,463	69.0	242,042	31.0	231
Hew Eroland	1,553	46,333	33,004	71.2	13,329	28.2	264
Conncticut	$22^{2}$	20.302	6,985	67.8	3,317	32.2	223
Maine	261	4,139	3,154	76.2	985	23.8	275
Meseachueette	449	23,018	16,553	71.9	6.465	28.1	287
Hew hampehire	182	3,250	2,114	65.0	1,136	35.0	220
Rhode Island	206	3,364	2,488	73.9	877	26.1	261
Vecment	173	2,259	1,710	75.7	549	24.3	326
Middle Aclantic	2,005	137,040	82,885	60.5	54,254	39.5	224
New Jecsey	388	22,794	14.212	62.3	8,582	37.7	130
Nen Yark	854	64,333	38,322	59.6	26,011	40.4	217
Penneylvania	763	49.913	30,352	60.8	19,561	39.2	255
Sxuth Aelantic	2,744	121,494	86,872	71.5	34,622	22.5	224
- Deleware	169	1.565	-1.170	71.8	394	25.2	193
District of Columb	-1a 127	2,245	1.719	76.6	526	23.4	276
Florida	578	33,687	23,954	71.1	9,733	28.9	226
Georgia	306	22,528	15,114	67.1	7,414	32.9	264
Maryiand	274	10,215	6,770	66.3	3,445	33.7	158
North Carol ina	363	17,962	13,310	74.1	4,652	25.9	219
Swith Carolina	282	9.200	7.042	76.5	2,158	23.5	216
Virginia	389	17,934	13,042	72.7	4,891	27.3	235
West Virginia	276	6.161	4.752	77.1	1,409	22.9	242
Ene: South Central	1,286	56,050	41,598	74.2	14,453	25.8	$\frac{278}{11}$
Alabina		16.992	12.295	72.8	4,596	27.2	3 II
Kentucky	297	\$,099	7.280	80.0	1,819	20.0	196
Misaissippi	302	10,287	7,552	73.4	2,735	26.6	292
Terneasee	361	19,772	14,470	73.2	5,302	26.8	309
What South Contral	1,756	$\frac{103,223}{11}$	70,671	68.5	36,452	31.5	274
Arkanman	274 305	11,527 15,600	7.788 11.513	67.6	3,739	32.4	335
Loussiana	305 292	15,600	11,513 7	73.8	4,087	26.2	259
Oklahoma	882	10,901	7.835 43.536	71.9	3,066	28.1	238
Texas	885	65,096	43,536	66.9	21,560	33.1	277
Eagt North Central	2,348	135,561	94,979	70.1	40,582	29.9	229
Illinois	474	31,201	19,855	63.5	11,393	36.5	173
Indiana	363	13,814	10,546	76.3	3,268	23.7	192
Michigun	502	34.125	23,299	68.3	10,826	31.7	257
Ohio	661	41,225	29,542	71.7	11,686	28.3	384
Wheconain	348	15,1/6	11,737	77.5	3,410	22.5	247
Weat North Contral	2,177	64,495	48,729	75.6	15,765	24.4	280
Towa	361	10,794	7.692	71.3	3,102	28.7	365
Kancas	243	6,624	5,327	80.4	1,297	19.6	220
Minnesote	435	18,795	13,842	73.6	6,954	26.4	334
Minecuri	362	16,18.2	12,725	78.6	3,457	21.4	256
Nebrande	302	6,019	4,568	75.9	1,451	24.1	296
North Dakote	274	3,251	2,567	79.0	684	21.0	378
South Dakota	200	2,829	2,009	71.0	820	29.0	287
Mountain	1,643	32,882	21,386	65.0	12,496	35.0	173
drizona	262	7.116	4,896	66.0	2,519	34.0	165
Color ado	219	8,718	5,252	60.2	3,466	39.8	167
Idaho	211	3,445	2,169	62.9	1,277	37.1	219
Montana	244	3,001	1,786	59.5	1,214	40.5	219
Movada	142	1,785	1,249	70.0	536	30.0	140
Nam Mexico	162	3,714	2,659	71.6	1,055	28.4	190
Utah	233	3,698	2,617	70.8	1,081	29.2	162
Hyoning	170	1,105	785	68.6	347	31.4	147
Peoific	1,743	$8 \cdot 528$	59,339	70.2	25,190	29.8	
misita	119	1,025	5859	55.5	456	44.5	119
California	843	60,757	44,721	73.6	16,036	26.4	178
Hmali	185	2,539	1,770	69.7	770	30.3	173
Oregon	260	5,889	4,170	70.8	1,720	29.2	157
Wachington	336	14,317	8,109	56.6	6.209	43.4	189

1 Population data uned for computation of nurse-population ratios ware baced an estimates of reasdent pupulation at of July 1, 1983 in the publicition of U.S. Departiment of Commerce, Bureau of the Census, Erimen of the population of states, by Ace: July 1,1981 to 1983, Earice P-25, No. 951, Iseued May 1984,

SOURCE: D.S. Departmont of Health and Human Sarvicm, Division of Aursing.
First Eational gaple survey of Licened Practical and Vocitional sureme, 1993.

10-84
98
 oy cetiviti stanss, movicest 1900

Cominicmuc uet	Taral   minber   10   samis	Lexieterat aurea moxistion					Eapleyed nureas ME 100,000 ponlatime
		Tosal	$\begin{array}{r} \text { empl } \\ \text { 10 } \\ \text { numer } \end{array}$	Percent	$\begin{gathered} \text { not } \\ \text { 1s } 0 \\ \text { manem } \end{gathered}$	loyed   Ing   Parcaes	
Weiced Scasen	30,373	1,002,382	1,272.032	76.6	318,537	23.4	540
Mav Eeland	3,026	145,457	109,216	73.0	36,:94	25.0	182
Cecenctient	633	33,65	26.03	7.0	7.36	22.0	13
Malse	410	10.139	7.503	74.6	:.533	25.1	073
Nasoashmeetse	840	76.926	37,052	74.2	19,874	25.8	93
Nev lempelitis	374	10.179	7,361	73.4	2,012	27.6	788
linele lelaed	356	9,295	7.025	75.6	2.245	24.2	140
Verment	309	5,437	4.005	13.5	1.442	26.5	702
Medle asleats	3,273	34, 346	252.721	74.0	01,374	25.9	485
Man Jereey	751	63,630	66.74	3.5	16,162	26.5	63.
He Tart	2,331	156.735	122.10	17.9	34.439	22.4	695
Pacneylveata	1,142	120,*1	13,769	69.3	37,073	30.6	105
Lestrith Cantal	4.310	290.679	231,357	17.3	67,031	22.4	385
Illicolo	1,035	15.115	66,51	77.7	15,105	22.2	36
leateas	631	32,464	23,379	18.2	7.086	21.1	462
Mremigea	132	6, 162	65,427	13.2	27,738	26.8	323
Onto	1.091	79,107	61.041	74.1	17.346	21.9	573
Hecenta	750	3,643	20,913	03.4	5,759	10.6	612
Vact Morth Coneral	3, 832	138.374	218,206	02.2	26,167	17.9	646
Iom	650	24,515	15.800	10.5	4,55	17.5	675
ceaseo	503	10,010	14.574	0.0	3.436	19.1	616
Mramatas	131	31,327	32,164	06.0	6.143	16.0	78
Htsemrt	43	30,13s	25,635	13.1	3.197	16.9	521
Molurecke	546	12,120	10.325	79.9	2,602	20.1	657
Moret thera	349	5,169	4.264	02.5	904	17.5	632
gentil gekete	330	S,74	4.623	10.4	1.125	19.6	670
gened cilatise	3.251	245, 613	116.460	76.0	90, 984	23.9	502
bicmers	245	5,583	3,332	5.2	1.70	30.8	8 F
Her. of colmate	120	9,115	0,462	92.1	615	6.1	1,52e
Plorice	929	69.390	49.245	71.0	20,165	29.0	499
Ceorile	537	10.410	14.756	1.6	3,644	10.6	482
Marylsed	670	31,059	24.639	74.6	0.297	25.1	313
Mortin Caralseo	161	34,684	27,536	79.4	7,044	20,3	463
genet Caralima	S11	16.410	12,537	76.4	3,073	23.6	401
Firise	110	3,946	16.134	76.1	1.020	25.2	467
Heer Virgieia	380	11,44	9,336	74.8	2,504	21.2	479
Fest Sourl Coneral	1.903	76,407	62,411	81.5	14,003	10.9	425
Taver	501	15,75	16,086	4.0	3,751	15.0	T12
tontwels	481	19.984	16.972	4.9	2.980	10.9	463
Misersatrel	301	11.360	9.052	03.1	2.045	10.7	359
Temeaces	500	25,62	20,340	79.3	5.179	20.2	43
Meat smin cuerral	2832	116.212	97,476	78.3	20.750	24.7	366
crimas	355	11,220	2,805	74.5	2,513	25.1	36
tmesolam	56	14,939	16,586	76.9	4,303	21.1	345
Otlateren	521	13,404	10,509	78.4	2,869	21.6	346
Teres	037	12,400	54,006	14.3	14,613	25.7	371
Pumens	3.102	98,211	63,214	74.1	20, 293	25.6	336
Artaena	32k	2.78	16,05	75.4	6.68	21.6	51
Celarate	638	24.302	17.820	13.3	6,441	26.7	614
Llate	33	5,709	4.042	10.2	1,716	29.8	429
nuntees	423	6,544	0.124	13.1	1,719	26.3	612
Morusa	279	4, 201	3,950	02.3	181	17.7	$4{ }^{4}$
Tre Mansee	293	6.005	3,674	0.5	1.310	19.5	420
Teat	337	7.974	6.045	73.8	1,91.	24.0	411
Ureater	264	3,14	2.350	14.2	116	25.0	495
Pectite	3.421	221,194	170,672	77.2	-0.351	22.1	313
Areots	LJJ	3.018	1,N71	56.6	1,081	35.1	65
Celilarats	1,672	135,739	121,176	74.6	33.432	21.5	514
Cmadi	385	6,304	4.763	74.6	1,620	25.4	492
Oregen	438	20,222	17,200	02.2	1.713	12.8	632
Menkimen	733	35.071	24,576	70.1	10.496	29.9	592








10-85

Table 10-9. ESTIMATED SUPPLY OF REGISTERED NURSES BY ELUCATIONAL PREPARATION NO GTGGRAPHIC AREA, DCCEMBR 31, 1983

Seographic areo	1983				
	Total REN's 1	$\begin{aligned} & \text { ADs } \\ & \text { dip. } \end{aligned}$	Bacc.	Masters   - doct.	$\begin{aligned} & \text { RN's per } \\ & 100,000 \\ & \text { pop. } 2 \end{aligned}$
United States	1,404,200	977,180	347,100	79,940	600
Now Engla.d	118,400	82,450	27,860	8,150	948
Connecticut	28,200	19,950	6,190	2,080	899
Maine	8,700	6,820	1,670	240	759
Masmachusetts	60,000	11,080	14,300	4,660	1,040
Now Hempehate	8,800	6,200	2,300	260	918
Rhode Island	8,000	4,960	2,260	760	838
Vermont	4,700	3,440	1,140	150	895
Middle Atlantic	264,000	185,540	64,560	14,010	713
New Jexsey	51,600	36,016	13,020	-2,620	691
Now Yoek	121,800	81,130	32,950	7.770	689
Pennyylvania	90,600	68,400	18,590	3,620	762
Scorh Atlantic	209,000	150,250	46,970	11,880	539
Delaware	4,800	3.400 1.560	1,220	150	792
District of Columbia	8,100 58,600	4,560 45,350	2,610	920	1,300
Floorga	58,600	45,350 16,520	11,220 5,300	2,070 2,810	549
Maryland	29,700	20,380	6,990	2,330	690
North Carolina	29,400	20,910	7,310	1,210	483
South Carolina	14,100	10,540	2,990	580	432
Virgina	29,300	20,280	7.530	1,530	528
Weit Virginia	10.400	8.310	1,800	280	529
East South Central	72,800	52,430	16,110	4,250	487
Alabama	18,600	11,690	5,750	1,160	470
Kentucky	19,900	15,300	3,570	1,020	536
Mississippi	11,100	8,280	2,160	650	429
Tennes see	23,200	17,160	4,630	1,420	495
West South Central	97,900	61,870	29,940	6,100	380
Arkarsas	9,000	5,880	1,710	$\underline{.}$	387
Loursiana	16,000	10,590	4,870	550	361
Ok lahoma	11,800	7,830	3,630	390	358
Texas	61,100	36,570	19,730	4,790	389
East Aorth Central	259,900	184,680	61,630		626
Illinois	70,300	78,180	17,780	$\frac{13,400}{4,300}$	612
Indiana	31,600	22,150	7.890	1,530	577
Michigar	53,500	38,210	12,010	3,290	590
Ohio	71,700	55,ri10	13,930	3,280 2.760	667
Wisconsin	32,800	21.130	10,020	1,600	690
Wett North Central	122,400	89,050	28,180	5,240	703
IOW	- $\mathbf{2 1 , 6 0 0}$	16,580	7,150	$\frac{5,240}{690}$	774
Kancas	16.100	11,270	4,060	770	664
Minnesota	35,000	25,180	7,850	1,980	845
Missouki Nebraska	28,600	20,480	7,000	1,120	576
Nebraska	11,200	8,220	2.430	560	701
Nozth Dakota	4,800	3,550	1,210	40	706
South Dakota	5,100	3,570	1.480	80	729
Mountain	69,500		19,600		
Arizona	18,400	12,530	-4,750	1,176	621
Color ado	20.400	12,510	6,460	1,380	850
Idaho	5,000	3,870	1,010	- 80	506
Montana	4,200	2,890	1,120	180	514
Nevads	4,500	3,080	1,260	140	505
New Mexico	7.100	4,730	1,940	420	508
Utah	7,300	4,400	2,360	490	451
Hyaming	2,600	1,830	700	80	311
Pacific	190,100	125,070	52,190		
Alagha	2,300	1,400	$\frac{52,810}{810}$	$\frac{12,800}{90}$	$\frac{565}{480}$
California	136,100	90.750	36,130	9,240	541
Hewali	6,000	3,750	1,960	280	587
Oregon	19,500	13,280	5,100	1,110	733
Washington	26,200	15,890	8,190	2,140	609

1 Estimated number may not add to total due to rounding.
2 Population data used for conputation of nurse - population catiof are based on resident population at of July L, 1903 tra the Bureau of the Cenaus, U,S. Department of Commerce a reported in Population Eitimation and Projectiong, Serim p- 25 No. 951 , May 1904.
source: Estimates prepared by Division of Aursing, Bureau of Health Profeasions, Health Resources and Servioem Mdinistration, Depertment of Helth and Humen Servions, 19e4.

Table 10-10. DISTRIBUTION OF THE REGISTERED NURSE SUPPLY, BY PRINCIPAL EMPLOYMENT SETTING AND NURSING-RELATED EDUCATIONAL PREPARATIUN, NCVEMBER 1980

Principal employment setting	Total		Associate degree		Diploma		Bacc.		Master's		Doctoral	
	No.	PCt.										
Total employed	11,272,851	100.0	256,167	20.1	645,494	50.7	295,202	23.3	65,224	5.1	22,967	. 2
Hospital	835,646	100.0	199,035	23.8	407,166	48.7	200,879	24.0	24,403	2.9	312	(3)
Nsg. home or extended car facility	101,209	100.0	16,923	16.7	71,182	70.3	11,483	11.3	1,163	1.2	-	-
Public/commun. health	83,440	100.0	12,001	14.4	35,191	42.2	28,498	34.2	7,568	9.1	27	(3)
Physician's or dentist's cfc.	71,973	100.0	10,294	14.3	50,031	69.5	9,528	13.2	1,589	2.2	93	. 1
Student health service	44,907	100.0	2,903	6.5	20,763	46.2	16,477	36.7	4,299	9.6	-	-
Nursing educ.	46,504	100.0	2,122	4.6	8,361	18.0	12,228	26.3	21,396	46.0	1,948	4.2
Occupational hlth.	- 29,164	100.0	3,510	12.0	20,574	70.6	4,036	13.8	725	2.5	130	. 4
Private duty nsg.	20,239	100.0	2,698	13.3	14,178	70.0	2,639	13.0	512	2.5	-	-
Other self-emp.	10,853	100.0	1,777	16.4	4,391	40.5	2,960	27.3	1,707	15.7	-	-
Other	21,666	100.0	3,295	15.2	10,706	49.4	5,498	25.4	1,492	6.9	434	2.0
Not known	7,249	100.0	1,611	22.2	2,951	40.7	1,977	27.3	369	5.1	24	. 3

1 Includes an estimated 6,797 registered nurses for whom highest educational preparation is not known.
2 Because of the small number of sample cases in most of the categories in this column, these numbers are subject to wide sampling variation.
3 Less than . 1 percent.
SOURCE: Bentley, et al., National Sample Survey of registered Nurses II, Status of Nurses: November 1980, NTIS, Stock No. HRP 0904375; and unpublished data.

Table 10-11. FIELD OF EMPLOYMENT AND TYPE OF POSITION OF EMPLOYED LICENSED PRACTICAL/VOCATIONAL NURSES: NOVEMBER 1983

Field of employment	Total 1	Charge nurse	Private duty nurse	Staff nurse	No position title	Other	Not krown
Total license? practical nurses employedi in nursing	539,463	103,425	22,797	351,697	48,928	4,170	8,447
Hospital	310,842	15,863	1,597	274,520	18,061	454	349
Nursing home	121,398	78,315	1,210	36,138	3,787	1,694	254
Public/community health	13,574	2,022	834	7,706	2,219	+779	13
Student health	4,200	215	-	2,516	806	585	78
Occupationa: healch	6,056	874	312	2,941	1,826	102	7
Physicians or dentists office	48,969	5,043	45	23,829	19,636	294	122
Private duty	19,959	260	18,175	703	745 1.740	61	13
Other	6,237	721	501	3,074	1,740	201	1
Not known	8,229	112	122	271	107	201	7,617

1 Individual items may not add to totals because of rounding.
SOURCE: U.S. Department of Health and Human Services, Division of Nursing, First National Sample Survey of Licensed Practical and Vocational Nurses, 1983, Accession No. HRP0906278, National Technical Information Service, Springfield, VA 1984.

Table 10-12. EMPLOYMENT AND VACANCI RATES OF NURSING PERSONNEL IN U.S. RFGISTERED HOSPITALS AND IN COMMUNITY HOSPITALS BY TYPE OF PERSONNEL, 1981, 1982 AND 1983

Personnel classification	U.S. registered hospitals			Community hospitals		
	1981	1982	1983	1981	1982	1983
Total hospital personnel	4,124,974	4,250,421	4,215,014	3,470,567	3,585,290	3,579,711
Full time	3,197,902	3,295,286	3,258,474	2,596,609	2,686,998	2,680,550
Part time	927,072	955,135	956,540	873,958	898,292	899,161
FTE ${ }^{1}$	3,661,438	3,772,853	3,736,744	3,033,588	3,136,144	3,130,130
Vacancy rate	4.4	3.3	3.1	4.2	3.2	3.0
Registered nurses	823,321	881,791	913,945	751,301	804,709	836,504
Full time	571,790	606,852	627,748	507,407	539,130	559,800
Part time	251,531	274,939	286,197	243,894	265,580	276,704
FTE	697,555	744,321	770,846	629,354	671,918	698,151
Vacancy zate	7.6	5.3	4.4	7.6	5.3	4.4
Licensed practical/						
vocational nurses	304,606	311,338	302,331	274,722	280,658	271,912
Full time	221,712	223,682	215,881	193,730	195,016	187,558
Part time	82,894	87,656	86,450	80,992	85,642	84,354
FTE	263,159	267,510	259,106	234,226	2.37 .837	229,735
Vacancy rate	5.8	3.7	3.1	5.5	3.4	2.8
Ancillary persunnel	428,671	437.607	451,128	324,802	332,138	341,364
Full time	336,207	339,865	351,446	236,426	238,891	246,937
Part time	92,464	97,742	99,683	88,376	93,247	94,367
FTE	382,439	388,736	401,287	280,614	285,514	294,180
Vacancy rate	3.0	2.6	2.6	2.9	2.4	2.3

${ }^{1}$ FTE $=$ Full-time equivalent.
SOURCE: American Hospital Association, Annual Surveys of Hospitals, 1981, 1982, 1983.

## BEST COPY AVAILABLE

TAble 10-13. TOTAL AND ENLL TIAE EOUIVALENT EMPLOMMEMT ND VACAKC RATES OF NURSING PERSONNDE IN COMLNITY

HOSPITALS, BY GUOGRAPHIC AREA, 1983


SOURC: American Hompital Aseociation, Anral Survey of Hospitals, 1983.

Table 10-14. NOREER OF FULL TIME EQUIVALEETT ${ }^{1}$ REGISTERED NURSES, LICENSEC PRACTICAL/VOCATIONAL NURSES, AND NUPSING AIDES PER 100 RESIDENTS IN NURSING HOMES, BY GEOGRAPHIC AREA, 1982

Geographic area	Total nursing personnel	RNs	LP/NNs	Nursing aldes
United States	40.4	4.6	6.2	29.6
New England	37.1	6.1	4.9	26.1
Connecticut	27.9	6.0	3.5	15.4
Mante	35.3	4.1	3.6	27.6
Massachusetts	41.3	6.1	5.7	29.4
New Hampshire	44.7	9.5	6.1	29.1
Rhode Island	49.6	7.2	5.5	36.9
Vermont	33.3	5.4	5.1	22.7
Maddle Atiantic	44.2	7.0	6.4	30.8
New Jersey	41.0	6.7	5.0	29.3
New York	41.8	6.6	6.5	28.7
Pennsylvania	50.1	7.7	7.1	35.3
South At lantic	39.4	4.3	6.4	28.7
Delaware	36.8	7.5	6.2	23.1
District of Columbia	46.8	6.5	7.9	32.4
Florida	39.2	4.8	6.0	28.4
Georgra	37.3	2.5	7.6	27.2
Maryland	43.4	5.5	6.0	31.9
North Carolina	35.6	3.9	5.4	26.3
South Carolina	46.1	5.1	8.2	32.8
Virginia	38.8	4.2	6.0	28.6
Weat Virginia	43.4	4.1	7.0	32.1
East South Central	43.7	2.7	7.8	33.2
Ilabama	46.6	2.6	9.5	34.5
Kentucky	38.8	2.6	4.8	31.4
Mrsisisippl	48.1	3.7	9.7	34.7
Tennessee	43.9	2.5	8.4	33.0
Wes+ South Central	35.5	1.6	7.9	26.0
Arkansas	34.6	2.1	9.2	23.3
Loursiana	35.2	1.7	7.9	25.6
Oklahoma	28.5	1.5	4.8	22.2
Texas	37.8	1.4	8.5	27.9
East Horth Central	40.3	4.5	5.7	30.1
fllinois	34.2	4.3	4.9	25.1
Indiana	37.1	3.5	4.2	29.4
Michigan	43.9	4.0	5.5	34.4
Ohio	46.6	5.3	7.6	33.7
Whaconsin	41.6	5.2	5.7	30.7
Weat North Ceritral	37.9	3.6	4.8	29.5
Iowa	32.2	3.5	5.8	22.9
Kansas	42.3	2.6	3.6	36.1
Minnesota	41.9	5.4	5.7	30.8
Mrsscrit	38.3	2.5	4.1	31.7
Nebraska	35.7	3.1	3.9	28.8
North Dakota	35.1	5.1	5.1	24.9
South Dakota	33.1	3.1	3.6	26.4
Mountain	42.2	6.2	6.4	29.5
Arizona	12.9	6.6	5.3	30.9
Colorado	40.8	6.8	6.0	28.0
Idaho	48.7	6.2	7.4	35.0
Montana	40.5	6.1	6.7	27.7
Sevada	46.0	8.4	6.7	30.9
Now Maxico	38.3	3.8	6.6	27.9
Utah	42.6	3.9	8.1	30.5
Hyoming	39.1	6.1	6.5	26.5
Pectific	44.1	5.7	6.6	31.8
Alaska	34.6	8.2	2.3	24.1
California	47.1	5.5	7.5	34.1
Howail	37.0	5.4	4.6	27.0
Oregon	39.7	5.7	4.2	29.8
Wamington	37.2	6.6	5.1	25.5

1 Aull-time equivalenta include all full-time personnel plus one/half of port-time pertionel.
soURCR: Darived from data in U.S. Dmpartmant of Heelth and Human Servioet, National Center for Health Statistica, 1982 Master Facility Inventory, unpublishad.

Table 10-15. average annual garnings of registered nursrs employed full time IN THEIR PRINCIPAL NIRSING POSITION, by field of employment and type of position: noveliber 1980


1 Includes all registered nursea in poitiona not separately identified, as well as those itemized separately.
2 Too few to compute average.
SOURCE: U.S. Departaent of Health and Hupin Services, Office of Data Analysis and Managenent. The Regietered Nurse Population: An Overview. Fron National Sample nf Regietered Nurses, November 1980. DHHS Pub. No. HRP-P-OD-83-1. U.S. Governnent Printing Office, Washington, D.C., January 1983.

Table 10-16. AVERAGE ANNUAL EARNINGS OF LICENSED PRACTICAL/VOCATIONAL NURSES EMPLOYED FULL TIME IN THEIR PRINCIPAL NURSING POSITION, BY FIELD OF EMPLOYMENT AND TYPE OF POSITION: NOVEMBER 1983

Field of employment	Total 1	Charge   nurse	Private   duty   nurse	Staff   nurse	No   position   title
Total	$\$ 14,395$	$\$ 13,938$	$\$ 11,934$	$\$ 14,714$	$\$ 13,914$
Hospital	$\$ 15,106$	$\$ 15,415$	2	$\$ 15,083$	$\$ 15,256$
Nursing hame	$\$ 13,463$	$\$ 13,498$	2	$\$ 13,449$	$\$ 13,044$
Public/cormunity health	$\$ 13,730$	$\$ 14,537$	2	$\$ 13,907$	$\$ 13,319$
Student health   Occupational health   Physician or dentist   offices	$\$ 11,053$	2	2	$\$ 10,887$	2
Private duty	$\$ 15,472$	2	2	$\$ 15,201$	$\$ 15,326$
	$\$ 13,068$	$\$ 14,743$	2	$\$ 12,801$	$\$ 12,853$

1 Includes all licensed practical/vocational nurses in positions not separately identified, as well as those itemized separately.

2 Too few to compute average.
SOURCE: U.S. Department of Health and Human Services, Division of Nursing. First National Sample Survey of Licensed Practical and Vocational Nurses, 1983. Accession No. HRP0906278, National Technical Information Service, Springfield, VA, 1984.

Table 10-17. PROJECTED NUMBER OF GRADUATES FROM PRACTICAL. NURSING EDUCATIONAL PROGRAMS, ACADEMIC YEARS 1983-84 THROUGH 1999-2000

Academic year	Total
$1983-84$	43,800
$1984-85$	42,700
$1985-86$	40,000
$1986-87$	39,600
$1987-88$	39,600
$1988-89$	39,400
$1989-90$	39,200
$1990-91$	39,000
$1991-92$	38,600
$1992-93$	38,100
$1993-94$	37,600
$1994-95$	37,200
$1995-96$	36,800
$1996-97$	36,500
$1997-98$	36,100
$1998-99$	35,800
$1999-2000$	35,500

SOURCE: Projections by Division of Nursing, Health Resources and Services Administration, U.S. Department of Health and Human Services, 1985.

492

Table 10-18. PRUJECTIONS OF NATIONAL SUPPLY OF LICENSED PRACTICAL VOCATIONAL NURSES,
198. 2000

As of December 31	Tital number of nurses	Total nurses per 100,000 pop. 1	Full-time equivalents (FTE)	FTE per   160,000   pop. 1
1983	539,500	231	471,100	200
1984	561,000	237	490,300	207
1985	582,800	243	509,700	213
1986	606,400	251	530,600	219
1987	628,400	257	550,200	225
1988	656,500	267	575,100	234
1989	675,700	272	592,200	239
1990	693,500	277	608,000	242
1991	710,700	282	623,400	247
1992	727,600	286	638,400	251
1993	751,800	293	659,900	258
1994	768,600	298	674,900	261
1995	783,900	302	688,500	255
1996	798,800	305	701,800	268
1997	813,200	309	714,800	272
1998	833,100	315	32,400	277
1999	846,700	318	744,600	279
2000	859,200	320	755,800	282

1 Population data used for computation of nurse-population ratios are developed by the Division of Nursing based on projections from the Bureau of the Census, U.S. Department of Cormerce, as reported in Illustrative Projections of State Populations by Age, Race, and Sex: 1975-2000, Series P-25, No. 796, March 1979, and Projections of the Population of the United States by Age, Sex, and Race: 1983 to 2080, Series P-25, No. 952, May 1984.

SOURCE: Projections by Division of Nursing, Health Resources and Services Administration, Department of Health and Human Services, 1985.

Table 10-19. PRONECTED SUPPLY UF LICENSED PRACTICNL/NOCATIONAL NUREES by grocraphic area, deciaber 31, 1990 AND 2000

Geographis ares	1990		2000	
	Total CP/N': 1	$\begin{aligned} & \text { LP/N's } \\ & \text { per } 100,000 \\ & \text { Pop. } 2 \end{aligned}$	Total	$\begin{aligned} & \text { CPNN's } \\ & \text { per } 100,000 \\ & \text { pop. } 2 \end{aligned}$
United Staten	693,530	277	889,160	320
Now England	42,330	-52	51,070	400
Connecticut	9,030	289	10,720	351
Malne	4,500	364	5,870	446
Masamchueetis	17,160	301	17,080	312
Noer Heppehira	5,680	494	9,800	712
Rhoce island	3,280	345	3,820	412
Veruont	2,680	465	3,780	603
Modide atlantic	92,080	259	99,520	297
New jarcey	17.520	233	20,900	281
New York	37.170	227	34,860	234
Pernoylvania	37,390	320	43,750	392
South Atlentic	136,950	315	193,630	393
Dilimare	1,400	229	1,630	235
District of Columbla	1,020	208	870	234
Floride	42,820	316	62,370	353
Ceorgio	21,110	340	27,050	402
Maryland	8,370	186	9,660	211
North Carolina	25,330	390	41,3100	601
South Carolina	12,700	355	18,340	467
virginie	18,140	303	24,850	387
Nast virginia	6,050	297	7,470	361
Bat South Oentral	50,615	313	64,370	373
Alabaza	79.400	459	29,450	665
Kentucky	9,430	231	12,160	275
Missicoippl	10,230	370	12,620	427
Temencee	11,550	227	10,140	186
Whet bouth Contral	93,110	326	119,720	
Aximarar	\%,850	362	11,290	396
Lovialana	13,380	281	17,170	33:
on lanoma	9,720	275	12,510	315
Texas	61,170	346	78,750	377
East torth Contral	106,210	251	116,840	281
Illinois	22.460	213	30,000	269
Indiana	13,110	231	15,410	272
Michigen	26,280	280	28,350	310
Ohio	31,400	291	32,906	319
wisconsin	10,950	217	10,230	196
Net North Oentral	62,030	347	75,050	416
Iova	6,850	230	6,220	209
Kancas	7.120	289	8.240	330
minnesota	18,530	425	23,800	533
mpecouri	16,740	330	20,580	406
Nabraska	7,120	434	9,550	573
Nocth Dakota	3,070	453	3,310	484
South Dekote	2,610	374	3,350	497
Mountaln	34,000	217	45.850	225
arizona	7.530	I85	-9,70	IT1
Colorada	8,560	225	11,050	235
Ideno	2.930	238	3,610	236
Montane	4,520	508	7,600	794
Movade	1,020	78	1,210	62
Meinmaico	5,460	353	7,660	44
Utah	3,060	147	3,820	135
nyowing	920	129	1,200	117
Preific	76,210	207	93,100	218
Alasia	1,250	237	1,670	257
California	56,000	202	68,210	217
Hevali	2,140	187	2,670	208
Oragon	5,510	164	6,620	163
Wenhington	11,300	223	13.970	238

1 Figurem may not add to totals becavee of rounding.
2 Population date used for computation of nureo-populacion rative ara
developed by the Division of mursing besed on projections from the bur mu of of contua, U.S. Departinat of Comarce as reported in illugtrative prijectiona of state populationa by hae, hee and sex: 1975-2060, Serice p-25, No. 796 March lyys and ropaction of the hoplotion of the United Stetes by kge, sex and moe: 1
sounc: Projectione by Diviaion of Mursing, Health Resources and Services Adainistration, Departimet of Mealth and minan serviong, 1905.

Table 10-20. PROJECTED NUMBER OF GRADUATES FROM BASIC NURSING PROGRAMS PREPARING REGISTERED NURSES, BY TYPE OF PROGRAM, ACADEMIC YEARS 1983-84 THROUGH 1999-2Ũ00

	Total	Associate   degree	Diploma	Bacca-   laureate
$1983-84$	82,200	43,800	13,800	24,600
$1984-85$	82,700	44,300	14,000	24,400
$1985-86$	78,700	45,000	11,600	22,100
$1986-87$	78,800	45,500	11,000	22,300
$1987-88$	77,800	45,900	10,500	21,400
$1988-89$	76,500	46,000	10,000	20,500
$1989-90$	75,300	46,100	9,400	19,800
$1990-91$	73,900	45,900	9,000	19,000
$1991-92$	72,500	45,700	8,500	18,300
$1992-93$	71,300	45,500	8,100	17,700
$1993-94$	70,400	45,300	7,800	17,300
$1994-95$	69,400	45,100	7,400	16,900
$1995-96$	68,700	45,100	7,100	16,500
$1996-97$	68,000	45,000	6,800	16,200
$1997-98$	67,300	44,900	6,600	15,800
$1998-99$	66,900	44,700	6,300	15,900
$1999-2000$	66,400	44,400	6,000	16,000

SOURCE: Projections by Division of Nursing, Health Resources and Services Administration, U.S. Department of Health and Human Services, 1985.

Table 10-21. PRONECTIONS OP NATIONAL SUPPLY OF REGISTERED NURSES, 1980-2000

$\begin{aligned} & \text { As of } \\ & \text { December } 31 \end{aligned}$	Total number of nurses					Full-time equivalencres				
	Total Res	$\begin{aligned} & \text { AD } \\ & \text { dip. } \end{aligned}$	Bacc.	Master's   f doct.	Revs per 100,000 pop 1	Total RNs	$\begin{aligned} & \text { ND } £ . \\ & \text { dıp. } \end{aligned}$	Bacc.	Master's   $\$$ doct.	RNS per 100,000 pop. 1
1980	1,272,900	908,300	297,300	67,300	560	1,068,000	747,300	259,200	61,600	470
1981	1,315,500	930,000	313,900	71,600	574	1,102,900	764,400	273,000	65,500	481
1982	1,357,300	952,600	328,900	75,800	586	1,136,300	781,900	285,200	69,200	491
1983	1,404,200	977,200	347,100	79,900	600	1,174,200	801,300	300,000	72,900	502
1984	1,453,950	1,000,600	369,400	84,000	613	1,215,400	819,800	319,000	76,700	512
1985	1,504,300	1,925,200	391,300	87,900	628	1,257,400	839,500	337,700	80,200	524
1986	1,553,400	1,048,100	412,600	92,600	642	1,298,400	858,100	355,600	84,600	536
1987	1,600,700	1,072,500	430,400	97,800	655	1,338,100	878,300	370,200	89,500	548
1988	1,650,100	1,096,000	450,300	103,700	670	1,379,400	897,700	386,700	95,000	560
1989	1,695,200	1,118,900	156,800	109,500	683	1,417,400	916,400	400.000	100,400	571
1990	1,739,100	1,142,800	481,100	115,200	695	1,454,100	935,900	412,600	105,600	581
1991	1,779,000	1,162,100	495,800	121,100	705	1,487,900	951,900	425,000	111,000	589
1992	1,818,100	1,181,700	508,600	127,700	715	1,521,500	968,300	436,100	117,000	598
1993	1,857,300	1,199,500	523,500	134,200	725	1,555,300	983,400	+48,900	123,000	607
1994	1,895,700	1,218,100	536,300	141,300	734	1,588,800	999,100	460,200	129,500	615
1995	1,932,100	1,237,600	546,200	148,300	743	1,620,300	1,015,200	469,200	135,900	623
1996	1,963,900	1,252,200	556,400	155,300	751	1,648,20n	1,027,400	478,400	142,300	630
1997	1,994,300	1,265,700	565,400	163,200	758	1,675,100	1,038,600	486,800	149,700	636
1998	2,023,400	1,277,800	575,000	170,500	764	1,700,700	1,048,500	495,600	156,600	642
1999	2,052,100	1,290,200	583,500	178,400	770	1,726,400	1, 458,800	503,800	153,800	648
2000	2,079,400	1,303,500	589,700	186,300	775	1,750,30C	1,069,600	509,700	171,100	652

1 Population data used for computation of nurse-population rat. ss are based on projections from the Bureau of the Census, U.S. Department of Commerce as reported in Illustrative Projections of State Populations by Age, Hace, and Sex: 1975-2000, Series P-25, No. 796, March 1979, and Projections of the population of the United States by ige, Sex, and Race: 1983 to 2080. Series P-25, No. 952, May 1984

SOURCE: Projections by Division of Nursing, Health Resources and Services Administration, Department of Health sa Human Services, 1985.

Capgraphic ares	1990					2000				
	$\begin{aligned} & \text { Total } \\ & \text { Mes } 1 \end{aligned}$	$\begin{aligned} & A D t \\ & \text { dip. } \end{aligned}$	Bacc.	Matar 's   16 doct.	$\begin{aligned} & \text { Ple per } \\ & 100,000 \\ & \text { pop, } 2 \end{aligned}$	Total Rel 1		Bacc.	Master'a   b doct.	
Onited states	1,739,100	1,142,800	461,100	115,200	695	2,079,400	1,303,500	589,700	186,300	775
Man mequad	142,600	89,600	40,770	12,200	1,119	163,000	92,630	50,900	19,620	1,275
Connecticut	4,400	21,950	9.120	2,990	1.088	36,400	22.550	11,160	4,360	1,257
Maine	11,100	1,000	2,840	270	899	14,100	9,780	4,080	240	1,072
Massachumettr	69,300	42,800	19,100	7,400	1,216	75,000	40,260	22,100	12,650	1,368
Hew tupanire	11,700	7,400	3,900	410	1,017	15,900	9,140	6,100	12,670	1,155
Nhode Ialand	10,000	5.220	3,750	1,000	1,053	11,600	5,670	4,620	1,350	1,252
Vermont	6,500	4,230	2,060	210	1,128	8,000	4,900	2,840	1,310	1,275
Midede Atlentic	295,000	193,210	83.480	18,320	829	313,400	184.340	100,220	20,440	936
Wew Jorsey	61,500	43,470	17,710	3,290	458	76,600	19,100	22,600	5,000	1,031
Vem Yock	124,200 $i 36,300$	76,840 72,903	37,200 21,500	10.130 4.900	758	114,000	64,430	34,140	16,040	1.769
Pamaylvaria	-36,300	72,903	21,500	4,900	909	122,200	71,310	43,400	7,400	1,094
South Atlemptic bilamar District of Columbe Florida Georcia Maryland morth Carolina south Carciina Virginia Wet Virginia	270,000	205,480	66,850	17,650	621	333,500	223,550	11,060	20, 10	676
	6,700	1,500	2,000	200	1.065	8,700	5,720	2,510	2000	1.357
	9,500	5,670	2,610	1,180	1,931	10,300	6.610	1,890	1,770	2,759
	33,200	62,030	18,260	2,920	615	115,200	33,640	26,750	4,790	652
	26,100	16,630	5,520	4,660	431	27,400	14,200	2,360 4,360	8.150	407
	41,100 34,100	27,560 22,650	10,480 9,650	3,080	913	51,500	34,650	12,170	4,620	1,123
	34,100	22,650 12,420	9,650 1,420	1,830 1,050	525 500	38,200	25,100	9,910	3,140	354
	38,000	24,740	10,890	2,340	635	21,300 46,100	14,000	$\begin{array}{r}\text { 5,750 } \\ \hline ., 00\end{array}$	1,550 3,640	542
	12,700	9,280	3,020	+390	622	14,800	29,300 9,390	4,120	3,640 610	715
Emat South Onntral	$\frac{95,600}{24,600}$	$\frac{63,480}{13,930}$	$\frac{25,900}{3,310}$	6,220	591	$\frac{122,200}{32,200}$	74.100	37,710	10,710	709
Rentucky	25,000	13,980 17.850	5,310 5,740	1,530 1,440	587 611	32,200 31,600	15,016	14,570	2,680	727
Miasianippi	15,600	10,230	4,220	1,190	564	31,600 20,200	21,320	8,030	2,210 $\mathbf{2 , 1 3 0}$	715
Tencmeree	30,200	21,470	6,630	2,060	593	38,200	26,530	8,300	3,120	762
Ment south Contral	127,300	75,150	42,340	9,890	445	156,500	01, 100	51,400	16,960	475
Mrimanes	10,000	7.160	1,150	, 220	356	21,700	1,240	2,030	1,350	110
Loulsiana	19,500	12.130	6,330	1,060	409	23,000	13,450	7,740	1,360	444
Orlahow	15,300	9,600	5,100	. 560	433	19,500	12,350	6,230	+940	491
Tume	\%2,500	45,880	29,060	7,550	466	102,300	54,110	35,380	12,010	469
Bast Morth Onntral	322,500	216,600	36,000	19,97	761	386,600	247,740	105,490		
Illiño	71.500	\$1.190	20,450	5.45	675	63,700	52,560	$\frac{105,490}{22,600}$	23,300	-751
Indinam	44,600 66,500	24,500 44,250	13,360	2,740	785	57,700	34,000	17,790	5,100	1,017
Oifo	61,500	44,250 68,390	17,300 20,340	4,840 4,290	700	77,000	4.100	21,600	6,130	150
Miscons in	42,900	26,270	14,070	2,600	851	112,700 54,700	79,440 32,500	26,100 17,400	7,180 4,400	1,094
Mnt Morth Cantral	145,400	100,210	34,210	7,100	814	166,000	111,090			
100\%	25,100	11, 130	5,500	1,000	\$15	25,500	20,760	44,150	$\frac{11,740}{1,770}$	924
Kinam	20,000	13.140	5,800	1,040	812	23,400	15,060	6,100	1,540	939
Minumactil	41,500	24,900	9,600	2,930	952	4, 100	33,100	10,180	4,770	1,073
Mistouri	33,800 13,200	22,530 9,350	10,020	1,270	666	39,100	24,600	12,150	2,270	-711
Worth Dekota	13,200 5,000	3,350 3,740	10,100 1,930	70 40	805 857	14,900 6,400	9,990	3,700	1,190	895
South Dekota	5,500	3,710	1,930 2,160	60	857 846	6,400 6,400	3,750 3,590	2,640 2,720	40 60	937 931
$\frac{\text { Monstais }}{\text { Mrecon }}$	92,300	50, 660	23,010	5,610	590	122,400	60,640	35,940		
Arizora	24,100	15,3010	7.100	1.680	598	122,700	11, 6,600	3, 9 ,320	-2,250	599
Coloredo	26,100 6,600	15,940 4,900	1,510	2,360	705 536	31,300	19,610	9,590	4,080	704
Montane	3,600 3,500	4,300	1,490	100 180	536 393	8,400 3,000	6,220	2,050	150	549
Neveda	6,200	4,260	1,770	120	393 475	3,000 9,100	2,020 6,310	$\begin{array}{r}\text {, } 3,630 \\ \hline \text { 2, }\end{array}$	160 190	309 465
Mew Matico	11,900	7,690	3,720	490	770	18,000	6,360 11,620	2,630 5,830	190 590	165 1,036
Urah	9,800	5,740	3,410	660	471	14,700	11,620 9,200	5,830 4,330	1,190	1,036 521
My 7ing	3,400	2,320	960	110	475	5,200	3,200	1,260	1,140	509
Peific	247,900	160, 330	69,650	10,02n	673	314,900				
Coliforna	3,200	117.760	1,210	13.150	517	314,900	204,190	12,920 1,400	$\frac{27,850}{280}$	739
California	173,200	117,180	47,900	13,150	642	227,200	150,200	56,740	20,190	739
$\begin{aligned} & \text { Hovali } \\ & \text { Oragon } \end{aligned}$	8,900 25,900	5,170 87.400	3,350 7,100	340 1,440	776	11,000	6,620	4,610	$\begin{array}{r}20 \\ \hline 90\end{array}$	916
matiington	35,000	17,400 18,000	7,100 10,090	1,440	772	34,600	23,290	9,330	1,990	- 851
			30,090	2,930	620	37,400	21,750	10,040	4,860	638

[^19]Heplth and Hemen Eervicion, 1985.

Table 10-23. PROJECTED REQUIREMENTS FOR FULL-TIME EQUIVALENT REGISTERED NURSES AND LICENSED PRACTICAL/VOCATIONAL NURSES FROM THE HISTORICAL TREND-BASED MODEL FOR 1980-2000

As of
December 31
RNs
LP/VNs

1980
1,068,540
429,500
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
1,104,750
445,360
1,141,100
159,870
1,174,160
471,010
1,211,100
474,760
1,248,380
480,000
1,286,610
485,420
1,321,910
489,510
1,354,100
492,100
1,384,700
$1,414,700$
509,510
1,440,800
526,700
1,467,240
545,370
$1,467,240 \quad 564,130$
$1,493,440 \quad 582,930$
$1,520,510 \quad 602,430$
1,544,900
619,790
1,570,290
637,770
1,598,140
657,810
1,626,290
678,170
1,654,650
698,770
1,683,130
719,560

SOURCE: Projections by the Division of Nursing, Health Resources and Services Administration, U.S. Department of Health ind Human Services, 1985.

$$
429
$$

Table 10-24. PROUECTED REQUIRENENTS OF FULL-'IIME EQUIVALENT REGISTERED NURSES AND LICENSED PRACTICAL/VOCATIONAL NURSES FRGM HISTORICAL TREND-BASED MODEL BY AREA of practice as of december 31, 1980-2000

Area of practice	1980	1985	1990	1995	2000
Total 1					
RNTs	1,068,540	1,248,380	1,414,100	1,544,900	1,683,130
LP/NNs	429,500	480,000	526,700	619,790	719,560
Hospital					
RNs	709,960	791,930	835,500	854,810	871,740
LP/NNs	259,730	259,240	229,920	238,130	245,580
Nursing home 78,490 (15,200 2090					
RNs	78,490	115,220	156,780	204,440	259,090
LP/NNs	90,520	124,260	175,580	234,940	301,180
Nuraing education					
RNs	41,570	43.400	44,890	46,390	50,320
LP/NNs	-	-	-	-	-
Community health					
Rds	141,610	186,580	248,530	293,020	338,280
LP/Nus	15,030	20,990	28,200	34,100	39,870
Physician's office					
RNs   LP/NNs	57,190 37,820	68,340 51,960	82,230 69,960	$96,25 u$ 89,310	109,550 109,010
Other					
RNs	39,720	42,930	46,190	50,000	54,150
LP/VNs	26,400	23,550	23,050	23,300	23,920

1 Figures may not add to total due to rounding.
SOURCE: Estimates by Division of Nursing, Health Resources and Services Administration, U.S. Department of Health and Human Services, 1985.

Tabre 10-25. HISTORICAL TRENO-RASED MODEL PROJECTIONS FOR EULL TIME
EQUIVALENT REGISTERED NURSE AND LICENSED PRACTICAL VOCATIONAL MURSE REOUIREMENTS FOR 1990 AND 2000 BY GEOGRAPHIC AREA

Geographic area	1990		2000	
	ReN	LP/VN	RN	LP/VN
United States 1	1,414,100	526,700	1,683,130	719,560
New England		29,500	126,300	
Connecticut	-27,800	7,080	34,530	38,440
Maine	9,010	2,900	11,760	4,010
Massachusetts	48,320	13,180	50,610	15,130
New Hampshire	10,150	2,240	13,880	15,130 3,510
Rhode [sland	7,360	2,420	19,510	3,510 3,890
Vermont	5,180	1,680	6,510	3,860
Middle Atlantic	235,440	72,660	259,110	
New Jersey	18,140	12,000	54,810	$\frac{90,390}{14}$
New York   Pennsylvansa	104,500	34,970	105,450	
Pennsylvania	82,800	25,690	98,850	$37,240$
South Atlantic	$232,580$	90,440		
Delaware   District of	$5,550$	1,080	6,740	$\frac{127,320}{1,190}$
Columbia Florida	6,170 73,620	1,050	6,460	1,100
Florida	73,620 27,500	26,200 18,430	102,840	39,380
Maryland	32,940	18,430 7,030	33,890 38,660	27,680
North Carol ina	29,780	13,270	38,660 33,800	8,380 19,700
South Carolina	15,950	6,830	20,540	9,040
Virginia	30,360	12.200	36,800	15,300
West Virginia	10,710	4.350	12,700	5,450
$\frac{\text { East South Central }}{\text { Alabsma }}$	$\frac{87,070}{21,430}$	45,440	109,230	
Alabama   Kentucky	21,430	13,140	24,880	16,900
Kentucky Mississippi	23,490	8,570	31,120	13,070
Mississippi Tennessee	14,460 27,690	8,450	19,630	12,660
	27,690	15,280	33,600	21,230
$\frac{\text { hest South Central }}{\text { Arkansas }}$	109,750	74,910	138,580	108,830
Arkansas Loursiana	11,280	7.800	14,980	10,610
Louisiana Oklahoma	16,870 12,740	10,500 7,580	20.110	13,800
Texas	68,860	78.580 48.630	15,810 87,686	$\begin{aligned} & 11,200 \\ & 73,220 \end{aligned}$
Fast North Central	256,510	89,20C	292,530	
Illinois	65,300	17,640	292,530	$\frac{114,990}{20,340}$
Indiana Michigan	34,380 51,880	11,030	40,320	14,550
Michigan Oh10	51,880 73,870	19,960 30,670	54,270	22,500
	73,870 31,080	30,670 9,900	91,070	45,400
		9,900	36,120	12,200
West North Centrsl	115,870	43,020	133,270	55,920
Iowa Kansan	21,530 15,550	6,750	24,110	8,230
Minnesota	5,550 29,740	5,200 11.150	18,190	6,900
$\mathrm{M}_{13 s}$ Our1	29,740	11,150 12,220	33.320	14,010
Nebraska	10,100	12,220 3,680	34,930	17,210
North Dakota	4,290	2,180	11,110	4,280 $\mathbf{2 , 7 4 0}$
South Dakota	5,060	1.840	6,630	2,740 2,550
Mountain	80,030	22,230	111,130	32,720
Arizona	21,530	5,200	30,520	8,8,500
Colorado Idaho	21,670 6,070	4,710	27,730	5,380
Idano	6,070 3,560	2,470 1,540	9,420	4,080
Novada	3,560 6,400	1,540 1,350	3,950 9,980	1,970
New Maxico	9,270	3,310	9,980 12,900	2,030 5,050
Utah	8,420	2,740	12,100	5,050 4,240
Wyoming	3,110	910	4,530	1.240 1.470
Pacific	189,030		220,560	
Alastiva	2,400	-59,340	$\frac{22,560}{3.120}$	81,040
California	130,740 7,600	44,780	145,610	60,620
Oregon	7,600 21,400	2.120	10,620	3,370
Oregon Washington	21,400	3.790	27.490	4,690
Washington	26,890	8,080	33,720	11,570

1 Figure mey not to totala becmeo of sounding.
SOURCE: Projection by the Division of Nursing, Health Renoure and Serviam Administration, U.S. Department of Health and Human Services, 1985.

Table 10-26. CRITERIA POR NURSE STAFFING AND FN EDUCATIONAL PREPARATION
IN THE CRITERIA-BASED MODEL, 1990
(FULL-TIME EQUIVALENT NUESING PERSONNEL)

Field of employment	Criterla for stafing						Criteria for RN educational preparation						
								Master's Pct.					
	Lower bound			Upper bound			Dret. Pct.			Bacc. Pct.		AD/DIP Pct.	
	ReNs	LPNs	Aides	RNS	LPNS	Aidos	L U	L	0	L	0	L	U
	Per 100 patients			Per 100 patients									
Direct client care Innatient services													
General units	67.4	9.6	19.3	85.2	5.3	16.0				40	50	60	50
Rehabilitation units	67.1	9.6	19.3	85.2	5.3	16.0				40	50	60	50
Newborn units	48.6	12.2	12.2	56.8	12.2	12.2				20	50	80	50
Critical care units	344.8	0.0	0.0	446.2	0.0	0.0				50	60	50	40
Extended care units	20	20	20	30	20	20				50	50	50	50
- tong-term hospitals (psychiatric)				15.7	0.0			5		45		50	
I Short-tem hospitals (psychiatric)	73.6	0.0	18.3	89.2	0.0	22.3		10	15	55	70	35	15
other hospitals services operating room	$\begin{aligned} & 1.67 \\ & \text { ation } \\ & 3.3 \text { Ai } \end{aligned}$	$\begin{aligned} & s \text { per } \\ & \text { (10 } \\ & 2 \mathrm{~s}) \end{aligned}$	000 operLPNs/	$\begin{aligned} & 2.44 \\ & \text { ation } \\ & 2.5 \end{aligned}$	$\begin{aligned} & \text { Ns per 1, } \\ & \text { (10 RWs) } \\ & \text { des) } \end{aligned}$						40		60
Emergency room	$\begin{aligned} & 0.47 \\ & \text { visit } \\ & 4.3 \end{aligned}$		000 LPNs/	$\begin{aligned} & 0.83 \\ & \text { visit } \\ & 3.3 \end{aligned}$	Ns per 1 (10 RNs des)	,000,   10 LPN				50	60	50	40
Outpatient clinics	$\begin{aligned} & 0.06 \\ & \text { visit } \\ & 5 \mathrm{Aic} \end{aligned}$		000 5 LPNs/	$\begin{aligned} & 0.13 \\ & \text { visi } \\ & 4.2 \end{aligned}$	$\begin{aligned} & \text { per } 1 \\ & \text { (10 FeNs, } \\ & \text { des) } \end{aligned}$	$000$ $/ 2.5 \mathrm{~L}$		20		80			
Nursing hames	10.2	10.2	40.5	16.2	16.2	48		5		45		50	

## Table 10-26. CRITERIA FOR NURSE STAFPING AMD REN EDUCATICNAL PREPAFATION IN THE CRITERIA-BASED MODEL, 1990

(FULL-TIME EDUIVALENT RJRSING PERSONNEL) $\rightarrow$ COMFINUED


Table 10-26. CRITERIA POR NURSE STAFFING AN FR EDUCATIONAL PREPARATION IN THE CRITERIA-BASED MODEL, 1990
(FURLTTIE EQUIVNLENT RURSING PERGONEL) - COMTINUED


Table 10-26. CRITERIA FOR NURSE STAPFING AND RN EDUCATI NAL PREPARATION IN THE CRITERIA-EASED MODEL, 1990
(mullmime equivaleat hursing personatel) - continued

Field of employment
11. Clinic visits A. Community primary care clinics

Criteria for staffing
Upper bound

Criteria for PN eduratiorial preparation
$\xrightarrow[C]{\text { Criteria for staffing }}$

Doct.	Master's	Bace.	AD/DIP
Pct.	Pct.	PCt.	PCt.

4. Chronic illness:

28 of population 17 years and older
for general chronic illness (hypertension,
diabetes, cancer, etc.)
5. Envirormental

18 of total population

3 visit/hour/foN estimate current number of clinic visits,
or
25,000 FTR $\quad 35,000 \mathrm{FTE}$
Lower bound staffing six: Upper bound staffing mix: 10 FNs/1 L.PN/2 Aldes 10 RNs/ 1 LPN/3 Aides
B. Community menta! health clinics

6 visit or 8 hour day per RN 100

Table 10-26. CRITERIA FOR NURSE STAFFING AND RN EDUCATIONAL PREPARATION
IN THE CRITERIA-BASED MODEL, 1990
(FULL-TIME EQUIVALENT NURSING PERSONNEL) - CONTINUED

Field of employment
Criteria or staffing
Lower bound upper bound
III. Occupational Health

1. In Planí Services
A. Industrial Settings

1 RN per 300 employees in firms with up to 1000 employees
1 RN per each additional 1000 employees
B. Non-Industrial Settings

1 PN per 750 employees
1 Fil for each additional 1000 employees
IV. School Health

1 RN per 750 (general school populaticn Grades 1-12)
1 RN per 225 (mainstreamed students)
1 FiN per 125 (severely handicapped atudents)
Criteria for RN educationai preparation

Doct.	Master's	Pace.	NC/DIP
Pct.	Pct.	PCt.	Pct.


10 Rens per State	10 RNs per State	10	90
1 RN per 80 imates		10	90
1 RN per 60 irmates		15	85
1 RN per 70 inmates		100	
1 RN per 20 patien's		10	90
1 PeN to 50 clients	1 RN to 35 clients	100	
1 RN to 100 clients	1 RN to 75 clients	100	
Revs	Pevs		
Per 100 patients	Per 100 patients		
3.0	5.0	100	
2.0	4.0	100	
2.0	4.0	100	
1.0	1.0	100	
1 per 20 DOC RASS	1 per 20 DSC RNS	100	
1 per 15 DCC RNs	1 per 10 DOC RNs	100	

Table 10-26. CRITERIA POR AURSE STAFFING AND PN EDUCATIONNL PPEPARATION
IN THE CRITERIA-BASED MODEL, 1990
(FULL-TIME ERUIVALENT RURSING FTRSONEEL) - CONTIMUED


Table 10-26. CRITERIA FOR NUESE STAFFING AND REN EDUCATIONAL PREPARATION
IN THE CRITERIA-BASED MOOEL, 1990
(full-time equivaleert nursing personnel) - comrinued

Field of employment	Criteria for staffing		Criteria for ReN educational preparation			
	Lower bound	Upper bound	Doct. Pct.	Master's Pct.	Bacc. Pct.	ND/DIP Pct.
Researchers and consultants						
Hospitals	0.5 FN per teaching hospltal		75	25		
Physicians' Ambulatory Care Setting Commity health	1 RN per 500 DOC Rets	1 RN per 400 DOC Revs	50	50		
Researchers	1 FN per 200 DOC RNs	1 RN per 100 DOCR Res	100			
Mursing have	0.1 gen per 10 DOC Revs	0.3 fen pe 10 DCC Rets	50	50		
Supplementary inetitutionally-based personnel	0.75 per institution				50	50
School of nursing						
Administrators						
Doctorate, mester's, bacc.	1 per achool and 1 per progr	(first 200 students).				
Assoriate, diplona LPN	1 and 1 per each additional 200	studenta	100	90		
Faculty						
Doctorate	1 fes per 6 students	1 ReN per 4 students	100			
Master's	1 PN per 6 students	1 RN per 4 students	85	15		
Baccalaureate	1 Fen per 8 students	1 Fen per 6 students	30	70		
Associate	1 FN per 10 students	1 PN per 8 students	20	80		
Diploma	1 RN per 10 students	1 ReN per 8 students	10	90		
LPN	1 PN per 10 students	1 REN per 8 students		50	50	

Table 10-26. CRITLERIA FOR MURSE STAFPING AND RN EDUCATIONAL PREPARATION IN THE CRITERIA-BASED MDDEL, 1990 (FULL-TIME EQUIVALEMT NURSING PERSONELI) - COMTINUED

Field of employment	Criteria for staffing		Criter' ) for PN educational preparation			
	tower bound	Upper bound	Doct. PCt.	Master's Pct.	Bace. Pct.	AD/DIP Pct.
Private suty Health related organizations	1 RN per 10,000 pop.   0.4 ReNs per 10,000 pop.	0.9 Pats per 10,000 pop. 0.5 RNs per 10,000 pop.	10	90	20	80
Nurse practitioners:						
	Lower bound	Lower bound Upper bound				
Hospital ambulatory care	208 of hosp. outpatient	208 of hosp. outpatient				
Physicians' mubulatory Care Settings	clinic PNs	clinic RNs		100		
Comunity health	anbulatory care setting	258 of Rats in physicians' ambulatory care setting		100		
Correctional Institutions	100s of primary care health	208 of Rets in puiblic health		100		
Aursing hames	58 of all DCC Rels in nursing homes	100 of primary care 5\% of all DOC RNs in iursing homes		100		

SOURCE: U.S. Department of Health and Human Services, Division of Nursing. The 1984 Evaluation and Update of the Staffing Criteria for the
Criteria-Based Model, April 1985 .

Table 10-27. CRITERIA POR nURSE STAFFING AND feN EDOCATIONAL PREPARATION
IN THE CRITERIA-BASED HOOEL, 2000
(FULL-TIME EDUIVNLENT NURSING PERSONNEL)


Table 10-27. CRITERIA FOR MNRSE STATPING AND RN EOUCATIONG PRESPAPAPION
IN THE CRITERIA-PASND MODKL, 2000



Table 10-27. CRITERIA FOR NURSE STAFFING AND RN EDUCATIONAL PREPARATION
IN THE CRITERIA-EASED MODUL,2000
(FULL-TIME EQUIVALENT RURSING PERSONEL) -- COMTINUED


## Table 10-27. CRITERIA FOR NUTSE STAFFING AND RN EDUCATIONAL PR SPARATION IN THE CRITERIA-BASED MOOEL, 2000

(FULL-TIME EQUIVALEAT NURSING PERSOHNEL) -- CONTINUED


Field of employment
Criteria for staffing
Lower bound Upper bound
Criteria for RN educational preparation

Doct. Master's	Bacc.	ND/DIP	
Pet.	Pct.	Pct.	Pct.

III. Occupational Health
I. In Plant Services
A. Industrial Settingr

1 Rev per 300 enployees in
inms with up to 1000 employeres
1 RN per each additional 1000 emplraces
B. Non-Industrial Settings

1 RN per 750 employees
1 RN for each additional 1000 employees
STI-OL
IV. School Health

1 FN per 750 (general school pqpulation Grades 1-12)
1 RN per 225 (mainstreamed students)
30
1 RN per 225 (mainstreamed students)
1 RN per 125 (severely handicapped students)
V. Other Licensure and Regulation

10 FNs per State
10 RNs per State
10
VI. Correctional Iıstitutuion
a. Adult
b. Juvenile
c. For primary care
d. For infirmaries
VII. Adult Day Care Centers
VIII. Congregate Living

Clinical specialists
1 RN per 80 inmates
lo per state

1 RN per 70 inmates
'i
1 RN per 20 patients
10


Table 10-27. CRITERIA FOR NURSE STAFFING AND RN EDUCATIONAL PREPARATION
IN THE CRITERIA-BNSED MODEL,2ONO
(FULL-TINLE EQUIVALENT HURSING PERSONNEL) - CONTINUED


453

Table 10-27. CRITERIA EOR MURSE STAFFING AND RN EDUCATIONAL PREPARATION IN THE CRITERIA-BASED MOOEL,2000
(FULG-TIME EQUIVNLENT RURSING PERSONEL) - CONTINUED


# Table 10-27. CRITERIA FOR NURSE STAFFING AND RN EDUCATIONAL PREPARATION IN THE CRITERIA-BASED TODEL, 2000 <br> (FULL-TIME EQUIVALENT NURSING PERSONNEL) - CONTINUED 



SOURCE: U.S. Department of Health and Human Services, Division of Nursing. The 1984 Evaluarion and Update of the Staffing Criterigifor; he
Criteria-Based Model, April 1985 . 4:3

Table 10-28. PROTECTED REQUIREMENTS FOR FULL-TIME EQUIVALENT NURSING PERSONNEL AOCORDING TO CRITERIA-BASED MODEL, BY FIELD OF EMMLOYMENT, 1990 AND 2000

Field of employment	Lower bound			Upper bound		
	RNS	LP/NNs	Aides	RNS	LP/NNs	Aides
	1990					
Total 1	1,732,700	320,700	1,398,000	2,222,000	437,800	1,836,900
Hospitals	815,300	78,000	220,900	1,057,700	53,000	220,000
Nursing homes	369,200	240,100	953,300	519,500	381,300	1,146,400
Nursing education	44,700	-	-	57,200	-	,
Community health	393,100	2,500	224,000	458,500	3,500	470,500
Physician's ambulatory care Other	75,300 35,000	-	- -	94,100 35,000	-	- -
	2000					
Total 1	2,328,000	422,700	1,493,100	2,958,000	493,600	2,039,800
Hospitals	896,700	81,600	241,400	1,208,100	54,000	241,800
Nursing homes	838,400	338,600	1,018,600	1,053,000	436,100	1,308,300
Nursing education	49,400	-	-	63,900	,	-
Community health	415,400	2,500	233,134	483,420	3,500	489,600
Physician's ambulatory care	89,700	,	233,134	112,200	3,500	98,600
Other	37,600	-	-	37,600	-	-

1 Figures may not add to total because of rounding.
SOURCE: Projections by The Division of Nursing, Health Resources and Services Administration, U.S. Department of Health and Human Services, 1985.

$$
464
$$

sble 10-29. PROJECTED REDUIRDENTS POR TKL TIME QUUIVALONT ReSISTmm LINES ACOOMOING TO CR:TERIA ESTABLISHEN AS LOMER BOND IN CRITERIA SO hool of goccraphic area no molcation prepantion

1990 AD 2000

Guographic arsa	1990					2000				
	Total	AD/Dip.	Becc.	Mast.	Dact.	Total	NO/Oip.	sacc.	Mest.	Doct.
United States $1 /$	1,732,7,0	568,010	803,280	339,370	22,350	2,327,820	732,100	1,075,000	479,430	35,910
Amempland	102.160	33,950	47,630	19,960	1,370	13, $9 \times 0$	43,540	61,700	27,640	2,120
Connecticut	26.650	8.650	12,460	5,230	310	36.350	11,920	16,640	7,76	520
Main	9,720	3,000	4,600	1,580	140	13.920	4,300	6,400	2,980	230
Massechimetts	47.960	16,290	22,040	9,010	630	50,730	19,230	26.740	11,820	940
Now Hepahire	6,970	2,180	3,280	1,440	80	10,250	3,120	4,810	2,200	130
Mhode Island	7.050	2.430	-, 100	1, 060	160	1,860	2,840	\$,020	1,730	230
Vermont	4,510	1,400	2,150	920	50	6,680	2,090	3,090	1,430	70
Middls Atlantic	248,100	84,730	112, 390	46,600	3,790	290.150	95, 320	138,330	58,420	6,050
New Jereey	4.160	16.590	22,230	9,000	576	6,030	11.160	27,290	15.480	650
Mew York	120,920	41,38^	54,990	22,660	1,890	146,900	47,920	67.930	26,310	2,810
Pemeylvania	78,720	26,860	35,670	14,860	1,330	93,090	24,940	43.110	18.090	2,360
South Atlantic	272,430	80,960	126,380	33,70	3.430	363, 380	112,360	170,330	75, 36.	$5,330$
Delmare	6,450	1,510	1,380	850	100	4,900	1,580	2,320	910	$160$
District of Columbia	5,560	2,100	2,360	950	160	5,450	1,820	2,470	930	230
Floride	76,180	25,750	35,25.	14,450	730	106,360	32,600	50,950	21,530	1,200
Georgia	42,600	13.430	20,090	1,6:2	480	51,380	18,220	27,070	12,320	760
maryland	30,950	10,000	14,390	6.110	370	42,640	13,750	19,650	1,600	560
Nocth Carolina	38,670	12,370	17,950	7,750	560	30,310	15,330	23,540	12,60	730
South Carolina	19,930	6,040	9,350	4,250	290	26,420	7.75 r	12,290	5,890	500
Virginia	38,950	14,460	18,080	7,860	550	50,150	15,480	23,430	10,730	870
West Virginia	15,140	5,220	6,930	2,800	190	18,330	5,810	- 610	3,640	270
Eact South Contral	115, 360	37,890	- 900	22,210	1,694	152,770	47, 300	70,29.	31,240	2, 810
Mation	-36,450	9,700	13,430	-3,220	600	31,650	11.40	17,610	7,170	38
Kentucky	26,980	8,770	12,530	5,310	314	39,090	11,920	17.670	7,930	510
Missisaippi	19,200	6,230	8,830	3,870	240	26,300	8,190	12,060	5,550	440
Terreece	38,730	13.110	17,690	7.430	500	49,770	15,820	22,930	10,190	130
Heat h . th Contral	190,480	61,590	84,700	37, 360	2,250	260, 330	83,430	125,020	56,060	3,940
Ash ${ }^{5}$	20,500	6,650	9,550	4,020	240	30,200	3, 310	13,530	6,10	${ }^{370}$
Lovisime	29.630	9,060	13,130	6,350	400	42,830	13,040	19,730	9,390	640
a loham	23,740	7. 570	11,060	4,790	310	31,400	9.550	14,580	6,800	440
T -	116,610	31,270	54,250	22,100	1,300	163,820	51,030	76,780	33.710	2,310
Bet Central	341,460	113,290	154,520	65,390	4.200	479,690	155,020	212, 313	25,020	7.140
In	101,500 39.840	13,040	18,520	7,730	5.	14,150 52,040	16,370	24,720	10.560	1.890
Michigin	67.930	22.170	31,650	13,220	150	93,030	29,900	42, 320	12,730	1,400
Ohio	69,050	29,740	41,360	16,080	1,110	133.690	43,870	31,200	25,60n	1,940
Miscontin	43,100	13,860	20,000	8,520	630	62,550	20,420	21,320	12,760	1,030
Hent Mosth Contral	146,250	47510	68.140	22, 760	1,440	188, 000	59,510	86,570	39,270	2,240
Iome	24,2\%	7,720	11.316	4,0\%	360	10,276	9,330	13.500	6.470	578
Heras	20430	6,460	9,510	4,140	320	25,910	1,000	11,700	5,660	470
Mimamota	34,490	12.050	16,200	6.850	360	4,200	13,990	20,270	, 4,42C	510
Misauri	39,420	13,710	12,150	7.130	440	50,540	16,2100	25,660	,9,900	68.
Mebrate	16,540	5,210	7.810	3,340	180	83, 730	7.670	10,600	5,000	310
Wocth Danota	5,580	1.730	2,560	1.190	50	6.710	2,010	3, ${ }^{\circ}$	+.560	150
south Dekota	5,520	1.590	2,600	1,240	90	7,440	2,230	3,240	1. 10	140
mountain	12,079	25,260	38,590	17, 160	1,070	112,640	34,020	56,230	25,970	1.820
15]son	20,4\%	6.410	3,370	1,040	210	30,30	9.100	14,600	6,300	630
caloreso	20,050	6,450	5,400	4,010	210	24,780	7.150	12,020	5,300	310
Idaho	6,450	1,780	3.110	1,470	6	10,210	2,500	4,700	2,300	170
Romtera	6140	1,130	2,920	1,320	70	1.300	2.440	3,800	1,910	110
Movela	6,900	2,160	1.2:0	1,410	100	11,210	3,180	5,300	2,440	210
Hew Malios	7,510	2,140	7.520	1,720	130	9,060	2,460	4,210	2,230	40
Oen	10,440	3,150	910	2, 220	160	15,410	4,200	7,430	3,410	290
Mycilng	4.470	1,330	d, 120	\$70	60	8,220	2.400	3,810	1,800	120
Enific	$\frac{233,700}{2,200}$	74,730	$\frac{109,530}{1,8,0}$	$\frac{41,020}{5000}$	2,430	$\frac{327,300}{3.050}$	102,070	153,100	69,250	$\frac{3.960}{70}$
Califanie	170,200	55,160	77.640	33,740	1,670	224,209	69.190	105,600	47,360	2,640
Mavall	5,630	1,670	2,670	1,210	70	1.310	2,440	3,500	1,050	120
Orequn	21,550	6,770	10,050	4,670	270	31,250	,,500	14,550	6,710	450
mahingten	34,050	10,500	14,000	7,040	300	97,900	19,190	27,620	12,540	640

1/pigures moy not and to total beceven of rounding.
 eritaria promented in table $4-4$ and $4-8$.

## BEST COPY H:NALABLE

Table 10-30. PROUECTED REOUIRRENTS POH LICDNSED PRACTIGL/VOCTIONAL MURES MO WURSINC AIDES MCEORINC TI CRITTRIA - BASED MDOEL
my geographic area, 1990 no 2000

Grographic ares	1990				2000			
	LP/VNS		Aldes		LP/N:		Aldes	
	upper bourj	Lower bound	$\begin{aligned} & \text { Upper } \\ & \text { bound } \end{aligned}$	Lower bound	$\begin{aligned} & \text { upper } \\ & \text { bound } \end{aligned}$	Lower bound	upper bound	Laver bound
Inated States 1	437,140	320,670	1,836,890	1,398,320	493,610	422,660	2,039,800	1,493,110
Nenentand	33,650	23,630	126,340	99,350	34,010	28,310	127,090	95,180
Connecticut	I1.00	7.150	39.290	31.300	10,730	8.710	31,190	25,830
Maint	3.190	2,250	12,060	9,360	3,600	2,990	13,530	10,060
Massechusetta	14, 1	10,530	56.200	44.290	14,110	11,130	52,900	39,670
Now Hemptice	1,3n	1.210	7.070	5.310	2,020	1,760	9,890	6,410
Whode laland	1,360	1,080	5.960	4.590	1,740	1,530	7,050	5,270
Vermont	1,590	1.110	- 760	1,500	1,810	1,490	6,530	4,070
Middle atiantic	41,300	37,560	224,200	169,240	54,720	49,000	239,420	175,470
Nou Jarsey	9.190	7.170	42,800	32,000	9.630	8,650	44.320	32,100
Mew Yock	23,560	$\because .140$	124,850	96,310	31,560	27,230	124,970	96,120
Penndylvenia	9,630	1.550	56,550	40,860	13,070	12,090	66,130	47,650
South ationtic	36,000	42,500	257,290	192, 150	64,070	56,510	293,670	212,300
Delerate	40		2,5\%	1,930	10	450	2,510	1.920
District of Columbia	56	470	3,230	2,370	140	460	2,760	2,000
Floride	10,630	1,300	61,080	43,480	12,916	12,460	76,710	53,060
Georgia	12,940	5,140	51,210	39,450	13,900	11,650	54.970	40,450
Maryland	10,190	7,040	31,090	30,000	11,060	9.100	40,040	30,680
North Carolima	6,660	5,220	33,310	24,650	7,650	7,590	40,120	29,100
South Carolina	3,740	2,870	17,880	13,370	4. 570	1.070	21,320	15,510
Virgina	6,750 2,160	6,540 1,920	37,000	20,470	9,450	8,240	40,720	29,920
West Virginio	2,160	1,920	12,120	1,730	2,500	2,490	13,560	, 660
Enst South Contral	25,520	19,400	115,130	86,250	29, 3f,0	25,830	129,160	93,640
Mrabero	6,790	5,070	30,320	22,770	T, 100	6,270	31,40	23,080
Kentucky	6,770	4,990	24,790	21,630	8,340	7.140	34,230	29,070
Misaisalppl	3,660	2.920	17,820	13,230	1,930	1,400	22,100	16,150
Terrestere	, 300	6,420	314,200	26,620	8,930	8.020	40.170	29,560
Ment South Central	46,050	33, 940	200,550	151,240	53,190	46,250	231,490	167,706
Mitarema	1.170 0.040	3,020 5,790	26.100 33.360	20,820 25,310	\%,000	6,700	29,910	48,160
Lourisana	$\mathbf{0 . 0 4 0}$ 5,030	5,790 3,770	33.369 23,510	25,310 17,500	9,460	8,310	39,190	29,210
$\begin{aligned} & \text { On lahome } \\ & \text { Tives } \end{aligned}$	5,030 25,10	3,770 19,360	23,510	17,500	5,220	1,640	25,070	17.890
Toxes	25.010	19,360	116,850	17,610	30,110	26,630	136,620	94,540
Bart Worth Central	116,250	01,370	437,310	340,130	129, 760	107,300	476,990	155, 170
lininola	35.700	25,790	135,710	106,150	36,100	30.1	132,910	9,10
Indiana	10,070	7,340	42,700	32,530	11310	9,64v	46,550	34,210
Michigen	22,030	15,450	54370	65,490	24,8 ${ }^{\text {¢ }}$	20,530	92.400	68.110
Ohio	20,750	20,200	109,790	- 460	3,10:	31,340	137.430	103.160
Wisconein	14.400	12,390	64,740	50,900	19,300	15,000	67,100	50,520
Went Morth Contral	41,760	30,410	166,060	127.270	43,650	37,210	171,500	126,030
tan	7.050	5, 106	2.400	21,606	6,740	5,730	2.170	19.95
Munas	5,730	4.170	23,170	17,790	5,660	4,470	2750	16,950
Minnenota	11,200	4,020	42,430	32,770	11,130	9,360	41.80	30.470
Yisacuri	7.420	5,910	35,170	26,060	9,430	, 360	41.300	29,090
Mobracka	7,040	4, telo	24,400	19,360	7,340	6,040	25,330	19,010
Mocth Danota	1,330	1,010	5,583	4,220	1,200	1,130	5,430	3,940
South Daxota	1,950	1,360	6,130	5,390	2,070	1,700	7.160	5,300
Mountain	12,240	10,000	64, 200	45,750	16,040	14,960	04,500	50,600
Mrizona	2.10	2,120	16,2010	9,910	1.780	3,920	22.108	15,330
Colorado	2,110	1,990	13,410	'50	1,910	7,130	14.410	, 6.620
Idaho	1,490	1,130	6,340	-40	2,160	1,060	1,900	6,370
Mentena	1,750	1,260	6,640	5,040	1,07n	1,590	7.160	5,240
Movade	950	750	5,260	3,670	$1,3$.	1,200	7.730	5,270
Now Marios	960	790	5,170	3,740	1.010	950	5,630	3,960
Utan	1,380	1,160	1,020	5,530	1.720	1,670	10,600	7.100
Hyodim	1,140	coo	4, 150	3,060	1.010	1,560	7,970	5,790
meific	58,090	4. 700	245,730	185,540	69, 190	50,200	215, 380	207,760
dramia	2.20	220	1.310	510	310	5, 100	1,750	1,250
Califorria	34,570	21,110	162,750	124,570	42,180	36,200	144,150	132,600
Heswif	950	770	1.030	3.010	1,640	1,420	6,370	:,690
Oregon	5,960	4,270	24.370	11.100	6,550	5,610	20,170	20,370
We thington	12,330	1.410	46.740	36.100	10,040	14,630	65,560	40,7\%

1 Pigure my not add to total beceume of randing.
 premented in tables 4-4 and 4-5.
TGBle 10-31. PRONETED ROOUIRDPNTS FOR FULL-TIEE SOUIVALDNT REGISTERED
NURSES NCCOFDING TO CRITERIA ESTABLISHED AS UPPER BCUND IN
CRITERIA - BAC - MDOEL BY GDDCRAPHIC AREA AND EDYGATIONAL PREPARATION,

Geographic ares	1990					2000				
	Tote 1	A $0 / D_{1 p}$	Bacc.	Mant.	Doct.	Total	no/Dip.	Besc.	Mast.	Doct.
United states 1	2,222,240	680,710	1,076,900	427,240	34,860		865, 2.0	1,423,140	587,270	62,300
Hen England	133, 340	42,040	64,060	24,960	2,200	171,410	53,310	80,650	33,500	3,010
Connectícut	34,920	11,150	16.760	6,180	580	46,310	14.7 ${ }^{1 / 7}$	21, 50	9,010	1.010
Malim	12,510	3.740	6.140	2,470	220	17,610	5,290	8,300	3,610	400
Maseachusetts	62,050	19,950	29,740	11,330	1,010	74,730	23,450	35,170	14,430	1,600
New Himpahire	8,930	2,620	4,360	1,1,10	130	12,970	3,170	6,280	2,640	230
Rhode ts land	9,010	2,830	4,210	1,740	220	11,360	3,460	5,390	2,140	350
Vermont	5,850	1,770	2,850	1,130	80	8,430	2,590	-,980	1,710	140
Micdle Atlantic	318,610	98,890	154,030	59,900	5,720	382,990	114,570	185,550	73,070	9,770
Now jorsey	61,930	19,290	30.170	11.390	20,00	74,360	220,030	36.630	1,200	, 1.130
Hew York	156,220	49.200	75,030	29,050	2,940	180,520	50,040	90,460	35,200	4.010
Penneylvania	100.460	30,400	46,830	19,320	1,900	120,110	34,500	\$4.460	23,630	3,510
South Atlant ic	347,310	105,100	169,160	67,670	5,270	462,340	135,030	225,460	92,810	0,990
Delmare	5,630	, 710	2,600	1,090	100	6,430	1,100	3,100	1,230	230
District of Columia	7,050	2,320	3,260	1,220	230	7.150	2,150	3,460	1,180	340
Flarida	96,530	29,430	47,560	18,390	1,140	135,940	30,440	68.670	25,140	1,970
Ceorg 14	54,840	16,630	26,700	10,710	790	73,900	22,340	35,170	14,960	1,420
Maryland	40,100	12,590	19.270	7.620	620	54.100	16,920	25,520	10,500	1.100
North Carolina	49.030	14.440	23.950	9.820	810	63,850	11,450	31,040	13.100	1.260
South Carolina	25,200	7.150	12,270	5,330	430	33,370	9,360	15,970	7,210	800
virginia	49,660	14.890	24,040	9,810	840	64,060	18,690	30,760	13,140	1,430
West Virginia	19,270	5,950	9,430	3,610	270	23,540	6,850	11,710	4,540	430
cagt South owntral	147, 310	44,840	71, 02 J	21,870	2,510	194,620	57,440	93,430	39,100	4.520
Alsbem	\$15,950	11,620	11.550	7.860	860	69,364	14,200	23,400	10,0iv	1,510
Kentucky	34,56,	10,500	16,800	6,700	490	41.320	14,450	23.200	9,670	910
Mississippi	24,360	7.310	11,750	4,380	400	33.410	9.330	16.000	6,020	760
Ternetree	49,500	15,410	23,890	9.430	760	63,590	18,860	30.750	12,600	1,340
Went South Oentral	242,734	73,330	118,340	47,410	3,600	239.350	99.970	164,940	64,310	6,690
Arkamas	26.3\%	1.360	12.150	\$.960	400	19,430	11,400	11,260	7.10	720
Cousisiana	31,090	11,040	18,450	7.960	630	54,140	25,740	25,690	11,460	1,200
Oklahoma	30,050	P,920	14,670	5,970	470	39,700	11,300	19,270	1,240	770
Tmas	144,000	45,010	72,380	21,500	2,100	207,500	60,730	101,700	41,130	4, 90
Eat Morth Central	1444,010	139,670	215,050	12,210	7,060	605,070	109,640	286,340	115,750	13,300
IIIInois	132,420	42,700	03.970	23.10	1.940	171,015	31.030	I1.260	32,170	3,560
Indians	51.250	15,540	25.050	9,740	070	66,320	19,770	32,040	12,980	1,520
Michigm	01.080	27,240	42,450	16,590	1,400	111, ${ }^{60}$	36,690	56,150	22,010	2,600
Ohio	115,610	36,330	56,230	21.230	1,010	170,010	53,030	00,250	32,230	3680
Wisconal	66,650	11,050	26,950	10,000	1,040	79,470	25,320	36,660	15,560	1,330
Hent Naxis Oentral	107, 050	57,530	91.190	36,170	2,190	239,029	72,340	113,650	40,400	4,500
104	31,200	9,300	15,100	6.130	940	31.430	L1,260	1,260	7.510	300
Karav	26.160	7,040	12.650	5.140	440	32,800	9,660	15.460	6.890	700
Mir man a	44,510	13,750	21,520	1.630	600	56,000	17,230	36,210	11.560	990
Mismouri	50,230	15.730	24.720	9.090	00	64,720	19,400	31.180	12.250	1,190
Mabracke	21,570	6,760	10,370	4.110	320	30,010	9,540	13,750	6.030	$\times 20$
Morth Dekota	7.040	2,070	3,370	1,500	130	8,500	2,430	3,920	1.920	230
South Derota	7.100	2,040	3,300	1,530	140	9,360	2,750	4.170	2,130	250
meuntrin	102,950	29,210	50,630	21,430	1,590	140,720	40,400	73,730	31,670	2,980
arisona	25,120	7.200	12,300	5,080	380	51.950	10,750	15,500	7,930	310
Colorado	25,120	7.290	12.420	5.040	320	31,440	6,360	16,000	6,400	470
Idubo	1.140	2,210	3,990	1.010	130	12,760	3,570	6,000	2,140	200
Mantana	7.850	2,270	3.820	1.630	110	10,450	3.040	4.900	2,310	200
Mevada	6,710	2,460	4.340	1.760	140	14,150	3,730	7.130	2,500	310
Mem Minico	9,330	2,520	4.490	2.130	180	11,370	2,990	5.400	2,720	350
Uteh	13,040	3,560	6.460	2,770	240	19,330	4,950	9,770	4.160	450
Hyeming	5,640	1,620	2,730	1,190	90	10,260	3,010	4.910	2,130	210
Pecific	230, 130	90,100	145,410	50,500	4.020	413,490	122,610	199,35)	14,100	7,360
Alatio	2,740	6\%	1,340	60	6	3,730	, 16	1,7io	930	150
Califamia	216.580	65.770	105,950	42,100	2,760	284,330	03,520	138,230	57.750	4.130
Meprii	7.100	2,000	3,470	1,510	110	10,470	2,500	5,030	2,250	200
Orayon	27,610	6,290	13,320	5,550	430	39,430	11,490	14,970	1.140	130
Wehhinjten	44,070	13,370	21,330	1,720	660	3,530	23,710	35,300	15,030	1,400

Ifiqure miry not to total becmued of randing.
 criteria promented in Table 4-4 ant 4-5.

## Chapter 11

## PUBLIC HEALTH

## Introduction

This chapter describes the status of public and community health personnel and the educational support prcgrams undertaken by the Bureau of Health Professions in accordance with section 794 (a) and (c) of the Public Health Service Act. Section 794 requires that detailed descriptions of current and anticipated needs for public and community personnel, and recommendations be prepared and submitted to Congress biennially.

The health of the American people has continued to improve markedly in the past three decades (DHHS, NCHS, 1984). During this period of increasing life expectancy and improving health status the focus of public health activity changed accordingly. While infectious disease surveillance monitoring, and control measures remain in Fl ace, public health initiatives are increasingly directed toward preventing or reducing the incidence and severity of heart disease, eancer, stroke, accidents, premature senile dementia, neurological disorders, substance abuse, and other chronic, degenerative, and disabling disorders.

Special concern over toxic wastes is growing, and with it a concomitant need to addsese the serious problems of the safe handiling and control of chemicals and biological and radioactive substances that can materially affect the health of individuals and the environment.

Behavior-rela ed disorders have become increasingly common and have drawn new attention. Substance abuse, unintentional injuries, and early pregnancy problems continue to plague children and young adults. Industrial production and the widespread use of chemically deperdent agricultural methods have provided exceptional affluence, but a byproduct has been environmental degreuation. External factors that contribute to the etiology of noninfectious diseases, particularly hazardous chemical and physical agents, raise serious questions about long-term health effects that will be paramount issues throughout the rest of the century.

Special population groups such as the impoverished, the disadvantaged, and migrant and immigrant populations face difficult and costly health urobiems and service needs. New generations of infectious diseases (acquired immune deficiency syndrome, Legionnaires' disease, and toxic shock syndrome, among others) require dili, ant and timely surveillance, intervention, and research.

It has been estimated that within the next 50 years more than 16 percent of the Nation's population, 49 million persons, will be 65 years of age or older. Toray only 11 percent of the population is in that age group. The trend is expected to lead to increased levels of chronic, long-term health problems with attendant cosis, service, and management needs.

Among the highest priorities are ensuring a healthy start in life for all
infants and enhancir.g the health of their mothers. Both are highly amenable to Aisease prevention and health promotion activities.

These problems will require sustained and systematic efforts from public heal th personnel, particularl; in the areas of preventive services, health protection, and health promotion. National goals in these oreas are refiected in recent reports from the Surgeon General, Healthy People and Objectives for the Nation, which provide a blueprint for health status changes that can te accomplished over the next decade.

Current health issues involve more than disease processes and demographis changes, however, since they are intimately related to political, social, and economic choices regarding health care, and the organization, deiivery, and financing of services in an evolving system. Issues related to competition among health providers, requlation and deregulation, insurance benefit levels, the development and expansion of technology, ethics, law, costs and affordabilitv, and the distribution and utilization of health care personnel indicate a need for effective manaqement of human, phys ical, and financial resources.

## Developments in the Suppily of Public Health Personnel

The public health work force functions in a wide range of settings, inclading professional associations; foundations; voluntary agencies; Federal, State, and local governments; profitmaking and nonprofit organizations; and educational institutions. A large majority of the public health work force functions in government afencies. Also, public health personnel deal with the public and community imp:ications of health and disease, and take a community or population-based approach to solutions. Therefore, the size, numerical adequacy, training, and sompetency of the public health work force are matters of direct public concern.

The responsibilities of public health personnel are interdisciplinary and multidisciplinarv and include detection, assessment, and monitoring of health problems in populations, prevention of illness, disability, and premature death; health education and health promotion; control or elimination of environmental or occupational factors which results in health froblems; health services administration and planning; and planning, organization, and delivery of personal health services by public health agencies.

The personnel who discharge these responsibilities have a broad range of technical and professional backgrounds in public health, personal health, and nonhealth occupations. Inciuded are statisticians; epidemioloqists; general and specialized environmental health personnel; public hea th physicians, cientists, nurses, and veterinarians; health educators; nutritionists; laboratory scientists; health agency, hospital, health maintenance organization, and fursing home/long-term care administrators; $h$. .' planner 3 and policy analysts; and many other scientific and engineering $n$. :nel (Figure ll-l).

The total public health work force, including all who spend part of their time in public health activities, is estimated to exceed 500,000 persons, or about 7 percent of the entire health work force. About half of them spend the majority of tneir time in public health, and a large majority of these work for public agencies. This report considers these 250,000 to be the primary pullic health work force. The best estimates to date reveal that somewhat more than 30 percent of the primary public health work force, or approx:mately 75,000 people, have graduate training in public health.

It is not yet possible to discuss supply and requirements of the public health work force with the precision now applicable to physicians and certain other health professionals. Information for policy and planning must be pieced together from a number of sources creating difficulty in estimating future requirements sor public health personnel. Suitable methods for projecting requirements need to be developed while baseline data on supply are lacking, and no ongoing sampling frame exists on which to base projections. Estimates of demand are especially difficult. since demand, measured by bucgeted vacancies or other means, is highly depencient on legislation, regulations, and Federal, State and local government initiatives.

The following section presents the results of several recent studies $i n=x^{\prime}$ provide some insight about the supply and requirements for public health rrofessionals. The final section of this report ciescribes current progress in the Bureau of Health Professions' multi-year effort to adress the difficult methodologic problem of defining who functions in public health and in what settings, and devising a method to estimate requirements for various public health functions.

## Recent Studies

The last two reports to Congress on public and community health personnel presented the results of a number of studies and workshops cuncerning the public health rork forse that were carried out during the 1970s and early 1980s (DHHS, 1982, 1934). Eince the last report a number of additional studies contributing to available information on public health personnel have been completed.

## Staffs of State Health Agencies

In a study by the Association of $S$ te and Territorial Health Officials, 47 State health agencies (SHAs) provined information on staffing. Forty-three SHAs provided complete data on their health department staffs.

In 1983, 47 SHAs emploved a total of 108,100 full-time equivalent staff, ranging from a high of 15,100 in puerto Rico, to 11,500 in Maryland, 7,000 in New York, 5,500 in Florida, and 143 in Iतaho. Eigt._een States reported between 1,000 and 4,000 employees. The Virgin Islands reported the highest ratio of staff to pcpulation at 216 employees per 10,000 persons, followed by American Samoa with 99 per 10,000. The lowest -- 0.8 and 0.9 per 10,000 population -- were repcrted by Illinois, Iowa, and Washington. However, silas
in some States serve as mentai health authorities, operate health-care institutions, and/or serve as the lead environmental agencies for their States in States without local health departments, the SHA also provides services usually associated with local health departments such as immunizations, peri.atal care, or lead-poisoning prevention programs. This is characteristic of the territories, where the population often depends on SHAs for routine personnel health care.

The distribution of the employees of State health agencies by occupation and program area is qiven in Table ll-1. Fortv-three SHAs reported complete data on staffing, by program area and occupation. SHAs in the District of Columbia and Maryland reported data on total staff levels, but did not provide information on employees by srxgram area or occupation. The SHAs in Florida and Mississippi reported data on staffing by occupation, but not by program area.

The 43 SHAs employed 64 parcent of their staff in personal health programs. Eight percent were employed in each of the areas of environmental health. health resources, and general administration. Six percent were employed in laboratory programs. Six percent of SHA employees were not identified by program area.

The 45 SHAs reporting comparable data for the period between 1977 and 1982 experienced an overall decrease in staff of 6,300 persons ( 6 percent). Approximately 30 percent of this decrease ( 1,900 employees) can be attributed to changes in SHA responsibilites diring the comparison period. The number of SHAs serving as mental health authorities declined. Changes also occurred in SHA responsibility for environmental programs. Twenty-six SHAs ( 58 percent) reported decreases in the number of employees and 19 reported increases.

Thirty-eight SHAs reDorted comparable data by program area for the period 1977 to 1982. Table 11-2 displays trends in staffing by program area. There were decreases in all program areas during the period except norinstitutional personal health, where staffing increased by 8 percent. The largest decreases occurred in environmental health ( 8 percent) and in SHA-operated institutions (12 percent).

Forty-three SHAs are included in the analysis of staffing trends by occupat'on. Between 1977 and 1982, eight occupational categories experienced decreases in staffing. Four cateqories (nutritionists; planners, eronomists, programmers, and analysts; registered nurses; other professional and technical employees) showed increases in personnel during thia period ('Table 11-3). The greatest increases occurred in the planners and pr. : ammers category (49 percent) and amonq nutistionists (44 percent). The large increase among programmers and analysts may reflect the almost universal increase in the use of computer-ba-ed technoloay since 1978 to aid in cost-containment efforts.

Occupational categories showing the largest decreases included physicians \{23 percent), social workers ( 1.2 percent), health educators ( 10 percent), and engineers and sanitarians ( 10 percent). These decreases may be attributable to (a) change i.. SHA functions (b) a requirement to allocate a greater proportion of available funds to functions carried out by other personnel, (c)
an actual decrease in needs for these types of public health workers or (d) inability to recruit replacements for losi staff. Data which would show the extent to which the various factors are responsible for the decreases is not available.

## Biostatistics

To improve sketchy information on supplv and requirements for biostatisticians, the Bureau of Health Professions supported a review of the field by the Association of Schools of Public Health (Greenberg and : agee, 1985). The review, though limited in scope, found that there are man more jobs than hiostatisticians to fill them. Discussions among faculty members and school employment counselors futher attest to the demand for biostatisticians. Doctoral-level biostatisticians were found to be in especiaily short supply.

Although some educational institutions anticipace less yovernment employment for hiostatisticians in the future, the present demand appears high. It is reported that in at least half the clinical trial studies funded by the National Heart Institute there has been difficulty in filling the biostatistician position. Shortages were also noted in academir settings.

Relatively few biostatisticians aie qraduated each year to meet these needs. Schools of public health graduate aboxt 140-150 biostatisticians annually and graduate programs outside the schools of public health qraduate about 50 . Only about. one-quarter of the school of public health qraduates each vear are doctorates.

It is also unknown whether the schools of public health will continue to qraduate biostatisticians at the current level. About half the schools reborted a decrease in applications during the past few years and there is reason to expect that this will continue. Increasod tuition costs and the decline in financial support for public health students arf reasons cited for the decline.

## Public Health Nutrition

Several scecial studies conducted in the past few years have suggested shortages of public health nutritionists. The most recent study related nutritional factors to Objectives for the Nation (Brown, 1985). This study also analvzed research reports to determine the effectiveness of nutrition services in improving health and reducing health care costr; and examined the supply-demand situation for public health nutritionists. Protlem-oriented nutrition services were found effective in reducing the incidence of low birthweight in newborns (which greatlv reduces infant mortality rates), iron deficiency anemia, obesity. dental caries, serum cholesterol (and risk of heart disease), and blood pressure. Brown concluded:
(T) he benefits to societv, both in terms of enhanced quality of life and monev saved in medical expenses averted by improvements in
nutritional status, far outweigh the costs of providing nutrition services.

Brown found that the supply of public health nutritionists who provide these vital services has never caught up with the demand. She also found an acute shortaqe of doctorate-level public health nutritionists needed in training programs and in senior positions in the nutrition units of health agencies. The current short supply is exacerbated by decreased enrollment in graduate training programs, partly attributed to reductions in student aid.

Brown's stuity also found that demand for public health nutritionists has remained strong because of the need created by health, nutrition, and food assistance proqrams and services provided by public and private agencies. Such proarams include health services for handicapped children; home health and primary care programs; community and worksite health promotion programs; health maintenance orqanizations; the special supplemental food program for women, infants, and children; the nutrition education and training program; and nutrition programs for older Americans.

Positions requiring the skills of public health nutritionists also appear to be growing in private nonprofit health care delivery orqanizations. As health care expands from hospital-based to community-based systens, opportunities for employment are created beyond traditional aqency positions.

The growing interest of Americans in improving their health through exercise and nutrition have futher increased the demand for the services of nutritionists. Theze is an increased demand for natrition information in the mass media anc ${ }^{\prime}$ nutrition services in settings such as physicians' offices, fitness centr - .lth maintenance organizations, social and health programs for the aged . :sabled, outpatient clinics, and worksite health promotion programs.

Between 1974 and 1981 approximately 200 new graduates from public health nutrition programs entered the vork force each year. In 1984, 14 L nutritionists graduated with a master's degree, 30 percent fewer than in the years prior to 2981, and only 9 received doctorate degrees. The number of applicants and sturents in training programs has decreased by more than onethird ( 38 percent) since 1980. This production of new qraduates is sufficient to replace those leaving the work force, but $i s$ not sufficient to meet the current shortages and projected future increased demand (there are approximately 2,000 nutritionists working in public arencies plus a small unknown number in other settings).

Three other sturies also found shortages of public health nutritiorists. Brown (1982) conducted a survey of 1975-80 graduates and reported their emplovment characteristics. Kaufman (1978) examined the need for public health nutritionists in medically underserved areas. The number of unfilled public health nutrition positions within State health agencies has been periodically reported in Personnel in Public Health Nutrition for the 1980s. An excess of unfilled positions is revealed by all three studies. Brown summarized her findings as follows:
(P) ressure on the supply of public health nutritionists for public health positions will continue. The qap between supply and demand will likelv broaden due to a continuation in enrollment decline within qraduate training programs, and an expansion in nonpublic health agency positions.

## Epidemiology

A recently completed studv titled "A Review of the Field of Epidemiologv: Current Activities and Training of Practitioners" (Magee, 1983) rrovides an update of information since the last report to Congress. Although precise data on the work force were not available, a review of available information and interviews with experts in the field led Magee to conclude:

> There is an increasing demand for epidemiologists in a growing number of areas. Experts see a future demand in the following areas -- traditional public health agencies, research institutions (both private and Federal, including a demand from military sources), industry, health care proviciers (both public and private), overseas work (both international welfare pıograms and to fill gaps in countries with a shortage of epidemioloqists), and educational institutions.

> Jobs in private industry are expected to grow, at least in certain fields. Drug trials are expected to be a major area of employment, as druq companies increasingly use epidemioloqists in the evaluation of new products. Another employment area cited is insurance companies ana private health care providers such as HMOs.

Although no surveys of the work force have been conducted, Magee reportea a consensus of experts in the field suggesting there are about 2,000 to 2,500 epidemioloqists currently employed. In 1981-82 there were 356 edidemioloay qraduates. Since this includes both master's and doctoral graduates, and at least half of the master's qraduates ohtain doctorates, this is prohably sufficient to replace those who leave the work force but will not alleviate current or projected shortages. Although this analysis supports conclusions in the previous reports to the Congress (DHHS, 1982, 1984), in-Jepth studv of the work force has yet to be conducted.

## National Public Health Vacancy Reporting System

The American Public Health Association (AerA) has been studying the feacibility of establishing and operating a national computerized system of reportilq budgeted vacancies for puhlic health personnel in the Unites States APHA, 1983). APHA's preliminary study found that on any aiven day 5 to 10 percent of budgeted positions in State and local health departments are unfilled. Conservatively estimating that 50,000 hudgeted positions require credentials at the baccalaureate level or above, there should he 2,500 :o 5,000 vacant puhlic health positions throughout the country on any given day. APHA is now examining the feasibilitv of establishing a permanent
vacancy reporting svstem.

## Eaployee Compensation in Local Health Departments

The American Public Health Association conducted a national survey of public health personnel compensation during 1982 (APHA, 1.984). Directors of local health departments throughout the countrv were asked to provide information about the size of the populations they sarve, their operating budgets, and the number of persons employed in their organizations. They were also asked to provide information about the median salaries for full-time health anministrators, health educators, laboratory technicians, public hea'th nurses, public health physicians, and sanitarians within their agencies. Table 11-4 presents median salaries for the health professions surveved.

## Herlth Administration

A joint study by Rorn/Ferry International and the Association of University Proqrams in Health Administration summarized data gathered from health administration graduates for the 5-vear period 1979-83. Data were presented accompanied by a comnentary provided by a pane' of leaders in the field. Rey findings of the study were as follows:
o Results from the survey indicate that gradurtes of health administration programs are continuing to find employment opportunities in the health ca:e industry, although initial assignments are shifting from assistant administrator-level positions to department-level positions with primary emphasis on systems development, marketing, organizational planning. and quality assurance. Graduates find employment within 6 months of graduation anc usually with the employer of first choice. Hospitals continue to be the souzce of most initial employment opportunities. Oppurtunities with consulting organizations and health maintenance organizations have increased, but obportunities within HSAs and government agencies have declined.

- Approximately 40 percent of the graduates indicate that general administrative is their primary function. Major areas of responsibilitv ci+ed are general planning, iriformation systems, management of cost containment proqrams, auality assurance, and health promotion and disease orevention. The most notable employment qains across the 5 years are in the cost containment, qualitv assurance, general planning, and information systems areas.
o The cost of education has risen sharply, and borrowing to support that education has also increased. There is a trend toward loans and a notable decrease in full- and part-time emnloyment, traineeships, fellowships, scholarship and qrant support, and family income to finarce education. Generally, qraduates complete their programs with an average debt of
about $\$ 8,500$. Starting salaries average about $\$ 27,000 ; 1983$ graduates are completing their proqrams with a debt level that is about one-third higher than previous graduates.


## Data Availability

The limited data on the status of public health personnel, obtained from disparate sources and the experience 0 experts, are helpful but not sufficientlv accurate for optimally directing resources for the predaration of public health personnel. Better data on the distribution, function, and adequacy of supply of public health personnel needs to be obtained in order to adequately address emerging and priority disease prevention and health promotion initiatives. Consequently, a project has been developed to field questionnaires to oublic health and communitv health employers and employees to gather tasic work force dara on the distribution and characteristics of public health and communitv health personnel.

Building on the work previouslv undertaken by the Bureau of Health Professions, a protocol includınq data collection instruments, sampling plan, and data management plan will he fielded in a two-stage sample survey. In the first stage, employers in a number of different types of public/community health settings will be contacted and asked to provide lists of their public/community health emplovees along with basic total numbers of full- and part-time employees. In the second stage, a sample of employees will be asked to provide information ahout their education, functions, and backqround. Results will show, for the first time with any certainly, how public health agencies employ and use personnel and how staff have acquired training and experience. Among other uses, data will provide educators with priorities for recruiting students into specialized programs and for providing continuing education opportunities.

## Conclusions

Although supply and requirements for public health personnel cannot be discussed with the same precision as other health professions, existing studies and prevailing professisnal judgments point to several occupations with personnel shortages and other occupations in which qualified personnel are difficult to recruit. There are perceived shortages of edidemiologists, environmental health professionals including toxicologists, biostatisticians, nutritionists, public health nurses, and physicians trained in public health and preventive medicine. Studies are under development to verify these preceiver shortages.

## Development in the Bducation of Public Health Personnel

In 1985 there are 2.3 accredited schools and programs of public health in the United States, including a school at the University of Puerto Rico. Traditionally, these schools have educated personnel to function in a variety
of public and private settings, ranging from State and local government to health care facilities and private industrv.

In addition to the individuals trained in the accredited schools of public health, which produce master's and doctorate degree personnel, graduate programs outside schools of public health produre a significant number of pruéssionals who function in the public hearth arena, fo: example, health service administrators, environmental health scientists, nurses, social workers, and psychologists. In addition, graduates from baccalaureate programs make up a significant portion of public health personnel, for example, schoo' health educators, entrv level environmental health personnel nurses, and statisticians.

Since data concerning all of public health educational programs are not available, this section focuses on the information available for 1982-83 from the Association of Schools of Public Health and the Association of University Programs in Health Administration. Preliminary data for academic year 198384, inciicate little, if any, changes from previous trends. The last report to Congress (DHHS, 1984) provided information on programs outside schools of public health; new data have not been collected since that report.

## Schools f Public Health

Applications. In academic year 1982-83, 22 of 23 schools of public health (Universitv of San Dieqo not included) received 10,021 applications (ASPH, 1985). This represents a decrease of is percent from the 1980-81 total of 11,898 applications to 21 schools and programs of public health (ASPH, 1982). Not all schools have reported each year, but data for 17 schools that have reported consistentlv show that applications have been decreasinq since 1978-79. In 1982, there was a 16 percent decrease among the 17 schools over the previous year.

In 1982-83, 60 percent of the applications were accepted versus 50 percent in 1981-82. Few details are known about the actual number of applicants, since many individuals apply to more than one school. The trend continues for more women than men to apply to these programs. In 1980-81, approximately 55 percent of the apelications were from women while in 1982-83, womer accounted for 57 percent of the appl!cations.

Enrollment. In academic vear 1982-83, total enrollment in the 23 schools was 8,896, up 4.6 percent from the 1980-8) total er.rollment in 21 schools (not including off-campus sturents). Thirteen schocls reported fewer students in 1982 than in 1982; decreases ranged from 2 percent to 24 percent. Public schools suffered the greatest decrease -- 10 of the 14 public schools hat fewer students, for an overall decrease of about 5 percent. of the private schools, 3 of 8 had fewer students in 1982, and total enrollment in private schools increased by about 3 percent. Enrollments for the 17 schools reporting consistently since 1974 are as follows:

Year	Total   enrollment	Percentage   change
	5,624	
1974	5,999	$+7 \%$
1975	6,250	$+4 \%$
1976	6,406	$+3 \%$
1977	7,056	$+10 \%$
1978	7,538	$+7 \%$
1.979	7,770	$+3 \%$
1980	7,526	$-3 \%$
1981	7,283	$-3 \%$

About 57 percent of the 1982-83 enrollment was female, compared to 55 percent in 1980-81. The proportion of black students in $1982-83$ was 5.8 percent, compared to 6.3 percent in 1980-81; hispanic enrollment in 1982-83 was 5.2 percent, compared to 4.0 percent in $1.980-81$ (both academic years include the University of Puerto Rico's hispanic enrollment).

Part-time enrollment within the past years has increased significantly; 33 percent of the students were enrolled part-time in 1982-83 compared to 22 percent in 1980-81. Of the enrolled students, 11.7 percent have prior M.D. deqrees (nearlv half are for'ign citizens), 4.1 percent have other health or dcctorate degrees, and 22.5 percent have prior master's degrees. Foreign students have increased from 10.8 percent in 1980-81 to 13.5 peccent in 198283. The median age of students (29.5) continues to increase.

The areas of specialization of stuđents have remained relatively stanle. The areas of specialization for academic year $1982-83$ were as follows:

Area of Specialization	No. of Students	Percentage
Biostatistics	559	5.48
Epidemiology	1,070	12.28
Health services administration	2,107	24.08
Public health practice	645	7.38
Health Education	590	6.78
Environmental Sciences	1.1.22	$12.8 \%$
Occupational safety and health	313	3.6\%
Nutrition	373	4.38
Biomedical and laboratorv sciences	348	$4.0 \%$
Other	859	$9.8 \%$
No specialization	783	8.98
Unknown	1.27	--
	8.896	$100.0 \%$

Graduates. Approximately 3,492 students received degrees from accredited schools or pruqrams of public health in 1982-83 (ASPH, 1985). This represents an increase of 8.3 percent over the 1980-81 graduate total of 3,042. In general, the characteristics of graduates parallel those of students.

A special analysis was conducted in $982-83$ on graduates with prior MD degrees. A total of 456 graduates were identified with 212 or 46 percent being foreign citizens. The specialty area with the most MD was health services administration, which accounted for nearly one quarter of all MD U.S. citizen graduates from schools of public health. There were also 40 MD epidemiologist graduates in 1982-83. In addition to the MD graduating from schools of public health, there were also 282 preventive medicine/public health residents in 1984 (Tatile 3-37).

Considering that some of the $M D$ graduates of schools of public health and the residents go into administration or return to clinical practice, this output of new physicians trained in public health is sufficient to replace those that leave the workforce and will allow a very small growth of about 50 annually. In 2982, the AMA reported nearly 3,000 physicia active in preventive medicine/public health (Table 3-4), which consticuted a net increase of 44 from 1981.

## Health Services Administration

Nearly all 23 schools and programs of public health train health services administrators, the single largest area of specialization in public health. According to the ASPH, 962 or 27.6 percent of the graduates from the 23 accredited schools of public health in academic year 1982-83 received graduate degrees in health administration (ASPH, 1985). Currently, 13 of the departments of health services administration in schools of public health are accredited by the Accrediting Commission on Education for Health Service Administration (ACEHSA), in addition to accreditation by the Council on Education for Public Health (CEPH). The Association of University Programs in Health Administration reports that there are 34 accredited graduate programs in health administration outside schools of public health in the United States (AUPHA, 1985).

The following table summarizes health administration programs accredited by ACEHSA, excluding the 13 ACEHSA-accredited programs in schools of public health and 5 Canadian programs. The data indicate overall trends in education outside schools of public health for health administration as of academic years 1980-81 and 1982-83.

	Acanemic year i980-8!	AcaAemic year 1982-83	Change
No. Programs	26	32.	23.18
Applications	3,760	3,926	4.2\%
Total enrollment	2,194	3,206	31.68
Part-time	$22.9 \%$	37.1\%	14.2\%
Female	44.6\%	54.7\%	10.18
Minority	9.3\%	8.2\%	-1.2\%
Graduates	$917{ }^{1}$	$926^{2}$	-0.0\%

1 For academic year 1979-80.
2 For academic year 1981-82.
Source: Association of University Programs in Health Administration, 1985.

## Occupational Safety and Bealth

The National Institute of Occupational Safety and Health provides support to educate personnel in several related areas. In FY 1984 and $1985 \$ 8.76$ million was provided each Year to support 15 Educational Resource Centers and other training programs at over 40 colleges and universities. The number of students in these programs were as follows:

	Undergraduate		Graduate
	Full-time	Part-time	
Occupational			
Medicine	132	76	63
Occupational			
Nursing	78	18	42
Industrial			
Hygiene	497	185	257
Occupational			
Safety	131	31	51
Total	838	310	413

In addition, more than 1,500 students in other fields were given courses in occupational safety and health, and more than 22,000 practitioners received continuing education courses with these funds.

## Recent Studies of Public Bealth Education

Since the last redort to Congress (DHHS, 1984), four areas of public health education have been studied: environmental health, epidemiology, biostatistics, and public health nutrition. The results of these studies are summarized below.

Environmental Health. The last report to Congress stressed the need to strengthen the efucational preparation of environmental health personnel, particularly in the following areas:
o Risk assessment
o Environmental epidemiology
o Applications of computer technology

- Industrial hvqiene
o Environmental health planning and management.

The need to expand the knowledge of new environmental health graduates, as well as upgrade the skills of the current environmental health work force, remains paramount. There are few public health problems that demand the expertise of such a wide variety of disciplines. Risk assessment and the management of problems related to hazardous materials demand a unified interdisiciplinary team approach involving experts in chemistry, industrial hygiene, toxicology, hydrology, qeology, and epidemioloqy. Involvement also is needed from engineers, local environmental health workers, emergency care physicians, elected ufficials, and fire and law enforcement personnel.

A meeting of environmental health specialists was held in November 1984 to discuss training needs, especially those related to risk assessment. One recommendation resulting from this meeting was that a model approach to risk assessment and hazard elimination be developed for implementation by National, State, and local aqencies. The group also found a need for further research in such areas as the transport mechanisms of toxic materials in the human body, studies of toxic contaminates in qround rater, and the absorption of hazardous materials in the food chain.

Epideniology. A 1983 study found three major changes taking place in the education of epidemiologists:
o There has been a steady growth in the number of epidemiology graduates, from 203 in 1974-75, to 356 in 1981-82.
o Sube zantial changes have occurred ir curriculum content and focus, from an earlier biological/infectious disease emphasis to a more methodoloqical focus and an increase in the areas of epidemiojogic specialization.
o A change has occurred in student characteristics, from a relatively small homogeneous group of medically-trained males

11-14
to a large and diverse student population.
Current areas of emphasis in epidemiology training programs include chronic disease epidemiology, infectious disease epidemiology, environmental and occupational epidemioloqy, psyshosocial epidemiology, health services evaluation, nutritional epidemiology, genetic epidemiology, clinical spidemiology, dental epidemiology, and veterinary epidemiologv (Magee, 1983).

Biostatistics. All of the 23 accrediten schools and programs of public health in the United States offer master's degrees in biostatistics. In addition, coursework in biostatistics is part of the core curriculum for all master of public health students in schools of public health.

There were 573 qraduate students enrolled in biostatistics training proqrams during the 1984-85 academic year. Of the graduate students enroller in biostatistics programs in 1984-85, almost half ( 46 percent) were enrolled in doctorate programs. Over 26 percent of the biostatistics degrees awarded in 1982-83 were doctorates. Demographic data available for 1982-83 hiostatistics students indicate 56 percent were female and 15 percent foreign; 13 percent of the U.S. students were members of minority qroups. Over the last 10 years the proportion of female students has risen significantly (from 41 percent in 1975), while the proportion of minorities and foreign students has increased slightly.

Public Health Nutrition. The major source of pubiic health nutritionjsts in the United States is the 19 graduate programs in public health nutrition. About half of these programs and 75 percent of the students are in schools of public health. Between 1974 and 1981 about 200 new graduates from public heal.th nutrition training programs entered the work force annually. In 1984, 141 nutritionists qraduated with master's deqrees ( 30 percent fewer than prior to 1981), and 9 received doctorate degrees. Data recentlv provided by 12 graduate programs in public health nutrition indicate a 38 percent decrease since 1980 in both the number of applicants and the number of students enrolled in training proqrams. Approximately 10 doctorate-level students are expected to qraduate in 1985, about the same as in 1981.

## Pederal Support for Bducation in Public Health

This section describes educational support proqrams undertaken by the Bureau of Health Professions to implement public health training authorities in Titje VII of the Public Health Service Act, as amended by the Omnibus Budget Reconciliation Act of 1981, and updates information provided in the previous reports to the Conqress (DHHS, 1982 and 1984).

Institutional expenditures for 2.2 of the 23 accrediter schools of public health in 1982-83 (Oklahoma not included) reached $\$ 230$ million (Magee, 1984), $\$ 28$ million more than in 1979-80 (ASHP, 1982). These expenditures were distributed as Eollows: Federal Government programs accounter for 39.4 percent
(28.4 percent as research grant support, 7.2 percent as training program supports, and 3.7 percent in student aid); State and local governments, foundations, and other private sources 11.8 percent; ard university funds 48.9 percent (Magee, 1984).

The Federal funds supporting public health education include National Institute for Occupational Safety and Health Training Center Grants, National Institutes of Health Research Training Grants, and Health Resources and Services Administration, Public Health and Health Administration Training Grants. In 1984, 107 Public Health/Health Administration Training Grants were awarded -- 23 for Public Health Capitation ( $\$ 4.79$ million), 23 for Public Health Traineeships ( $\$ 2.543$ million), 29 for Health Administration Graduate Proqrams ( $\$ 1.43$ million), and 32 for Health Administration Traineeshins (S0.475 million).

Table 11-5 provides actual appropriations for public health and health administration truining, by type of support, for fiscal years 1957 to 1984. From 1982 to 1984 total appropriations for institutional assistance increased by $\$ 662,000$ or 10.5 percent, and appropriations for student assistance decreased by $\$ 311,000$ or 9.3 percent.

Table 1.-6 shows grant support for graduate education in health services administration under Public Law 94-484, by type of support, number of grants, and funds awarded, for fiscal years 1978 to 1984. During the period 1982-84 the total number of institutions eligible for support remained constant at 23 for schools of puhlic health and increased from 2.4 to 29 for graduate programs in health administration.

Table 1l-7 reports public health and health administration traineeship grants, funds awarded, number of students supported, and average amount of award per student for fiscal year 1984. From 1.982 to 1984 the total number of public health students receiving traineeships decreased from 1,517 to 1,439 , and the number of health administration students receiving traineeships increased from 260 to 356 . In both categories of students there was a decrease in the averaqe award per student. Per student awards decreased from $\$ 1,879$ to $\$ 1,768$ for public health students and from $\$ 1,830$ to $\$ 1,334$ for health administration students.

Durinq 1984 students were awarder Public Health/Health Administration Traineeships accoring to the following distribution:

Specialty	Number of trainees	Total awarded
Health administration		
(P.H. \& H.A. programs)	923	\$1,379,565
Epidemiology	175	326,488
Environmental health	168	275,070
Biostatistics	78	215,333
Health education	J 38	212,806
Maternal and child health	87	160,957
Nutrition	86	138,848
Occunational health	21	35,725
Laboratory	5	29,259
Preventive medicine preventive dentistry	6	10,140
Other	1.08	233,708
Total	1,795	\$3,618,000

Table 11-8 shows the number of schools receiving public health traineeships by area of specialization for fiscal years 1978-1984. As this table shows, the distribution of students receiving traineeships bv area of specialization has remained essentially sonstant during the period 1982-84. When the number of traineeship recipients in health administration graduate programs is added to the number of health services administraiion students receiving traineeships in schools of public hoalth, the total number of trainees speciaiizing in health administration increased from 886 in 1982 to 923 in 1984.

## Recommendations

Section $794(c)$ of the Public Health Service Act requires that each biennial report to Congress on public health personnel contain such recommendations "as the Secretary determines are needed to improve the programs under this subpart." The following recommerıdations are made in accordance with Section 794 (c).

Requirements for public health personnel cannot be precisely quantified with existing data and methodologies. It is possible, however, to identify areas of current and future need by examining the experience of employers, educators, and practitioners with long experience in public health. The previous two reports to the Conaress (IJHS, 1982, 1984) reported the small aqgregate number of the primarv pablic health workforce ( 250,000 or 3.5 percent of the health care work force) and concluded there were several areas in which critical shortages were likely. Workshops in 1981 and 1982 (DHHS, 1982); and followup reports in 1983 and 1985 (Magee, 1983; Brown, 1985; Greenbera and Magee, J.985) confirmed these findings and suggested the following areas need increased proruction of highly trained public health specialists.
o Epidemiologists who can deal with noninfectious diseases and trauma, particularly those of environmental and behavioral oriqins.
o Environmental health professionals trained in toxicology and assessment of the risks associated with hazardous chemical and phvsical substances.
o Biostatisticians competent in the design and implementation of highly controlled studies.

- Nutritionists trained in public health, especially at the doctorate level, who ran function as researchers and faculty members.
- Health administrators educated to address changing cost containment and reimbursement issues.
o Nurses with a public/community health orientation, who can identifv hiqh-risk groups, work with community organizations in prevention programs, and deal with ne special needs of the elderly, chronically ill, and disadvantaged.
- Phvsicians trained in public health and preventive medicine.

It is recommended that the schocls need to pay closer attention to the types of students they seek. The recruitment of physicians, other health professionals, scientists, and engineers in related disciplines -- that is, individuals with backgrounds best suited to contribute to public health work -- is lagging. Furthermore, recruitment efforts aimen at minorities are no longer attractinq the number of individuals thev once were. Personnel entering public health work not only need a thorough grounding in substantive program areas, but also need improved applied research skills in public and community heaith work. Faculty who can teach these skills, especially in the newer and still evolving problem areas, appear to be in short supply.

## Recruitment of Physicians and Scientists

The shortage of physicians and certain scientists (e.q., nutritionists and toxicologists) opting for advanced public health training is a major issue. Thfir scientific and technical backgrounds, when coupled with graduate preparation in the public health sciences, uniquely qualifies them for leadership in practice, research, and faculty rales identified as being in short supply.

Shortages of physicians in public health are likely to continue. The number of phvsicians who regard themselves as primarily working in prevertive medicine has declined steadily in recent vears. Residency programs in preventive medicine are operating at less than capacity. Equally important are the technical and experiential backgrounds brought to the field by
engineers, toxicologists, nutritionist3, chemists, pathologists, and behavorial scientists. For many years, engineers entered public health training in steady numbers and filled leadership roles in environmental health. Since the early 1970s, however, their numbers in the field have decreased significantly, and verv few currently enter public health training programs. Few toxicologists, whose basic competence is vital to assessment and solution of problems related to hazardous chemical agents in the environment, are receiving public health training that is essential not only for analysis and solution of the major public health problems of the coming decades, but to serve in facultv positions where a critically short supply now exists. The small number of highly trained nutritionists entering public health training, particularly those pursing doctoral education, presents similar dilemmas. It is therefore recommended that the increased efforts be undertaken to recruit more physicians and scientists into the field of public health.

## Scientific Training

It appears that graduates of public health and health administration training programs continue to be readily absorbed into the job market. At issue, however, is whether training in the public health sciences (e.g., epidemiology and environmental health) is receiving as much emphasis in the schools as health administration and health education. Overall, more than 52 percent of all public health graduates are in health administration and health education, with only about 30 percent of new graduates specializing in environmental and occupational health, epidemiology, health statistics, nutrition, and preventive medicine -- precisely those areas in which a new generation of health problems are emerging. It is therefore recommended that schools increase the proportion of students in the public health sciences.

## Needs of Working Professionals

In 1980 it was estimated that of a primary public health work force of approximately 250,000 individuals, about 25 percent had graduate training in public health. Estimates for 1985 suggest that approximately 75,000 personnel or about 30 percent have such training. Although precise data are not available, experts contend that large proportions of the environmental health, public health nursing, nutrition, and health education personnel currentlv in the work force have not received formal basic preparation in public health principles, theory, and methods.

Beyond deficiencies in basic preparation, public health employers are worried that information and technology are being transferred too slowly ${ }^{\text {rom academic }}$ and research settings to agencies that have operating responsibi ties for public health programs. Many individuals who were initially well trained and highly competent may not have had access to education in new technologists over the course of their careers. It is recommended that increased emphas is be given to professional develoment programs for practicing public health professionals.

It is also recommended that education and service linkages between the schools of public health, programs in graduate health administration, and public health agencies be strengthener. Such linkages are essential if schools of public health and graduate programs in health administration are to respond rapidly to the needs of State and local health departments and other sectors of the health care system concerned with the health of the Nation.

## Availability of Faculty and Researchers

The Bureau of Health Professions' 1981-82 workshop series on public health personnel (DHHS, 1982) identified a shortage of qualified faculty and researchers with expertise in a number of high-priority subject areas. Faculty and researchers in chronic disease and environmental epidemiology, toxicologv, and risk assessment of chemical and physical agents in the environment are reported to be in high demand and low supply. Difficulties in recruiting physicians for faculty positions in public health are also reported. A second group expected to be in short supply in university faculties includes nutritionists, occupational health specialists (nurses, industrial hygienists), and analytical scientists (mathematical statisticians, biostatisticians, and computer specialists). In each of these groups, competition between universities and private industry is expected to be keen, particularly for those with extensive training and experience. Salary differentials between universities and industry suggest that the recruitment problems of academic and research institutions will continue. It is therefore recommended that approaches be developed to address the recruitment and retention gap of highly skilled faculty and researshers.

## Acguiring Timely and Accurate Supply and Requirements Data

As discussed in the previous reports to Congress (DHHS, 1982, 1984), policy development and decisionmaking are seriously hampered by the lack of data on the public health work force and therefore on the magniture of quantitative and qualitative shortages. Acceptable data have been developed very recently on the numbers of students being trained and their characteristics. Efforts are being made to improve methods for estimating supply and requirements in public health and tc devise systematic approaches to obtaining key work force data. Nevertheless, there are very few usable data sets on the characteristics of the work force and the determinants of demand for public health personnel. In the absence of trend data, more reliance must be placed on expert advice secured through workshops and similar measures. Because professional categories in public health are diverse, imprecisely delineated, and frequently overlipping, and because these personnel are employed in such a wide spectrum of agencies, foundations, and firms, the technical problems to he solved are complex. These difficulties suggest that attempts to upgrade the existing data base depends on long-term collaboration among public health aqencies, educational institutions and industry. It is recommended that timely and accurate data on the supply and requirements for public health personnel be acquired.

## Kealth Promotion and Disease Prevention

In September 1984 a series of five workshops was conducted by the Bureau of Health Professions to develop recomendations for training health professionals to be more effective in health promotion and disease prevention activities. The worshop series, titled "Health Promotion/Disease Prevention: Impact on Health Professions," covered allied health, public health, and primary care personnel working in various health care settings such as private practice, health maintenance organizations, hospitals, state and local governments, voluntary health organizations, and industrv. The recommendations addressed the following areas: increasing the effectiveness of faculty in teaching preventive concepts: developing curricula to allow more meaniaqful material in didactic and experiential education; selecting students who demonstrate positive attitude and behavior toward health fiomotion and Jisease prevention; including these concepts in accreditation standards and certification and licensure examinations; expanding research in these areas; and developing closer links between industry and the health profession education community. The recommendations represent a comprełensive strategy for health profession educators to address health promotion and disease prevention concepts through the educational process. It is recommended that the strateqy of incorpurating health promotion and disease prevention concepts in the education of health professionals (as proposed by five workshops in 1983) be implemented.

## Sumary

$0 \quad$ The best estimates to date are that more than 30 percent of the primary public health work force, approximately 75,000 people, have graduate training in public health.
o In 1985 there are 23 accredited schools of public health. These schools graduated 3,492 students in 1982-83.
$0 \quad$ The number of applications to schools of public health have been decreasing rapidly in recent years (down 16 percent from 1980-81 to 1982-83) and the number of part-time students has increased to onethird of the student body.

- In 1985 there are 52 accredited health administration programs (including 13 in schools of public health and 5 Canadian schools). The 34 U.S. accredited programs outside schools of public health graduated 916 students in 1982-83, while reporting a 31.6 percent increase in enrollment and a $\mathbf{1 4 . 2}$ percent increase in part-time
students during the period 1980-81 and 1982-83.

Existinq studies and prevailing professional judqments point to personnel shortages in several occupations and difficulties of recruitment in other occupatiors. Needs exist for increased production of the following highly trained specialists: epidemiologists; environmental health orofessionals including toxicologists; biostatisticians; nutritionists; public health nurses; and physicians trained in public health and preventive medicine.

The shortage of physicians and certain scientists (e.g., nutritionists and toxicologists) opting for advanced public health training is an isque. Their scientific and technical background, when coupled with graduate preparation in the public health sciences, uniquely qualifies them for leadership in practice, research, and faculty roles. Shortages of physicians in public health are likelv to continue. The number of physicians who reaard themselves as primarily wroking in preventive medicine has steadily declined in recent vears. Residency programs in preventive medicine are operating at less than capacity and physician graduates of . schools of public health continue to decline. There is also a shortage of physician epidemiologists.

Of equal importance are the technical and experiential backgrounds brought to the public health field by engineers and scientists such as toxicologists, nutritionists, chemists, patholoqists, an behavorial scientists. Engineers entered public health training in steady numbers and filled leadership roles in environmental health for many years. since the early 1570 s, however, their numbers in the field have decreased significantly, and very few are now entering public health training programs. For toxicologists, whose basic competence is vital to assessment and solution of problems related to hazardous chemical agents in the environment, public health craining is essential, not only to analyze and solve major public health problems of the coming decades, but to serve in faculty positions where a critically short supply now exists. The small number of highly trained nutritionists entering public health training, particularly those pursuing doctoral education, presents similar dilemmas.


PRIMARY PUBLIC HEALTH WORK FORCE
About 250,000 persons, ar about half of the pablic health work force, perform public health functions full time $\alpha$ work for public health agencies.

- Epidemiologists
- Health Statisticians
- Nutriticnists
- Health Educators
- Sanitarians
o Industrial fygienists
- Occupational Health
\& Safety Specialists
- Toxioologists
- Researchers \& Faculty
- Physicians in Puhlic Health \&

Preventive Medicine

- Public Health Nurses
- Schools Health Nurses
- Public Health Dentists,

Veterinarians \& Laboratory
Persornel

- Health Servioes Adninistrators
- flealth Plarners
o Nursing Bome Administrators
o Fospital Adninistrators

SOKics: Division of Associated and Dental Health Professions, Bureau of Health Professions, Health Resources and Services Administration, 1985.

Table 11-1. FULL-TIME EQUIVNLENT STAFFS OF STATE HEALTH AGEACIES, BY OCCUPATION AND PROGRNM AREA: DECEPMER 31, 1982

Occupation	Total public healthl/	personal health		$\begin{aligned} & \text { Environ- } \\ & \text { mental } \\ & \text { heelth } \end{aligned}$	Health resources	Laboratory	General adninistration	Unident 1fiable by progran area
		```Nonineti- tutional personal health```	SHAoperated institutions					
All profaceional, moinin-								
istrative, and technical	50,827	17,846	13,642	6,052	4,289	3,578	2.960	2,460
Physician	2,185	730	1,069	14	84	73	73	142
Dentists	409	297	53	6	18	-	11	24
Veterinar jans	78	15	1	51	-	8	3	-
Registered nurses	12,804	6,785	4,183	$1 \sim$	707	2	93	1,022
Liceneed practical nurees	3,963	714	2,988	-	-	-	1	260
Eoulth care extenders	1,739	450	1,173	-	43	2	7	63
Other health care providers	1,404	610	633	32	23	23	20	63
Mutritionists, dietitians	918	576	128	-	106	-	30	78
Social workers	1,556	741	490	-	244	-	30	51
mealth educators	457	325	44	12	12	-	52	12
Sehavioral ecientiste (including paychologists)	634	365	236	-	3	-	2	28
Clinical laboratory, blological medical technologists, and related occupations	4,778	469	1.120	333	26	2,623	16	191
Engineers, sanitarians, and related occupations	b,757	1,251	190	3,902	289	14	58	53
Planners, DP programers and analysts, statisticians, and related occupations	1,631	221	10	57	709	12	516	76
Lanyers, hearing officers and related occupations	193	16	-	12	18	1	146	-
Mdministrative and managerial cocuputions	3,969	1,346	437	316	749	156	810	155
Other professional, adninistrative and tectnical occupations	8,353	2.935	857	1,305	1,258	664	1,092	242

1) The following shas did not report to the ASHBO Foundation in 1982 and are not included in this tables California, Guam, Maine, Montana, Mew Mexico, Horthern Mariana Islanda, Ohio, Oregon, South Dakota and the Trust Territory. The District of Columbia, Florida, Maryland and Misaisaippi are also excluded from the table. SHAs in the District of Columbia and Maryland did not report staffing data by program area and occupation in 1982. SHAs in Florida and Misaisaippl did not report information on staffing by progran area.
sounce: Asesciation of state and Territorial Health ifficials Foundation. staffa of state Fealth Agencies, April 1985, (Performed under Purchase Order No. RRSA 84-206, Realth Resourfef gnd Services Administration).

Table 11-2. TRENDS IN STAFFING OF STATE HEAJTH AGENCIES, BY PROGRAM AREA, 1977 mo 1982

Program area	1977	1979	1980	1982	$\begin{gathered} \text { Fercentage } \\ \text { Change } \\ \text { 1977-1982 } \end{gathered}$
	(number of amplovees)				
Noninstitutional personal health	19,178	22,108	20,229	20,679	7.8
SHA-operated institutions	13,025	13,533	13. 410	11,523	-11.5
Environmen ${ }^{\text {al }}$ heal ${ }^{*}$	6,891	6,436	6,200	6,329	- 8.2
Health resources	5,761	5,277	5,100	4,373	- 2.4
Laboratory	3,355	3,374	3,277	3,124	- 6.9
General administration	4,260	4,350	4,506	4,205	- 1.3
Not identifiable by program area	937	699	1,756	1,713	82.8

1/ Thirtv-eight SHAs reported comparable data by program area for the period 1977-1982. SHAs not inclufed in the analysis were California, District of Columbia, Florida, Guam, Maine, Maryland, Massachusetts, Mississippi, Montana, New Mexico, New York, the Northern Mariana Islands, Ohio, Oregon, Fuerto Rico, South Dakota, Tennessee, the Trust Territory, and West Virginia.

SOURCE: Association of State and Territorial Health Officials Foundation. Staffs of State Health Agencies, April 1985.

Table 11-3. gRENDS IN ETAPFING OF ETATE ERALTH AGENCIES, EY GCCIPATION: 1977 TO $19 E 2$

Occupetion	1977	1979	1980	1982	Percentage Change 1977-1982
Physicians	2,979	3,404	3,085	2,309	-22.5
Dentiate	550	700	553	503	- 8.6
Registered nurses 1/	12,631	14,810	13,483	12,984	2.8
Licensed practical nurees $1 /$	3,850	3,704	4,068	3,806	-1.1
Nutidionists, dietitians	718	1,312	911	1,034	44.0
Sociel workers	1,705	1,862	1,563	1,505	-11.7
Heslth educstore	546	551	472	491	-10.1
Leborstory technologiste and releted occupations	4,868	5,001	5,021	4,701	- 3.4
Engineere and atanitariana	7,116	7.436	6.408	6.384	-10.3
Planners, programmers, enelyate, etatisticiane	1,094	1,647	1,681	1,632	49.2
Other professional and technicel enployees 2/	15,419	16,694	16,021	25,124	0.0
All other	36,715	36,942	37,278	34,670	- 5.6

1/ Forty-three sina reported comparable data for 1980 and 1982. In Virginis, licensed practicsi nuraes and regiaternd nursea vere combined to forn one category virginis vae therefore excluded from the comparison of these two occupations.

2/ In 1982, health care extenders, behaborial ecientists, veterinariens, lawyers other health care providers, and adninletrative and managerial occupstions were listed es separste categories. In previous yesra, these occupations were not listed separstely. For purposes of this comparison, employees in these accupational categories heve been included under "Other profeselonsl and technical enployeea."
source: Association of state and Fertitorisl Beslth officisis Foundetion. staffe of state Reslth Agencies, April 1985.

Table 11-A. MEDIAN SALARIES FOR VARIOUS HEALTH PROFESSIONS

PROFESSION	Highest 1\%	$\begin{gathered} 25 t h \\ \text { Percentile } \end{gathered}$	Median	$\begin{gathered} \text { 75th } \\ \text { Percentile } \end{gathered}$	$\begin{gathered} \text { Lowest } \\ \text { 18* } \end{gathered}$
	Thousand of dollars				
Health Administrator	\$60	\$32	\$26	\$21	\$ 9
Health Educator	39	22	18	15	11
Laboratory Technician	30	20	15	13	6
Public Health Nurse	28	18	16	14	8
Public Health Physician	76	56	48	42	12
Sanitarian	27	19	17	15	10

*Includes Part-time Personnel
Source: American Public Health Association. Survey of Employee Compensation Local Health Departments United States - 1982.

Table ll-5. ACTUAL APPROPRIATIONS FOR PUBLIC HEALTH AND HEALTH ADMINISTRATION TRAINING, BY TYPE OF SUPPORT, FISCAL YEARS 1957 TO 1984

Fiscal year	Institutional support/		Traineeships ${ }^{2 /}$		Projects ${ }^{\text {/ }}$
	Schools of public health	Health admin. programs	Public health	Health admin.	
Thousands of dollars					
1957..	-	-	\$1,000	-	-
1958.	. -	-	2,000	-	-
1959.	\$ 450	-	2,000	-	-
1960.	1,000	-	2,000	-	-
1961.	1,000	-	2,000	-	\$1,430
1962.	. 1,173	-	2,000	-	2,000
1963.	1,900	-	4,000	-	2,000
[964.	1,900	-	4,195	-	2,000
1965.	2,500	-	4,500	-	2,500
1966.	3,500	-	7,000	-	4,000
1967.	3,750	-	8,000	-	5,000
1968.	4,000	-	8,000	-	4,500
1969.	. 4,554	-	8,000	-	4,917
1970.	5,154	-	8,000	-	4,917
1971.	. 5,054	-	8,400	-	4,517
1972.	5,554	-	8,400	-	4,517
1973.	6,000	-	9,600	-	6,000
197	5,700	-	9,120	-	5,700
1975.	5,900	-	9,120	-	5,500
1976.	.. 5,900	-	9,120	-	5,500
1977.	. 5,900	-	9,120	-	5,500
1978.	. 5,900	\$3,000	7,000	\$1,500	5,000
1979.	. 5,900	3,000	7,000	2,000	5,000
1980.	. \quad,450	3,000	7,000	2,000	5,000
1981.	.. 4,307	750	6,750	750	2,800
1982.	. 4,176	1,440	2,880	480	-
1983.	- 4,176	1,440	2,500	480	-
1984..	. 4,838	1,440	2,569	480	-

1/ Under P.L. 94-484 authorities heginning in FY 1978, schools of public health received capitation qrants under section 770 PHS Act. Health administration programs received funds under section 791 of the Act.
2/ Under P.L. 94-484 authorities begiming in FY 1978, schools of public health and other eligible entities received public health traineeship grants under section 748 of the PHS Act. Other graduate health administration programs received funds under section 749 of the Act. Effective August 13, 1981, under P.L. 97-37, sections 748 and 749 were redesignated as sections 792 and 791A, respectively.

3/ Under P.L. 94-484 authorities beginning in FY 1978, schools of public health and other eligible institutions including graduate programs in health administration received funds unier section 792 of the PRS Act. Effective August 13, 1981, under P.L. 97-37, section 7° 2 was repealed.

SOURCE: Division of Associated and Dental Health Professions, Bureau of Health Professions, Health Resources and Services Adninistration, 1984.
 BY TXPE OF SUPPORT, NUEER OF GRNIS AND FUND FMARDED, FISCAL YFARS 1978 TO 1984

Type of support	1978		1979		1900		1981		1982		1983		1984	
	Grants	Funds	Grants	Funds	Grants	Funds	Gants	Funds	Grants	Funds	Grants	Punds	Grants	Runds
Dollars in thousands														
Prolic health epecial projecter	. 32	\$2,025	42	\$2,123	46	\$2,220	22	\$1,321	-	-	-	-	-	-
Administration $\frac{1}{\text { menagarent. } \text {. }}$... 18	1,423	22	1,405	26	1,287	15	913	-	-	-	-	-	-
Bealth plaming or policy analyais	... 14	601	20	718	20	933	7	407	-	-	-	-	-	-
Crants to graduate prograys														
Health adinistration traineeships $3 /$... 21	1,485	25	1,960	25	1,980	27	742	28	475	30	476	32	475
Public health traineeships/.........	... 20	*	21.	*	21	*	21	*	23	*	23	*	23	*

NOER: Totals may not adl exectly due to rounding.

1/ Section 792, FiS Act (which wes repealed after FY 1981). Projects avarded under this section for health services adninistration. Subtotals refer to projects that appeared primarily devoted to plaming and analysis or to managenent and administration. Mary projects coubined auch activities in verying degrees.
If Section 791, Pis Act.
3/ Section 749, FiS Act. Bffective 8/13/81, redesignated as Section 791A. Estimated numbers of trainees: 429 in FY 1978, 529 in FY 1979, 568 in FY 1990, 37 in FY 1981, 260 in FY 1982, 288 in FY 1983, and 275 in FY 1984.
1 Section 748, PBB Act. Effective $8 / 13 / B 2$, redesignated as Section 792. Information not available an dallars devoted to trainees in health adidnistration. However, estimated numbers of trainees in health administration are available: 917 in FY 1978, 874 in FY 1979, 864 in FY 1900, 870 in FY 1981, 626 in FY 1982, 476 in FY 1983, and 466 in FY 1384. Elecept in FY 1981, all schools receiving grants had trainees in health adsinistration.
source: Division of Associated and Dental Health Professions, Bureau of Health Professions, Fealth Fesources and Services Adainistration, 1984.

Table 11-7. PUBLIC HEALTH AND HEALTH ADMINISTRATION TRAINEESHIP GRANTS: FUNDS AWARDED, NUMRER OF STUDENTS SUPPORTED, AND AVERAGE AMOUNT OF AWARD PER STUDENT, FISCAL YEAR 1984

Type of grant $\begin{gathered}\text { Funds } \\ \text { awarded }\end{gathered}$	Number of students suppor ted	Average award per student
Public health traineeships $/$ /..... $\$ 2,543,000$ /	$\underline{1,439}$	\$ 1,768
Health administration traineeships3/.................... \$475,0002/	$\underline{36}$	\$ 1,334
Authorized by section 792, Public Health Service Act		
2/ Amount remaininq after evaluation tap.		
3/ Authorized by section 791A, PHS Act.		
SOURCE: Division of Associated and Dental Health Health Professions, Health Resources and Services	Professions Administrat	av of 985.

Table 11-8. STUDENIS RECEIVING PUBLIC HEALTH TRANNEESHIPS, $1 / \mathrm{BY}$ AREA OF SPECIALIZATION, FISCAL YEARS 1978 TO 1984

Area of specialization	Number of students						
	19'8	1979	1980	1981	1982	1983	1984
All specializations..........	2,175	2,250	2,211	2,120	1,517	1,292	1,439
Envirormental :							
Measurement \& research sciences. .	384	209	430	389	266	245	253
Biostatistics..................	*	138	138	129	80	72	78
Epidemiology....................	*	271	292	260	186	173	175
Public health practice							
\& program management...........	170	451	480	461	332	286	322
Nutrition.......................	154	187	173	136	81	81	86
Maternal \& child health........	**	56	85	87	87	83	87
Residencies in preventive medicine.	16		36				23
Residencies in dental public health..................	*		11				03
Other dental public health.....	**	12	8	4	4	2	4
Health education...............	**	164	130	125	116	94	138
Laboratory.	**	**	38	28	28	20	5
Health services administration...	917	874	864	870	626	476	567
Other or unknown.................	438	216	156	103	69	113	108

NOLES: * Indicates information not available for this category, although included in totals and subtotals. ** Indicates students in these disciplines are counted in "other ar unknown" category.
I/ Includes focmula-type grants to schools of public health, campetitive grants to other institutians, and residency traineeship grants, funded from FY 1978 threugh 1981 under section 748 of the PFS Act and in FY 1982 under redesignated section 792.
3^{\prime} Includes 9 residents in preventive medicine and dental public health receiving full support under residency grants, and 7 residents in these disciplines receiving partial support under fromula-type grants.
3/ Includes residents receiving full suppart under residency grants and partial support under focmula-type grants, as fillons:

	Preventive Medicine		Dental Public Fealth	
	Full Stgport	Partial Syport	Pull Strport	Partial Surpart
FY 1979	5	23	2	2
FY 1980	15	21	6	5
FY 1981	17	57	5	2
FY 1982	5	24	3	1
FY 1983	0	6	0	0
FY 1984	0	2	0	0

SOURCE: Division of Asscciated and Dental Health Professions, Bureau of Health Professions, Health Resources and Services Administration, 1985.

References

American Public Health Association. "National Public Kealth Vacancy Reporting System." HRSA Purchase Order 82R083チ7 ${ }^{\circ} 701 \mathrm{D}$, September 1983.

American Public Health Association. Employee Compensation in Local Health Departments United States - 1982. Washington, D.C., 1984.

Association of Schools of Public Health. Summary Report of Activities U.S. Schools of Public Health. HRSA Contiact No. 232-80-0057, October 1982.

Association of Schools of Public Health. "Characteristics of 1979-80 Expenditures and Cost of Education in U.S. Schools of Public Health." DHHS, HRA Contract No. 232-80-0057. Washington, D.C., October 1982. Unpublished.

Association of Schools of Public Health. "Cost of Education in U.S. Schools of Public Health." DHHS, HRA Contract No. 232-80-0057. Washington, D.C., October 1983. Unpublished.

Association of Schools of Public Health. Schools of Public Health Educational Data Report on 1982-83 Graduates and 1982-83 Expendit:res. Washington, D.C., June 1984.

Association of State and Territorial Health Officials, ASTHO Foundation. "Staffs of State Health Agencies, April, 1985." HRSA Purchase Order 84-205.

Association of University Programs in Health Administration. "Graduate Education for Health Services Administration 1966-1983."

ASTHO Foundation. Personnel in Pubiic Health Nutrition for the 1980's (M. Kaufman, ed.). ASHTO Foundation, McLean, Virginia, May 1982.

Brown, J.E., ; Holland, M.D. .; Hartley, M.M. "Surveying the Job Market." The Community Nutritionist 1:4-9, 1982.

Brown, J.E. "Public Health Nutrition: A Review of the Field and Training Programs." HRSA Purchase Order 84-214. Association of Sch>ols of Public Health, February 1985.

Greenburg, Bernard G., and Maqee, Judith H. "A Review of the Field of Biostatistics and Biostatistics Training Programs in U.S. Schuols of Public Health." HRSA Purchase Order 84-211, Association of Schools of Public Health, February 1985.

Kaufman, M. "Analysis of Need for Public Health Nutritionists in Medically Underserved Areas and the Contrihutions of Expanded Recruitment in Meeting this Need." Report to the U.S. Department of Health and Human Services, Health Services Administration, Bureau of Community Health Services, Rockville, Maryland, 1978.

Klein, Susan H. and Magee, Judith H. "Schools of Public Health Educational Data Report 1982-83." Association of Schools of Public Health, October 1983.

Magee, Judith H. "A Review of the Field of Epidemiology: Current Activities and Training of Practitioners." HRSA Purchase order 82R038950001D, Association of Schools of Public Health, June 1983.
U.S. Department of Health and Human Services, Health Resources Administration. Public Health Personnel in the United States, 1980. DHHS Publication No. (HRA) 82-6, U.S. Government Printing Office, Washington, D.C., 1982.
U.S. Department of Health and Human Services, Health Resouices and Services Administration. Report to the President and Congress on the Status of Health Personnel in the United States. DHHS Publication No. HRS-P-OD 84-4, Mav 1984.
U.S. Department of Health and Human Services, Health Resources Administration, Division of Associated Health Professions. Proceedings: workshop on Preparation for Practice in Environmental Health. Hyattsville, MA., March 1982.
U.S. Department of Health and Human Services, Health Resources Administration, Division of Associated Health Professions. Proceedings: Workshup on Preparation for Practice in Public Heaıth. Hyattsville, Md., March 1982.
U.S. Department of Health and Human Services, Heal th Resources Administration, Livision of Associated Health Professions. Proceeding: A Forum on the Public Health Work Force. Hyattsville, Md., September 1982.
U.S. Department of Health and Human Services, National Center for: alth S^atistics. Fealth: United States, i984. DHHS Publication No. (PHS) 85-1232, U.S. Government Printing Office, Hyattsville, M.D., 1984.
U.S. Department of Health Education and Welfare, Public Health Service. Healthy People: The Surgeon General's Report on Health Promotion and Disease Prevention. DHEW Publication No. (PHS) 79-55071, U.S. Government Printing Office, Wasinington, D.C., 1979.
U.S. Department of Health and Human Services, Public Fiealth Service. Promoting Health/Preventing Disease: Objectives for the Nation. U.S. Government Printing Office, Washington, D.C., Fail 1980.

Chapter

ALLIED HRAL'TG

Introduction

Defined very broadly, alljed health could include all health-related occupations outside of allopathic and osteopathic medicine, nursing, dentistry, pharmacy, rodiatry, optometry, and public health. In 1982 the Commission on Allied feal.th Education Accreditation (CAHEA) estimated that such a definition would encompass 63 percent of the health care work force (approximately 3.8 million workers practicing in more than 100 occupations) and more than 8,000 educational programs in institutions of higher education (DHFW, 1.979).

The allied health professions, as defined in Title VII of the Public Heaith Service Act, include, "...individuals with training and responsibilities for supporting, complementing, or supplementing the professional functions of physicians, dentists, and other health professionals in the jelivery of health care to patients...." (Sec. 795, PHS Act as amended 1982). For program and educational assistance purposes, previous reports by the Department narrow this broad definition into specific groups of allied health occupations receiving professional training at the colleqiate level and providing specialized services with a significant impact on health care. Under this more restricted definition of allied health personnel, it is estimated that there were 1.235 million allied health personnel in 1984 ; up 13 percent from the estimated 1.091 million in 2982 (Table 12-1). This chapter uses such an operational definition and addresses the following key allied health occupational qroups not addressed elsewhere in this report.
o Clinical laboratory -- including medical technologists cytotechnologists, and medical laboratory technicians.
o Dietetics -- including dietitians, dietetic technicians, and dietitian assistants.
o Medical records -- including medical recurd administrators and techn ${ }^{2}$ cians.
o jccupational therapy -- including occupational therapy assistants.
o Physical therapy -- including physical therapy assistants.
o Radiologic technology -- including radiographers, nuclear medicine, and radiation therapy technoloqists.
o Respiratory therapy -- including respiratory therapy assistants.
o Speech-language-hearing -- including speech-language pathologists and audiologists.

Some other allied health professions are discussed in chapters on professions with winich they are closely linked (e.g., Aental assistants and hyqienists, nurses aides, and physicians assistants).

This list obviously does not include many other health professionals practicing in the health delivery system and most notably excludes scientists, biomedical researchers, social workers, emerqency service workers, and many of the rehabilitative occupations. Even with these exclusions, the roles of allied health professionals range across the entire spectrum of service deliverv and are vital to the provision of quality health care. From the clinical laboratory and radiologic technologist for diagnostic evaluation, to various therapists and dietitians for rehabilitation, through the medical records administrator and technician for history documentation and b^{\prime} lling, each professional applies unique skills and training to comprehensive patient care. And yet, the allied health professicnal is prohably the least puhlicly visible member of the health :are team.

Some allied health occupations were recognized before 1900, for example, medical librarian (now known as medical records administracor), dental assistant, and dietitian (NCAHE 1980). With the rapid deve_opment of new medical technoloqies since 1940, more discrete allied health professions emerged and continue to do so. Some examples of the newer profossions are: radiologic technicians, who administer a number of nuclear tests; sonoqraphers, who use ultrcisound equipment for diagnostic evaluations; and perfusionistr, who operate kidnev dialysis and heart monitoring equipment. Rapid technological developments require many allied health professionals to learn new skills and keep abreast of new technologies, and in some cases to further specialize.

With the increase in the number of recoqnized allied health professions, the roles of many professionals also changed. In the early 1900 s allied health professionals acted exclusively in support roles for other health professionals who trained them on the joh to carry out the more routine procedures. Today, educatícn programs are more formalized with clinical practicums being only a part of the overall curricula. Many allied health professionals now practice indevendently, such as dietitians, physical therapists, and speech-language pathologists/audiologists; in independent groups, such as elinical laboratory technicians; or in joint practice with other health professionals, such as physical and occupational therapists with physicians and dental hygienists with dentists. From these diverse roles it fcllows that the work settings for these professionals are also varied, including hospitals, clinics, private offices, mobile medical emergency units, and independent laboratories.

While such diversitv meets the ongoing needs of the health care community, it is difficult to make generci.izations and data assessments about the allied health occupations as a group. Confounding the picture is the fact that each profession requires differing educational levels for entry, some demanding extensive clinical experierce prior to beainning practice, ranqing from limited postsecondary training to doctoral study. Allied health education proqrams are located in univerisities (both within health science centers and
independentlv), associate degree and 4-year colleges, postsecondary technical schools, and hospitals. Slightlv over half of the programs are located in 4-year colleges and universities.

A 1984 report by the American Society of Allied Health Professions, "A Plan for a Cooperative Allied Health Information System", discusses the difficulty of analyzing the allied health occupations as a group and provides the following reasons:
o Adequate data on allied health manpower are not available.
o There is no central source that provides comprehensive data on the allied health professions.

- Although information on the variety of current data hases is available, it is often hard to obtain.
- Data are generally not compatible; they vary in reliability and consistency.

Additional reasons for the dearth of usable data on allied health professions include:
o Definition. Altiough allied health professions has been defined for the porpnses of this report, there is no universal definition accepted by data collection sources.

- Professional Associations. No one professional association speaks for allied heal th as a group, although the American Society of Allied Health Professions, established in 1968, has attempted to bring the professions together under one organizational umbrella. Because each profession has at least one association of varving membership strength and data collection activity, information availability and reliability varv widely.
- Education Progran Accreditation. The American Medical Association's Committee on Allied Health Education and Accreditation (CAFEA) collects enrollment and graduate data for programs in all settings, including 4 -vear colleges and universities, junior and community colleges, hospitals, clinics, militarv programs, and others. Not all allied health education programs are accredited bv CAHEA, however. The most notable exclusions are physical therapists, dietitians, and speech-language-hearing pathologists and audiologists, who maintain their own accrediting bodies.
- Certification/Licensure. Each profession has certification standards and procedures for their practicing professionals. The adherence to and standards for certification vary among professions and employers. States also varv in their
professional licensure requirements, if they license the profession at all. Together these factors severely limit another important source of data.
- Requirements/Demand Projections. While models for projecting physician and nursing requirements are based on a number of factors including population demographics, financial factors such as third-party reimbursement patterns, and changes in medical technology and health care delivery, requirements projections for allied health occupations are more likely to be based on expert opinion, subjective data, and hospital vacancy rates.

Some data used in this chapter are based on surveys conducted by accrediting bodies, professional associations, and the American Hospital Association. The reports most frequently cited are:
o Allied Health Education Fact Sheet, February 1.985. This report, published annually by CAHEA, includes statistical data submitted by accredited programs in the 1983 and 1984 Annual Reports as well as information contained in CAHEA program files through 1984.

- "Report of CAHEA Surveys: Impact of PPG on Clinical Education and Perspectives of Program Directors", Allied Health Education Newsletter, December 1984. This report presents the results of a survey of 2,850 directors of CAHEA-accredited education programs, with a return of 81 percent or 1,944 responses analyzed by occupation.
- 1984 American Hospital Association Annual Survey of Hospitals. This survey was sent to 5,888 registered hospitals to accumulate data on hospital employment and vacancy rates.
- An In-Depth Examination of the 1980 Decennial Census Employment Data for Health Occupations, Executive Summary, ODAM Report No. 17-84, DHHS, 1984. This study analyzed the demographic data collected on various health professionals by the 1980 Decennial Census, adjusted for such variables as inconsistent: educational levels. (These data must be viewed cautiously because an accurate data base for comparison is lacking.)

With these limitations, this chapter addresses individually the current status of each of the previously indicated health professions. These status assessments are, based on the data available from a number of sources and include education programs and students, supply and requirements, licensure and certification, and issues considered important to a particular occupation. The summary provides general conch ions about the current status of the allied health professions, including the anticipated impact of new reimbursement methods such as Medicare's Prospective Payment System.

Olinical Laboratory

Clinical laboratory techonologies and sciences occupy an increasingly vital place in the detection, diagnosis, and treatment of $i=1 n e s s$. Teams of pathologists, specialists, technologists, technicians, and assistants work together to determine the presence, extent, sr absence of disease and provide data needed to evaluate the effectiveness of treatment. Individuals employed ir. clinical laboratories hare varied levels and types of functions and degrees of specialization. Educational preparation can range from a one-year program in a hospital to a Ph.D. deqree and postdoctoral study. There are approximately $12,000 \mathrm{clinical}$ laboratories, including those in federally regulat ' hospitals, independent comercial laboratories, and group practices. Clinical testing is also performed in doctors' offices, rural health clinics, nursing homes, psychiatric and mental retardation institutions, the criminal justice sytem, and even in homes. The estimated number of personnel involved in clinical laboratory services increased from 30,000 in 1950 to approximately 278,000 in 1984.

Medical Technologists. Medical technologists represent slightly more than half of all allied health personnel active in clinical laboratory services (ARA 1983, DHEW 1979). Medical technologists are highly skilled laboratory scientists with a.strong generalist orientation who perform or supervise tests and procedures in hematology, bacteriology, serology, immunology, clinical chemistry, blood banking, urinalysis, mycology, and parasitology. In addition, there are other technologists who specialize in certain areas: clinical chemistry technologists determine the presence and quantity of chemical substances in the blood and other body fluids; iematology technologists perform tests for clotting factors and stuily blood cells to facilitate diagnosis of illness; microbiology technologists identify bacteria, fungi, parasites, and other pathogenic organisms present in the human body: and blood bank technologists perform a large array of transfusion services.

Cytotechnologists. Cytotechnologists detect the presence of cellular disease through microscopic examination of cell samples, mainly from certain biopsy techniques and papanicolaou smears. In 1984, t.ere were approximately 8,000 cytotechnologists. According to a study by the National Commission on Allied Health Education (NCAHE), 60 percent worked in hospitals, over 30 percent worked in independent laboratories, and only 5 percent were employed in private or group practice (Holmstrom, 1980).

Medical Laboratory Technicians. Medical laboratory technicians perform routine clinical laborato:y tests under the supervision of a medical technoloqist, laboratory supervisor, or cinical iaboratory scientist. In 1984, there were about 15,000 medical laboratory technicians (DHHS 1984). In addition, approximately 93,000 unspecified other workers performed various functions in clinical laboratory settings.

Students and Institutions

In 1984, CAHEA accredited 1,018 programs in cytotechnology, medical laboratory technology (including technician associate degree and certificate programs), and blood bank technology. These programs had a 1.983-84 enrollment of 17,952 full- and part-time students and produced 9,719 graduates. Medical technology represented the greatest number of programs (615), students (8,883), and graduates $(5,370)$ in the clinical laboratory fitld. The number of graduates for medical technologists was above 6,000 for a number of years but seems to have stabilized at the lower level, near 5,000 , over the past 3 years. There were 278 medical laboratory technician programs accredited by CAHEA in 1983-84 with nearly 4,000 graduates and 8,600 enrollees, considerably more than in the early 1970s. In comparison, cytotechnology programs in 1973 enrolled 436 students and graduated 355, compared to 318 students and 233 graduates from 61 programs in 1983-84.

The 1984 CAHEA survey of program directiors indicated that between 1981 and 1984 only cytotechnology programs showed any $i_{1 . n} r e a s e$ in entering sturents. Between 78 percent and 89 percent of responding program directors, other than cytotechnology program directors, indicated that student enrollments were either stable or decreasing within their occupational areas.

Supply and Requirements

A 1983 American Hospital Association (AHA) survey indicates that over 153,000 full-time-equivalent (FTE) medical laboratory personnel were employed in 5,888 U.S. registered hospitals. About 55 percent of these were medical technologists. The 1980 Decennial Census identified 247,800 individuals indicating employment as clinical laboratory technologists and technicians without regard to setting. A survey of professional associations conducted by the NCAHE in 1979 found that over half of all medical laboratory technologists/technicians were employed in hospitals, another 14 percent in othe: health care settings such as comprehensive health care centers or clinics, over 10 percent in private or group practice offices, 7 percent in private laboratories, and 1.6 percent in other health agencies (Holmstrom, 1980). A comparison of the AHA daca with these earlier findings sugglests no major shift in the proportion of medical technologists and technicians employed in hospitals in the past few years. The 1983 vacancy rate as reDorter by AHA was slightly over 2 percent for medical technologists and 1.8 percent for all other laboratory personnel. The American Society of Clinical Pathologists/College of American Patholoqists conducted surveys of participants at their 1983 and 1984 autumn meetings. of the 764 respondents, 62 percent were pathologists and 38 pe=cent were technoloqists, clinical scientists, or laboratory personnel. These respondent.s were questioned on observed changes in staffing patterns in their laboratories over the 6 -month period prior to completion of each of the questionnaires in 1.983 and 1984. The study compared the percentage of respondents reporting decreases in staffing positions in 1984 as compared to 25 percent in 1983: for technician positions, 29.9 percent of the respondents reported decreases as compared to 18.1 percent in 1983. Similarly, CAHEA's 1984 survey of program directors indicated that in 1981 between 90 percent and 98 percent considered the
occupation to be either undersupplied or in balance with graduates while in 1984 on?:' 54 percent to 29 percent held the same belief (excluding cytotechnology which fell from only 93 percent to 75 percent and specialists in hlood bank technology which fell from 86 percent to 80 percent for the same variable).

Licensure and Credentialing

The American Society of Clinical Pathologists (ASCP) conducted a survey of State licensure requirements through a fuestionnaire sent to all 50 State health laboratory department directors in 1984. Although all States have some type of personnel standards regulation or classification system, only New York City and five States (California, Florida, Hawaii, Nevada, and Tennessee) have legislated lisensure requirements for all labo:atory personnel (with some exceptions at the technician level). Almost every State reported some legislative effort towaid licensure. Because only a limited number of States require licensure, certification by professional associations is an important method for standard setting within the field.

The Department of Health and Human Services periodically administers a Proficiency Examination, which does not provide a credential but rather qualifies individuals to work as clinical laboratory technologists in Medicare-certified independent laboratories. There is some evidence that employers and clinical laboratorv personnel are interpreting successful completion of this examination as certification. This is corroborated by the fact that only 14 percent of those individuals taking the last administered examination indicated that their place of employment was an independent laboratory, the only employ.nent setting for which this qualification should be meaningful.

The major certifying bodies in the clinical laboratory field are the board of Regisiry of the American Society of Clinical Pathologists (ASCP), which maintains the largest certification agency with 186,259 certificants, mostly technologists at or above the baccalaurate level seeking the ASCP (MT) credential; the American Board of Bioanalysis, which has 1,000 certificants, primarily nonphysician laboratory directors possessing doctoral degrees; the International Society for Clinical Laboratory Technology, which has 6,000 certificants mainly at the technician level; the American Medical Technologists, which has 9,451 certificants, most with formal education below the bachelor's level who work as technicians; and the National Certification Agency (NCA) which has 32,335 certificants in the technician and scientist classification with a minimum of a B.S. degree.

Yssues

As indicated previouslv, one of the key issues in the laboratory field is licensing and credentialing. States that have not passed proposed licensure legislation seem unlikely to do so. Current certification bodies confer a variety of certificates, sone with similar titles but with different requirements. The number of laboratorv workers trained on-the-job who do not
meet existing credentialing requirements cannot be determined. Differences in credentialing requirements cause confusion in the work seṫing and make the assessment of employment demand in terms of qualifications and skills very difficult.

Another concern, common to all the allied health occupations but which may have an immediate impact on laboratory personnel, is the prospective payment system (PPS) for hospitals as established by the Social Security Amendments of 1983. Under PPS, laboratory services no longer appear as a separate billing iten for Medicare patients but are contained in the allowable cost for each patient based on the appropriate diagnosis-related group (DRG). Hospitals, faced with declining in-patient da's, are attempting to reduce personnel expenditures, which has affected nonphysician laboratory personnel through reductions in staff, decreases in overall work volume, increases in oreadmission and postdischarge testing, and restructuring of hospital laboratories to serve nonhospital patients. There have also been indications of nursing staff being used to perform some bedside laboratory functions (Musgrave, 1984).

The Deficit Reduction Act of 1984 established a fee schedule for services in independent, hospital, outpatient, and physician office laborztories. The regulations are not yet implemented, but essentially the fee schedule will reduce the amount naid to laboratories for the tests they perform and may result in a reduction in numbers of laboratories and employees.

Dietetics

Dieticians are health professionals trained in nutrition and institutional management whose responsibilities are directed toward the adequate nutritional care of individuals and groups in both insitutional and community settings. Dietitians function mainly in adminisrative, clinical, community, research, or education positions. Dietetic technicians assist dietitians by functioning as middle management and service personnel in various health care facilities while dietary aides perform routine nontechnical food preparation and service.

Students and Institutions

The U.S. Department of Education recognizes the Commission on Accreditation (COH), the autonomous credentialing component of the American Dietetic Association (ADA), as the accrediting agency for dietetic education programs. The programs accredited are coordinated undergraduate programs in dietitics, those that combine didactic and clinical experience within a 4 -year baccalaureate program, and postbaccalaureate dietetic internships. The COA also nas a Dietetic Technician Committee which approves competency-based programs in diftetic education. These are known as Plan IV programs and meet the academic component of ellgibility requirements to take the registration examination. In 1984, ADA reported that the COA accredited 66 coordinated undergraduate B.S. programs which accept approximatelv 914 students each year, 106 dietetic internships which accept approximately 900 Plan IV graduates each
year, 272 Plan IV programs with 2,958 graduates in 1983-84, and 80 dietetic technician programs with approximately 650 students. Because there are only enough internships to accomodate approximately a third of the Plan IV graduates each year, many seek alternative means of attaining the requirements of the registry examination. Apparently the majority of students take the giaduate degree approach. Although the ADA neither accredits nor approves graduate degree programs in dietetics, the 1985 Directory of Dietetic Programs lists 152 such programs in universities around the country, 51 with Ph.D. programs and three with Ed.D. programs.

Supply and Requirements

In 1985, the American Dietetic Association (ADA) reports 39,980 registered dietitian members (mostly clinicians). The adjusted 1980 Decennial Census reported 32,500 individuals indicating employment as dietitians. The larger number of registered persons over those employed probably reflects the fact that some dietitians retain registration even though not employed. ADA's 1984 data report on dietitian members indicates that about 35 percent work in hospitals, 19 percent in nursing homes, 11 percent in educational institutions, 6 percent in ambulatory clinics, and 2 percent in Health Maintenance Organizations (HMO). Similarly, the 1983 ARA survey identified 34 percent of the 42,000 FTE dietetic service workers employed in hospitals as dietitians. In contrast, CAHEA reported that 80 percent of all dietetic technicians worked in hospitals, 15 percent in nursing and rest homes, and the remainder in other health care settings. Nursin and rest homes employed nearly two-thirds of all dietetic assistants, wish the remainder working in hospitals (Holmstrom, 1980). It is clear from these data that hospitals tend to employ more dietetic technicians and assistants than dietitians.

More than half of the practicing dietitians are recent graduates with fewer than 2 years experience in the field. While a majority of dietitians have only a baccalaureate degree, recent graduates are more likely to have a master's or higher degree. Fewer than 3 percent of the practicing dietitians are men, and less than 13 percent are minorities, mostly Asians and Blacks.

The 1983 AHA survey showed a 2.1 percent vacancy rate for dietitians and 1 percent for dietetic technicians. The American Dietetic Association conducted a 2-year survey beginning in 1979 titled the Dietetic Manpower Demand Study (DMDS), which was based on a professional judgement approach with demand estimates developed through the implementation of a Delphi process. This study projected a probable scenario for 1985 and 1990 upon which demand estimates were derived. The study showed demand increasing very slightly for dietetic services with most employment sectings remaining stable. The total number of emplcyed dietitians, however, was projected to $:$:ow slowly and steadily until 1990 with the number of part-time workers remaining high. In the largest employment setting, hospitals, projected demand will increase by 3,600 positions in 1990 from the 1981 baseline estimates to a total of 21,400. All other settings will remain the same with a possible decrease in demand for dietitians in higher education in the 1980s.

Credentialing and Licensure

ADA reports that four States currently have licensing legislation for dietitians. Georgia and Texas have voluntary acts that protect the titles of "licensed dietitian" and "registered dietitian" and are regulated by State boards. Oklahoma and Puerto Rico have mandatory acts that protect the scope of practice of nutrition and dietetics. Four other states have title acts that protect the titles of "Dietitian" and "R.D." (Alabame, California, Louisiana, and Montana). ADA estimates that 90 percent of the remaining States are currently looking into some form of licensing for dietitians.

The Commission on Dietetic Registration (CDR) is the autonomous certifying component of the ADA. Dietitians who meet the standards and qualifications established by the CDR may be registered and may use the professional designation "registered dietitian" or the initials "R.D.". Requirements to take the R.D. examination include completion of ADA academic requirements and a baccalaureate or higher degree; completion of one of the available accredited experience options, a coordinated undergraduate program or dietetic internship, an approved 3-year preplanned work experience, or an advanced degree in nutrition or related areas with 6 months full-time or equivalent qualifying experience; and confirmation of completion of experience and academic requirements by verification. To maintain registered status, each registe:ed dietitian must accumulate 75 hours of approved continuing education ove.. a 5-year period and pay an armual registration maintenance fee. In 1985, the ADA reports 39,980 currently registered dietitians.

Issues

One of the primary concerns of dietitians is getting proper dietary services and nutrition information to the publir. One way dietitians through the ADA are pursuing tris goal is by encouraging the passage of state licensure legislation to prevent unqualified individuals from holding themselves out to the public as "dietetic counselors" or "nutritional specialists". Another concern of dietitians is the role of nutrition in health oromotion and disease prevention, particularly for children and expectant mothers.

Medical Rezords

The two levels of personnel in the field of medical records are medical recurd administrators anu medical record technicians. The medical record administrator is responsible for the management oi health information systems consistent with, the medical, administrative, ethical, and legal requirements of the health care delivery system. Medical record administrators are involved in the patient care evaluation process, working with other medical staff to develop criteria, compile statistics, and conduct medical audits. The medical record technician serves as a specially trained, skilled technical assistant to the Registered Record Administrator, carrying out the many technical activities within a medical record department -- typing medical reports, preparing statistical reports on patients treated, supervising
clerical personnel, reviewing medical records for completeness, and working with other health professionals on medical records and medical research projects. In addition to medical record administrators and technicians, there are a wide range of support personnel, including transcriptionists, file clerks, and ward clerks, for which there are no reliable supply figures. Managing an information system that meets the medical, administrative, ethical and legal requirements of a health care delivery system involves the teamwork of all medical record personnel. Medical records personnel are a major link in the new Medicare Prospective Payment System, maintaining a complicated coding and record system for billing the Medicaid fund based on Diagnostic Related Groups.

Students and Institutions

In 1083-84, CAHEA accredited 55 programs for medical record administrators with total enrollments of 1,819 students and 834 graduates; and 86 proqrams for medical record technicians with total enrollments of 3,210 students and 890 graduates. Enrollments and graduates in medical record administrator programs have almost doubled since 1973-74, but enrollments were down from 2,307 in 1980-81 to 1,819 for 1983-84.

Supply and Requirements

Data from a recent survey reported by the American Medical Records Association (AMRA) show that the estimated number of medical record personnel grew steadily over the past three decades, from 12,000 in 1950 to 87,000 in 1984. Medical record administrators represent 17 percent of this 1984 total figure. Similarly, the 1983 AFA data report shows that of the 44,800 FTE medical records personnel employed in hospitals, 16 percent were medical record administrators. These figures tend to indicate that more than half of the total medical records work force is employed outside of hospitals. These employment settings include outpatient clinics, ambulatory care centers, health maintenance organizations, nursing homes, professional standards review organizations, government entities, insurance agencies, universities, colleges, and research centers.

The profile of the medical records field obtained by the AMRA Membership Survey shous a work force with almost one-half of the active supply at 35 years of age or under, slightly more than 3 percent male members, slightly more than 6 percent minority representation, less than 15 years in practice (a vast majority with less than 10 years in , actice), over 10 percent holding or working toward a master's degree, and 31 percent holdirig a bachelor's degree and 1.2 percent working toward that degree.

In 1983 AHA reported a 2 percent vacancy rate for all medical record personnel, but there was some indication that the demand for medical record administrators was slightly hiqher than foi medical record technicians. There is much speculation about a future increased need for medical records personnel in hospitals now that Prospective Payment Systems require careful coding and tracking of hospital treatment procedures and the potential for
expansion of PPS to other types of health care settings. CAHEA's 1984 survey indicated that in 1981, 96 percent of the medical records administrator program directors considered the occupation to be either undersuppied or in balance with graduates; in 1984, however, the proportion of program directors holding that view had dropped to 85 percent (13 percent shifted to considering the occupation as fluctuating; no respondents thought so in 1981). There was a similar shift among medical records technicians program directors, with 96 percent considering the occupation to be undersupplied or in balance with graduates in 1981 compared to 91 percent in 1984 (9 percent shifted to considering the occupation fluctuating; no respondents thought so in 1981).

Licensure and Credentialing

No State licenses medical records personnel. The Council on Certification of the American Medical Records Association administers examinations for accreditation and assurance of competency within the occupation. To take the Registered Record Administrators (RRA) examination, an individual must be a graduate of a CAHEA-accredited baccalaureate degree program or a college graduate from any field that meets the prerequisites, and must have completed an accredited postgraduate certificate program in medical records administration. To take the Accredited Record Technician (ART) examination an individuai must complete either a 2 -year CAHEA-accredited academic program leading to an associate degree or the Independent Study Program in Medical Record Technolcgs offered by AMRA.

Abstract

Issues Medical records admianstrators are concerned with maintaining the confidentialty of patient records. They are also concerned with the cianging role of hospicals' medical records staff with the advent of PPS and new diagnostic selated groups that demand new training and an expanded range of education for the profession. AMRA sees no shortage of RRA's or ART's in the immediate future, but if PPS is expanded to extra-hospital settings short-term shoitages could occur. AMRA is also working to maintain a high standard of professional performance by encouraging continuing education and by developing a competency- $-i s e d$ assurance examination.

Occupational Therapy

Occupational therapy is a health and rehabilitation profession that provides services to persons of all ages who are physically, psychologically, or developmentally.disabled, including those suffering from strokes, heart diseases, arthritis, diabetes, serious burns, spinal cord injuries, and psychiatric disorders. The profession tailors the rehabilitation process individually for each patient and, through evaluation and treatment, results in the restoration or improvement of impaired functions. Occupatiural therapy assists these patients in achieving a maximum level of independent living by developing the capacities that remain after disease, accident, or deformity.

The two levels of personnel within the profession are occupational therapist and occupational therapy assistant. Occupational therapists are health professionals who work closely with other members of the rehabilitation health care team. Their functiuns range from diagnosis to treatment, including the design and construction of various special and self-help devices. Although there are no formally recognized areas of specialization for occupational therapists, individuals tend to work with certain types of disability and age groups. A decreasing number of therapists are working with patients of mixed ages. AOTA estimates that between 1977 and 1.982 the percentage of therapists working with mixed aqe groups dropped from 43.9 to 20.5 . Occupational therapy assistants work under the supervision of occupational therapists, participating in the treatment and rehabilitation of patients.

Students and Institutions

In 1.984 CAFEA accredited 56 programs in occupati,nal therapy with total student enrollments of 6,642. During the same year there were 1,665 graduates. Between academic years 1.973-74 and 1981-82 CAHEA reported an increase of graduates from accredited occupational therapy programs of just over 100 percent. However, the graduate level fell from 2,400 in 1981-82 to 1,665 in 1983-84 despite no reduction in the number of accredited programs. According to AOTA, in 1977 there was a 51 percent excess of qualified applicants to occupational therapy programs, which dropped to 15 percent in 1981 with several programs not able to fill available spaces (Acquaviva and Presseller, 1981). In contrast, the 1.984 CAHEA survey of program directors indicated that the percentage considering the numbers of entering students to be either stable or increasing went up from 79 percent in ' 981 to 91 percent in 1984.

Supply and Requirements

In 1984 the American Occupational Therapy Association (HOTA) estimated that there were 30,000 registered occupational therapists, a strong increase from the estimated $7,0^{\circ} \mathrm{g}$ in 1960. Using estimates of graduates and separations from the work force, the supply of occupational therapists is projected at 34,000 in 1987 and 37,000 in 1990.

Analysis of the 1982 AOTA membership survey indicated that $7 C .4$ percent worked full-time (in contrast to 57.1 percent in 1973) and 16.7 percent worked parttime (in contrast to 14.6 percent in 1977). Information from the 1984 AOTA membership survey indicates that 25 percent or 7,500 occupational therapists worked in general hospitals. Similarly, 1983 AHA data showed absuc i2,500 FTE personnel employed as occupational therapy service workers in hospitals. Seventy percent of these were occupational therapists and 30 percent were assistants or aides. 1984 AOTA membership data show about 18 percent $(5,500)$ were employed in school systems. This employment setting became particularly important after passage of the Education for All Handicapped Children Act of 1975 which required that occupational therapy services be available within school systems. Other leading employment settings for occupational therapists were rehabilitation hospitals $(2,700)$, psychiatric hospitals $(2,200)$, and nursing home facilities $(1,800)$.

1984 AOTA membership data also indicates that approximately 1,500 or abcut 5 percent of the active surply were men and only 8 percent or 2,400 occupational therapists were members of minority groups. The proportion of male occupational therapists is projected to remain at the 1984 level through 1990 (Table 12-2). The median age of active occupational therapists was 31. years and more than 4 of 5 have baccalaureate degrees as the highest educational level. AHA reported a vacancy rate of 5.2 percent for occupational therapist positions and 4.2 percent for occupational therapy assistant positions in 1983. Occupational therapists vacancies were down from 6.9 percent in 1981 while occupational therapy assistant vacancies remained the same. In 1984 CAHEA survey of program directors indicated that no respondents considered tr ? profession to be oversupplied while there was a shift from 96 percent in 1981 to 89 percent in 1984 considering the occupation to be undersupplied. Demand for occupational therapists is expected to remain high through 1990 due to increases in need for such services by an aging population and a leveling of f of occupational therapy graduates as indicated in the section on Students and Institutions.

Certification and Licensure

Credentialing of occupational therapists involves voluntary registration p_{L}-cesses and/or mandatory State licensure. Graduates from accredited schools of occuparional therapy are eligible to take a national certification examination ronducted by AOTA. Therapists who successfully complete the examination are entitled to use the credential designation OTR, become automatically certified, and are eligible to become members of the professional association. Presently, 30 states require licensure of occupational therapists with two States (California and Hawaii) having "trademark" bills governing those who represent themselves as occupational therapists. All the remaining States and the District of Columbia are in some stage of either drafting or considering licensure. Such a bill was passed by New Jersey's legislature in 1985 and is awaiting the Governor's signature.

Issues

Occupational therapists are concerned about shortages since positions continue to go unfilled and student enrollment seems to be declining. This may lead to other occupations assuming some of the functions currently carried out by occupational therapists. As with other formerly female-dominated professions, new opportunities for women in higher paying occupations such as medicine, business administration, and law might be a factor in declining enrollment.

AOTA does not expect PPS to be an issue within the profession. Results of a 1985 survey were published in AHA's June 1985 Hospitals and show that occupational therapy departments seem to be adapting to the new system. The survey was sent to 2,700 occupational therapy department directors in acute care hospitals, most of which were covered by PPS, and had a 39.9 percent response rate (1,044 usable responses). The survey shows that occupational
therapists have respondeत to PPS information in the following ways: increased involvement in hospital discharges; flexible work schedules; group treatment methods; patient education; and home health referrals.

Physical Therapists

Physical therapy personnel provide preventive, diagnostic, and rehabilitative services aimed at the restoration of function and prevention of disability arising from disease, trauma, injury, loss of limb, or lack of use of a body part. Physical therapy is used in the treatment of neurological disorders, nerve or muscular injuries, chest conditions, amputations, fractures, burns, and arthritis. Various techniques are used, including exercise, massage, and application of heat, to reduce pain and enhance mobilitv and strength in joints and muscles. In addition to treating and assessing the progress of patients, physical therapy personnel work closely with patients' families and instruct family members in continued home treatment.

There are two levels of personnel -- physical therapists and physical therapy assistants. Physical therapists, upon referral from a physician, plan and administer treatment programs to assist patients in reaching maximum performance and functional levels. In addition to diagnosis and treatment in health care settings, physical treerapists also serve as researchers and educators. The occupation title, physical therapy assistant, emerged in 1967 due to greater demand for physical therapy services than the supply of physical therapists at the time could provide. Physical therapy assistants work under the direct supervision of physical therapists, using a variety of treatment techniques. They work mainly with patients whose conditions are relatively stable.

Students and Institutions

As of April 1983 the American Physical Therapy Association's Commission of Accreditation in Education (APTA/CAE) was recognized as the sole accrediting agency for physical therapy and physical therapy assistant educational programs. In 1984, APTA/CAE accredited 107 total entry level physical therapy educational programs and 67 programs for physical therapy assistants in 1984, compared to 47 programs for physical therapist accredited in 1970.

In academic year 1982-83 there were 3,463 first-year enrollees in and 3,104 graduates from both baccalaureate and certificate programs (a 7.5 percent increase in graduates since $1979-80$ and a 30.8 percent increase since 197677), 302 enrollees in entry level masters programs, and 829 physical therapy assistant graduates (a 37.2 percent increase since 1978-79). Although APTA does not accredit postprofessional education programs, the Association is aware of 26 graतuate level programs for physical therapists.

Educational programs for physical therapists have one of the lowest acceptance rates of all collegiate allied health programs with only 20 percent of the applicants admitted and a 4 percent unfilled capacity in academic year 1982-
83. The Rureau of Health Professions projects that the number of graduates from physical therapy schools will increase from 3,700 in 1980 to 5,200 in 1985 and 5,500 in 1990. The probortion of male graduates is expected to increase slightlv from 26 percenc in 1980 to nearly 32 percent in 1990. There is some question whether the physical therapy education system is able to meet the demand for trained physical therapists. APTA recognizes this prohlem but points to a shortage of faculty and the increased curriculum content necessary to prepare students for practice.

Supply and Requirements

According to the American Physical Therapy Association (APTA) data, the total number of employed physical therapists grew from an estimated 4,600 in 1950 to approximately 37,000 in 1984 with about 24,000 (65 percent) of these beina full-time salaried workers, 5,400 (15 percent) full-time self-employed, and 3,700 (10 percent) salaried part-time. Nearly two-thirds as many physical therapists, about 2,400, were self-employed and worked part-time. The adjusted 1980 Decennial Census reported 32,200 individuals indicating employment as physical therapists.

The 1.983 active member profile of the American Physical Therapy Association (APTA) shows 42 percent were employed in hospital settings, $i 5$ percent in private physical therapy offices, 3 percent in physicians' offies, 9 percent in rehabilitation centers, 6 percent in ixtended care facilities/nursing homes, 8 percent in home health agencies, 5 percent in school systems, 4 percent in academic settings, and the rest in a varietv of other settings (APTA, 1984). Compared to 1978, there was a slight decline in the number of physical therapists employed in hospitals but an increase in the numbers employed in health agencies.

The APTA membership survey also shows the following estimates about the active work force; (1) 72 percent of physical therapists are women; (2) fewer than 5 percent belong to a minority/ethnic group; (3) the median age is just under 33; (4) 79 percent hold a bachelor's degree as their highest academic degree; (5) the percentage of the work force holding a master's or doctoral degree increased from 16 percent in 1978 to nearly 20 pescent in 1983 (APTA, 1984); (6) 80 percent work in patient care activities; and (7) the median number of years in the field is 9 .

ARA data from 1983 indicate a 6.7 percent vacancy rate for budgeted physical therapy positions. Using estimates of graduates and separations from the work force during the period, the supply of physical therapists is projected by the Bureau of Health Professions to increase from 37,000 in 1984 to 41,000 in 1987 and to 46,000 by 1.990 (Table 12-3).

Licensure and Credentialing

All States, the District of Columbia, Puerto Rico, and the Virgin Islands require licensing of physical therapists. Two designations, which vary by State, are currently in use: Licensed Physical Therapists (LPT) and Registered

Physical Therapist (RPT). To be eliginle for licensure, a candidate must have a degree or certificate from an accredited educational program and pass a State hoard examination. Twentv-two States and Puerto Rico require licensure of physical therapy assistants. six states do not require a physician referral for physical therapy services. In 27 states it is not possible to receive such services without the ref iral of a physician.

APTA is in the process of developing clinical specialization certificates in six areas and should have these established within the next 5 years. These certifications will be for advanced practitioners with at least 5 rears of experience and wi'.l include areas such as sports and pediatric physical therapy.

Issues

The occupation is experiencing an increased knowledge base that seems to be outgrowing baccalaureate preparation. APTA is moving toward instituting the master's degree as the entrv level degree. Because of the expense involved to the educational programs there has been resistance toward this move. Which position will ultimately prevail is unclear at this time. Another potential issue is the impact of PPS on physical therapy services. Rehabilitation units and hospitals are currently exempt from the system, but proposals for their inclusion are under consideration. A survey conducted by APTA just after the implementation of the system indicated that physical therapists employed in rehabilitation centers and nursing homes were seeing more patients with acute care needs. This study will be followed up by a similar survey in the near future.

Rediologic Technology

Radiologic health services began with the diagnostic use of x-rays and the application of these and other forms of ionizing radiation for a limited number of therapeutic purposes. New specializations rapidly emerged as medical advances and technological developments introduced new equipment and instrumentation. Developments in ultrasound scanning and computerized tomography are currently revolutionizing the field. Radiologic technoloqy now includes a wide variety of services ranging from diagnosis and therapy to radiation health and safety. Radiologic technologists work under the direction of physicians or dentists and do not provide independent services. The 1980 Decennial Census reported 111,700 individuals indicating employment as radiology services personnel (not further defined).

There are three main specialists in the radiologic field: radiographers, who take x-rav films (radiographers) for the use in diagnosing medical problems; radiation therapy technologists, who prepare cancer patients for radiotherapy and administer prescribed doses of ionizing radiation to diseased body areas, operating various kinds of equipment including high energy linear accelerators and particle generators; and nuclear medicine technologists (also known as radioisotope technologists), who participate in or direct various activities
involving radiopharmaceuticals in medical diagnosis and treatment. Also important, but not analyzed here, are ultrascund technologists (also known as diagnostic medical sonographers), who use special equipment to transmit soind waves at high frequencies into the body and collect reflected echoes to form an imace.

Students and Institutions

The following data for academic year 1983-84 were collected by CAHEA, which accredits radiologic technology programs. There were 760 accredited radiographer programs with a total of 18,247 students and 7,371 graduates. These figures represent relatively little change since 1973 when there were 7,115 radiographer graduates. There were oniy 943 radiation therapy technoloqist students and 482 graduates in 98 programs in 1983-8.. These 1983-84 numbers for students and graduates represent a fivefold increase since academic year 1973-74. In 1973-74, CAHEA accredited programs for both nuclear medicine technologists and nuclear medicine technicians, but 3 years later the distinction between technician and technologist was dropped, and all are now referred to as technologists. In 1983-84, there were 143 accredited nuclear medicine technoloqist programs with 1,547 students and 813 graduates.

CAREA's study of accredited program directors indicated that the numbers of entering students and graduates remained relatively stable between the 1981 and 1984 surveys. Only directors of radiation therapy technologist programs indicated an increase in the number of entering students between 1981 and 1984; in 1981, 80 percent believed that the number of entering students either remained stable or increased, but in 1984, 95 percent held that view.

Supply and Requirements

In 1982 a survey by the American Reqistry of Radioloqic Technologists (AART) indicated that, including full- and part-time workers, there were approximately 80,000 radiographers, 8,000 nuclear medicine technologists, and 3,700 radiation therapy technologists (AART, 1982). The escimated,active supply of radiologic service workers in 1984 was $134,000$.

The 1983 AHA report showed that of the 98,600 FTE radiologic ser: se workers emp'oyed in hospitals, 58 percent were radiographers and 11.6 pe. - ?nt were either radiation therapy technologists or nuclear medicine technologists, the remainder consisting of small numhers of professional personnel such as health physicists and a large assortment of assistants and aides. Similariy, the 1982 AART survey showed that 77 percent of radiographers, 91 percent of nuclear medicine technologists, and 84 percent of radiation therapy technologists were employed in hospitals (AART, 1982). The only other employment setting with any significant concentration was physicians' offices (which employed about one-eighth of all radiographers) with much smaller numbers working in clinivs and other health care settings.

AHA Cata for 1983 indicate a 1.7 percent vacancy rate for all radinlogic service workers; 3.1 percent for radiation therapy technologists, 1.8 percent for nuclear medicine technoiogists, 1.8 percent for radiograpiners, and 1.4 percent for other radiologic personnel. These figures should reflect the overall requirements for radiologic service workers, considering the high percentage of hospital employment reported by AART. The CAHEA survey of education proqram directors indicated that only nuclear medicine technologists indicated even a slight shif. toward perceived oversupply, from 100 percent considering the occupation c be eicher in balance with graduates or undersupplied in 1981 to 51 percent in 1984. In 1981. 97 percent considered radiologic therapy technologists were undersupplied and 98 percent held the same opinion in 1984.

Licensure and Credentialing

The number of States licensing radiologic personnel through both educational and examination requirements by professional category are as follows: 15 States license radiographers and 8 States have enablinq legislation (4 States are currently drafting licensing legislation); 10 States and Puerto Rico license radiation therapy technologists and 7 States have enabling le. islation (2 States are developing programs); 3 States and Puerto Rico license nuclear medicine technoloqists, 7 States have enabling legislation, and groups in at least 10 States are developing programs to submit to legislatures.

The American Registry of Radiologic Technologists (AART) and the American Registry of Clinical Radiologic Technoic;ists (ARCRT) are the two certifying bodies for radiographers. AART reported 132,155 certificate holders and ARCRT reported $14,01.1$ in 1984. Basically both registries offer certificates to radiography graduates from CAFEA-accredited education programs who pass their examination; in addition ARCRT requires cre year of clinical experience.

AART also provides voluntary certification for radiation therapy technologists; 3,555 individuals were certified in 1984. AART requires certificants to have formal education in radiation therapy technology, preferably from a CAHEA-accredited program, and to take an examination.

The Nuclear Medicine Technology Certification Board (NMTCB) and the American Society of Clinical Pathology (ASCP) are the two certifying bodies for nuclear medicine technologists. NMTCB reports 7,870 certificate holders and ASCP reports 8,49 . as of 1984. In 1983, ASCP signed an agreement with NMTCB to administer one examination instead of each independently offering its own. Both organizations basically require graduation from a CAHFA-accredited proqram in addition to the examination.

Issues

Radiologic technology services personnel are concerned ahout the impact of PPS and DRGs on their profession. They anticipate that the clinically based portions of their education programs will be reduced or eliminated by hospital: looking for ways to adjust for decreased Medicare/Medicaid
revenue. From preliminary assessments, the American Rea; ${ }^{\text {: }} v$ of Radiologic Technologists anticipates cutbacks in both students and ,rams in the next 2 years. The AART plans to expand its data base in order to have more accurate information on these trends as well as identify the professional makeup of their membership. They also plan to explore with NMTCR the possibility of merging their examinations.

Respiratory Therapy

Respiratory therapy personnel are employed under medical supervision in the treatment, management, control, life support, diagnostic evaluation, and care of patients with deficiencies and abnormalities associated with the cardiopulmonary system. Respiratory therapy personnel specifically oversee the therapeutic use of medical gases and edministration apparatus; ventilatory support; broncho-pulmonary drainage and exercises; respiratory rehabilitation; maintenance of natural, artificial and mechan_cal airways; and other related duties. The two levels of personnel are respiratory therapists and respiratory therapy technicians. Both the therapists and technicians perform closely related and somewhat similar tasks, but the educational preparation of therapists leads to more extensive knowledge of anatomy, physiology, pharmacology and management. This preparation allows therapists to assume greater responsibility in performing therapeutic procedures based on observation of patients and to participate in administration, supervision, and evaluation of new equipment and therapeutic modalities.

Students and Institutions

In 1983-84 CAHEA accredited 220 programs in respiratorv therapy with a total of 9,778 students and 3,306 graduates, and 178 programs for respiratory therapy technicians with a total of 6,999 students and 3,849 graduates. There v ere only 5 accredited programs in respiratory therapy in 1973-74 with 29 students and 27 graduates. This is a dramatic increase indicating a shift to accreditation. According to the CAFEA program directors survey, 30 percent reported an increase in respiratory therapy ε tudents in 1981, but only 14 percent reported such an increase in 1984. The percentages were almost identical for respiratorv therapy technicians, with 34 percent reporting student increases in 1981 compared to 10 percent in 1984. Overall, the programs seem to be stable, with from approximately 59-65 percent of the program directors in both occupations reporting stable entering student and graduate levels in 1984.

Supply and Requirements

Based upon a recent survey by the American Association for Respiratory Therapy, an estimated 62,000 persons were employed as respiratory therapy service workers in 1984. Of this group, about 40 percent were mele and about 20 percent were minority group members. 1983 AFA data show that the almost 54,000 FTE persons providing respiratory therapy services in hospitals were

12-2C
almost evenly divided between respiratory therapists and respiratory therapy technicians. AART reports that in 1984, 75-80 percent of respiratory therapy technicians and 90 percent of all respiratory therapists worked in hospitals, the remainder being equally divided between compreheneive health care centers and ambulatory settings. The 1980 Decennial Census reported 50,500 individuals indicating employment as either respiratory technologists or technicians.

AHA's survey indicated an overall vacancy rate for respiratory therapy workers in 1983 of 3.1 percent (compared to 5.9 percent in 1981), 3.8 percent for respiratory therapists (compared to 6.7 percent in 1981), and 2.3 percent for respiratory therapy technicians (compared to 4.2 percent in 1981). The number of program directors in CAHEA's survey indicating the profession was undersupplied fell from 97 percent in 1981 to 28 percent in 1984; however, only 2 percent in 1984 felt the occupation was oversupplied, up from 1 percent in 1981. While no respondents indicated an oversupply of respiratory therapy technicians in 1981, 15 percent did so in 1984.

Licensure and Crerentialing

Three States have passed bills licensing respiratory therapists (California, New Mexico, and Florida). Nineteen States currently have bills in progress, but there is no indication if and wen these pending bills might be enacted.

The National Board for Respiratory Care (NBRC) is the credentialing body for respiratorv care personnel and admiaisters two examinations, one at the entry level for certification as a technician, and one for registration which is for the moze advanced respiratory therapist. AART currently lists approximately 66,000 certified respiratory therapy technicians and 26,000 registered respiratory therapists.

Tssues

Respiratory therapists are concerned with a number of issues. Gne is PPS and many hospitals' practice of shifting personnel responsibilities. AART sees the possibility of other staff, particularly nursea, taking responsibility for respiratory care functions and anticipates that some hospitals may eliminate respiratory care departments. They fear that these hospitals would only maintain respiratory care services for intensive care units, where 70 percent of respiratory care takes place. A second area of concern deals with the desire for increased recognition and quality control of services through state licensure. A third area of concern is third-party reimbursement hy Medicare and Medicaid for respiratory therapy patients outside the hospital setting. There is a belief in the field thot this change would allow ventilator patients to return home earlier, thereby saving inpatient hospital costs. Currently, reimbursement is allowed for equipment but not for respiratory therapy services in the home.

Speech-Language-Hearing

Speech-language pathologists and audiologists provide specialized assistance to persons with communication problems, focusing on disorders in the production, reception, and perception of speech and language. In clinical practice, speech-language pathologists and audiologists identify individuals who have such disorders and determine the etiology, history, and severitv of afflictions through interviews and special tests. They plar and facilitate optimal treatment through remeतial procedures, counseling, and guiđance. Speech pathologists diaynose and treat individuals who suffer from disorders in oral language. Audiologists identify and measure hearing loss, work to rehabilitate those with hearing impairments, and issue hearing devices. In nonclinical settings, teaching is the major function for both specialists.

Students and Institutions

The American Speech-Language-Hearing Association (ASHA), Council of Professional Standards, University Educational Standards Board, reviews and certifies 146 master's degree programs out of a total of 234 programs in speech pathology and audiology. Nine additional programs are in the process of being certified. ASHA reports that there are 307 undergraduate programs, only 70 of which offer no further degree at the master's level, and 61 doctoral degree programs with 2 offering only the doctoral degree. In academic year 1983-84 ASHA reported 15,900 students and 4,800 graduates from undergraduate programs and 8,900 students and 4,000 graduates from graduate programs. ASKiA reported an 11 percent decrease in undergraduate enrollments and a 2.5 percent decrease in graduate enrollments for academic year 198384. The master's degree is required for certification, with undergraduate decree recipients mainlv working under the supervision of certified speech pathologists or audiologists. The National Council on Graduate Programs in Communication Sciences and Disorders reports that minority students represent 10 percent of the enrollment in speech, language and hearing programs; the trerd is toward an increase in minority professionals (Kingsley, 1984).

Supply and Requirements

According to recent data published by the American Speech-Language-Hearing Association, the number of employed speech-language pathologists and audiologists has more than doubled since 1970 to approximately 52,000 in 1984, the great majority being speech pathologists. ASHA also estimates in its pamphlet "Career Information for Minority Students" that only 4 percent of curient speech-language pathologists and audiologists are members of racial minorities -- only one minority speech-language pathologist or audiologist for every 4,466 persons with communication disorders. The adjusted number of individuals reporting emplovment as speech therapists and audiologists in the 1980 Decennial Census was 39,800. ASHA employment information on its 30,000 members shows the following distribution by work setting: 11.6 percent or 3,466 in colleges or universities; 43.3 percent or 13,004 in schools; 4.8 percent or 1,448 in government health and education; 18.8 percent or 5,540 in university clinics, hospitals or rehabilitation centers; and 6.1 percent in various other settings.

12-22

Abstract

AHA reported in 1983 a vacancy rate of 4.2 percent for speech-language pathologists/audiologists; however, hospitals are not a large employer of these occupations. In nonhospital settings, including schools, services for the elderly, and services in rural settings, there appears to be a shortage of speech-language pathologists and audiologists. The Seventh Annual Report to Congress on the Implementation of the Education of the Haniicapped Act (DE 1985) reported 19,632 speech pathologists/teachers and 20,152 speech-language pathologists employed during the 1982-83 school year. The report indicates an additional need for $1,2.12$ teachers and 2,306 pathologists for the speech and hearing impaired.

Certification and Licensure

Thirty-six States currently license speech pathologists and audiologists. Four additional States are actively pursuing licensure, six States are interested and are discussing the possibility, and five States have indicated no interest.

The Council on Professional Standards of the Speech-Language-Hearing Association issues a certificate of clinical competence to qualified clinical practitioners in speech pathology and audiology. This certificate requires a master's deqree from an accredited program that includes 300 hours of practicum, a clinical fellowship year under the supervision of a certified speech pathologist or audiologist, and completion of a national examination.

Issues

The professions of speech pathology and audiology are concerned about the invisibility of hearing disorders and the numbers of individuals who go undiagnosed. They are particularly con'serned about the growing number of elderly persons in our societv and their hearing impairments. ASHA is also verv concerned about the declire in Federal support for educational programs in speech pathology and audiology, which may reduce the supply of students and practitioners in the field. In 1985, the Rehabilitation Services Administration, Department of Education, stopped funding long-term training for speech-l anquaqe-pathology students.

Trends in the Allied Health Profession

The allied health professions showing the greatest qrowth between 1.980 and 1984 were speech pathology and audioloqy. The number of speech pathologists and audioloqists grew by about 24 percent, from 42,000 to approximately 52,000. Dietetic service personnel experienced a 4-year growth of about 2 ? percent, to an estimated 38,000 dietitians and 6,000 dietetic technicians. Occupational therapists grew from 25,000 in 1980 to 30,000 in 1984 , a 20 percent increase. Allied health occupations that experienced the most
substantial growth rates during the past 4 years almost surely did so in response to vigorous service demand, and it is expected that strong demand for these occupations will continue.

According to independent estimates made by the Division of Associated and Dental Health Professions, Bureau of Health Professions, the allied health work force increased by about 13 percent between 1980 and 1984, to a total of $1,235,000$. The major allied health occupational groups showing the smallest growth were respiratory therapy (11 percent growth to 62,000 workers), and clinical laboratory personnel, excluding cytotechnologists, (12 percent growth to 278,000 workers).

Almost every allied health occupation showed a drop in student levels for 1983-84. Some of these were due to the closing of programs, while others were due to a reduction in the number of entering students in programs such as those in the medical record and occupational therapy fields. In the clinical laboratory fields, only cytntechnology programs indicated a significant increase in the number of entering students. Physical therapy, currently a higr-demand occupation, saw a 23 percent increase in graduates between academic years 1976-77 and 1979-80, but a smaller increase of 7.5 percent from 1979-80 to 1982-83. Raiiologic technology programs showed no significant change in the numbers of students and graduates, except for radiologic therapy technologist programs, which have continued to enroll more students and produce more graduates. Respiratory therar programs ahowed some decrease in the number of entering students but remained relatively stable for academic year 1983-84. There was also a decline in student enrollment in programs for speech-language-hearing pathologists and audiologists, despite the fact that these are high-demand occupations.

Conclusions

This chapter has touched on a number of areas that affect the status of the allied health professions, as well as changes occuring in the health care field that may have future status implications. These include issues brought out in the Introduction and in sections on specific professions, such as data availability and requirement projections; licensure and continuing competency of professionals; cost-containment efforts including Medicare's Diagnostic Related Groups for hospital reimbursement and other prospective payment systems, and the related but differentia: effect such developments will have on the clinical portions of certain allied health educational progiams.

Data and Requirements Projoctions

As discussed in the Introduction, useful modeling of future demand $f_{1}:$ allied health professionals is reji. icted by a shortage of valid data. Changes in organization, financing, and delivery of health services could have substantial impact on allied health professionals, who comprise a major part of the health services work force. Although a future surplus of allied health professionals is expected, most graduates currently find employment.

Competency Assurance

Manv allied health occupational groups are pursuing State licensure in order to gain professional recognition and increased compensation that generally accompany this form of regulation. Lack of recognition in the past has meant limited financial support for education, training, and research in allied health fields. Many practitioners in unlicensed professiol 3 ind that the services they can provide are limited. These limitations do not necessarily reflect on their professional qualifications, bu: tend to be due to restrictions imposed by State practice acts that license professional groups with overlapping or similar functions. Another factor motivating allied health practitioners to seek licensure or certification is that such requirements are necessary for the employing institution th meet reimbursement standards.

Many States are now reassessing their roles in the licensure process. Since 1976, approximately 30 States have conducted "sunset" reviews of their health regulatorv agencies, including licensure boards, to determine the continued necessity for regulation and the boards' administrative efficiency and effectiveness. States are also moving to examine other alternatives to licensure such as regulation and certification.

There is little consistency among states in their regulation of the allied health professions. To address this issue, the Bureau of Health Professions awarded a contract in 1983 to the Council of State Governments to fund a Licensure Information System. This svstem provides State, private, and Federal audiences with a digest of timely and up-to-date information on State credentialing practices, requirements, and trends.

Methods for determining the continuing compentency of health professionals also lack continuity. Although continuing education is regarded as one means of assuring continued compentency, it is not always considered the most effective way. Other approaches such as peer review, practice audits, reexamination, simulations, self-assessment techniques, and supervisorv assessments are also receiving attention. Little research has been conducted to determine the most effective methods for ensurinq continued competence. The Bureau of Health Professions awarded a contract in 1984 to the National Comission for Health Certifying Agencies to determine the state of the art in continuing compentency activities in the health professions and to establish a research agenda.

Impact of PPS and Other Cost Containment Efforts

The most profound short-range impact on both education and employment of manv allied health professions may come in the form of new systems for reimbursement of patient, care and cost containment. Of these changes, the prospective payment system (PPS) for hospitals serving Medicare-eligible patients seems likely to have the most immediate and widespread impact on the way hospitals do business. Since October 1, 1983, 5,200 hospitals have been operating under PPS.

The cornerstone of PPS and the basis for payment is the diagnostic-related group (DRG) system, which classifies patients on the basis of diagnosis and makes predetermined payments accordingly. Reimbursement under PPS will vary in impact on the services provided by different allied health occupation groups. One interesting reversal attributed to PPS, according to reports from some hospitals, is that departments such as clinical laboratory and radiology, which previously generated income under a cost-based reimbursement scheme, are now areas in which costs can exceed PPS payments.

Clinical Bducation

Clinical practicums for students are usually provided in hospitals and are supported by patient-generated income. Decreasinq direct-patient and thirdparty payments may cause educational programs to find other payers (such as schools, students, direct private or government funding). Shifting clinical training to simulated classroom experience, or fundamentally changing the clinical experience degree requirements are among the methods being discussed within various affected professions to deal with changes in funding,

It is difficult to answer the basic questions of who pays, how much, aric who controls clinical efucation because (1) an adequate data hase on clinical education programs is lacking; (2) cost analyses for specific kinds of clinical training are limited; (3) there is disagreement on the value of student services to the facilities used as training sites; and (4) a wide variety of arrangements exists between educational institutions and clinical farilities. At this point, harely a year following the installation of PPS, the data are largely anecdotal, although some studies are beginning to surface. One such study, reported by CAHEA in January 1985, surveyed 2,850 program directors for their perceptions of the impact of PPS on clinical education for allied health students, with 2,115 questionnaries returned. Some impacts and the number of program directors reporting them are shown in the following table:

Impact
Termination of affiliation contracts
Announced future termination of affiliation contracts Changed patterns of clinical experience
Program closings, anticipaced closings, probable closings
No.
131
459
265

Based on this survey CAHEA estimated that approximately 44 percent of the entire system of contractual clinical affiliations reported some direct impact fram the partially implemented and still very new payment system. CAHEA further estimated that these early direct impacts will at least double as other hospitals are subject to PPS and/or have time to determine what the impact will be.

Some positive steps to cope with the early effects of ppS were also reported, such as increased efficiency, cost monitoring, and shifts in program sponsorship Medical Records Administrator/Medical Records Technician programs actually anticipated some increased demand from PPS. A similar study conducted by AOTA reported in 1985 showed no direct negative impact from PPS for the occupational therapy departments of hospitals.

Sumary

o After a long period of growth driven by increased use of health services and technological development, the major allied health professions appear to be experiencing adjustments similar to those in other parts of society and the economy. Applications and admissions have shown a downward trend overall, but remain high for some occupations.
o Some mixed trends among specific professions accentuate the need to develop more reliable and occupation-specific work force data. There is a need to examine the relationship between these occupational groups and their primary employers and employment settings and to consider their comparatively low educational costs in the face of growing constraints on the overall cost of patient care.
o It is increasingly evident to Federal, State, provider, and educational institutions that improved methods are needed for analyzing the impact of changes in health care delivery and financing on both the utilization and education of allied health professionals.
o Careful monitoring bv accrediting bodies, professional associations, State licensing boards, and the Federal Government will be necessary to ensure that allied health professions can continue to provide unique, necessary, and hiqh-quality care services in the health system at effective costs.
o An adequate supply of applicants, entering students, graduates, and practicing professionals needs to be maintained in allied health fields.

Table 12-1. FSTIMPIED NMERER OF ALCIFD HEALIH PFRSONEL EMPLOYED IN THE UNTIED SIATES: SEIECIFD YFARS, 1970-1984 I/

Occupation	1970	1975	1980	1984
Allied health personnel	670,000	881,000	1,091,000	1,235,000
Dental hygienists	15,000	27,000	38,000	45,000
Dental assistants	112,000	134,000	156,000	168,000
Dental laboratory technicians	31,000	42,000	53,000	59,000
Dietitians	17,000	23,000	32,000	38,000
Dietetic technicians	2,000	3,000	4,000	6,000
Medical recond administrators	10,000	12,000	13,000	15,000
Medical record technicians	42,000	53,000	64,000	72,000
Medical laboratary workers:	135,000	191,000	249,000	278,000
Medical technalnaists	$(57,000)$	$(93,000)$	$(138,000)$	(162,000)
Cytotechnologists	$(3,000)$	$(5,000)$	$(7,000)$	$(8,000)$
Medical laboratory technicians	$(1,000)$	$(8,000)$	$(13,000)$	$(15,000)$
Other laboratory workers	$(74,000)$	$(84,000)$	$(91,000)$	$(93,000)$
Occupational therapists	17,000	21,000	25,000	30,000
Physical therapists	15,000	20,000	31,000	37,000
Radiologic service workers	87,000	97,000	116,000	134,000
Respiratory therapy workers	30,000	43,000	56,000	62,000
Speech pathologists and audiologists	22,000	32,000	42,000	52,000
Other allied health persornel	135,000	183,000	212,000	238,000

1/ All numbers are rounded to the nearest thousand. Due to revisions and independent estimations, same numbers mey differ fram thoee that appear elsewhere.

2/ Includes such categories as dietetic assistant, genetic assistant, operating room techmician, ophthalmic medical assistant, optametric assistant and technician, orthoptic and prosthetic technologist, pharmecy assistant, cccupational and physical therapy assistants, physician assistant, podiatric assistant, vocational rehabilitation counselor, other rehabilitation services, and other social and mental health services.

SOURCE: Fealth Resources and Services Administration, Bureau of Health Professions, Divisian of Associated and Dental Fealth Professians, February 1985.

Table 12-2. NUMBER OF ACTIVE OCCUPATIONAL THERAPISTS, BY SEX: ESTIMATED 1980-1984, AND PROJECTED 1985-1990

Year	Number uf active occu- pational therapists	Male occu- pational therapists	Female occu- pational therapists	Percent male of all occu- pational therapists
	25,000	1,600	23,400	6.2
1980			1,700	24,500
1981	26,200	1,800	25,700	6.4
1982	27,500	1,900	26,900	6.5
1983	28,800	2,000	28,000	6.7
1984	30,000	29,200	29,000	7.0
1985	31,200	2,300	30,200	7.1
1986	32,500	2,500	31,200	7.3
1987	33,700	2,600	32,400	7.4
1988	35,000	2,800	33,400	7.6
1989	36,200	2,900	34,600	7.7
1990				

SOURCE: Health Resources and Services Administration, Bureau of Health Professions, Division of Associated and Dental Health Professions.

Table 12-3. NUMBER OF ACTIVE PHYSICAL THERAPISTS, BY SEX: ESTIMATED 1980-1984, AND PROJECTED 1985-1990

Year	Number of active physical therapists	Male phvsical therapists	Female physical therapists	Percent male all ofysical therapists
1980	31,000	8,000	23,000	25.8
1982	32,500	8,700	23,800	26.8
1982	34,000	9,400	24,600	27.6
1983	35,400	10,000	25,400	28.2
1984	37,000	, 700	26,300	28.9
1985	38,000	11,100	25,900	29.2
1986	39,400	11,700	27,700	29.7
1987	40,800	12,300	28,500	30.1
1988	42,200	13,000	29,200	30.8
1989	43,600	13,600	30,000	31.2
1990	45,000	14,400	30,600	32.0

SOURCE: Health Resources and Services Administration, Bureau of Health Professions, Division of Associated and Dental Health Professions.

Refe. ences

American Association for Clinical Chemistry. "Membership Survey" by Neigleara/Kaplan Associates, May 1984.

American Dietetic Association. "Results from the 1981 Census of the American Dietetic Association." Journal of the American Dietetic Association, 83:3, September 1983.

Amer ican Hospital Association. "1983 Survey of Hospitals." Chicago, 1983. Unpublished.

American Medical Record Association. 1984 Annual Report. Chicago, 1984.
American Occupational Therapy Association. Occupational Therapy Manpower: A Plan for Progress. Washington, D.C., 1985.

American Registry of Radiologic Technologists. Report of Survey Employment Status of Registered Technologists. Chicago, 1982.

American Society of Allied Health Professions. "A Plan for a Cooperative Allied Health Information System." Department of Health and Human Services, Health Resources and Services Administration, Purchase Order No. HRSA 84-402(P). January 1985. Unpublished.

Fitz, Polly and Baldyga, William. "Estimates of Future Demand for Dietetic Services." Journal of the American Dietetic Association. In press.

For um on Allied Health Data. Proceedings: Spring 1984 Meeting. Washington, D.C., May 1984.

Gray, Madelaine S. "Survey Pindings: Impact of Medicare Prospective Payment System on Occupational Therapy." Hospitals Magazine. June 1985. In press.

Holst. - Engin Inel. The Information Gap in Allied Health Manpower. Souchern Regional Education Boaid. Atlanta, Ga., 1981.

Holstrom, Engin Inel and Bisconti, Ann. "Information pankage for thAdvisory Panel on Health Service Needs." Staff report for the National Commission on Allied Health Education, January 1979. Unpublished.

McTernan, E.J. and Leiken, A. "Whither Allied Health." Educational Record, 65:4, Fall 1984.

Musgrave Dorthea. "Observations on Hospital Behavior During the First Year of DRGs." Internal working document, Bureau of Health Professions, DHII, December 1984. Unoublished.

Nathanson, Michael. "Medical Records Take on New Pivotal Role in Hospital Finance." Modern Healthcare, April 1983.
"ational Commission on Alıied Health Education. The Future of Allied Health Education: New Alliances for the 1980s. Jossey-Bass, San Francisco, 1980.

National Commission for Health Certifying Agencies and the Buxeau of Health Professions, LHHS. Continuing Competence: An Overview. Contract No. HRSA 240-83-0092, December 1984.
U.S. Department of Education, office sf Special Education and Rehabilitstive Services. Sixtin Annual Report to the Congress on the Implementation of P.L. 94-142: The Education of All Handicapped Children Act. U.S. Government Printing Office, Washington, D.C., 1984.
U.S. Department of Health, Education, and Welfare, Health Resources Administration. A Report on Allied Health Personnel. DHEW Publication No. (HRA) 80-28. U.S. Government Printing Office, Washington, D.C., December 1979.
U.S. Department of Realth and Human Services, Health Resources and Services Administration. "an In-Depth Examination of the 1980 Decennial Census Employment Data for Health Oceupations." Executive Summary, ODAM Report No. 17-84, Juily 1984.
U.S. Department of Heaith and Human Services, Bureau of Health Professions. "Comp' ! ance with the Consumer-Patient Radiation Health and Safety Act of 1981: Annual Report for 1984." November 1984. Unpublished.
U.S. Department of Health and Human Services, Heal Resources and Services Administration. Inventory of U.S. Zealth Car lata Bases, 1976-1983. Contract No HRSA 83-273(P), May 1984.
U.S. Departmert of Health and Human Services, Healtn Resources and Services Administration. Minorities and Women in the Health Field, 1984 Edition. DHRS Publication No. (HRSA.) HRS-DV 84-5, September 1984.

Walkington, Robert A. "Some Preliminary Observations on the Impact of DRGs on Ailied Health Education." DHHS, Bureau of Health Professions, unpublished paper. Presented at the 17 th Annual Conference of the American Society of Allied Health Professions, November 1984.

[^0]:

[^1]: a/ Residency graduates responding to the survey who indicated the size of the community in whica they intended to serve. The percentage of all residency graduates responding to the distribution survey varies over the years.
 b/ Compound growth rate for residency graduates divided by compound growth rate tor population.

[^2]: "New physicians. like established physicians, who move are selecting smaller urban and non-urdan centers over more populated locations." (Wunderman and Steiber, 1983). Graduating residents are influenced by the same incentives that "guide others in location decisions." A recent study substantiated that young physicians, especially generalists, are moving to more rural areas in response to the increased supply of physicians (Langwell and Nelson, 1984).

[^3]: 2/ Some full-time faculty actually spend a major portion of their time in administration and/or research.

[^4]: a/ Includes blacks, American Indıans, Mexıcan-Amerivans and Mainland Puerto Ricans:

[^5]: 3/ Some caution is required in interpreting NKMP data, which tend to underenumerate the total number of PGY-1 positions available, as well a: the entire population of tirst-year resicents. Some medical schools ans graduates, particularly FMGs, do not use the NRMP to obtain their GME position, some components (e.g., the milatary) do not participate, and some specialties do not use the NKMP to a large extent or at all. NRMF' followup studies of USMGs indicate that over the past 6 years, 16 to 10 percent did not use the NRMP to obtain their residency position. Presently, a BHPr-supported project is underway to develop a GME data base that contains and coordınates data from these various sources.

[^6]: U.S. Department of Heaith and Human Services. Report to the president and Congress on the Status of Health Personnel in the United States. U.S. Government Printing Office, Washington, DC, May 1984.
 U.S. Department of Health and Human Services, Bureau of Health Professions, Division of Medicine. Training in the United States of Foreign Physicians Who Will Be Returning to Therr Home Countries. Administrative document, March, 1985b.

[^7]: - Thase tiquian inciuda about 90 percant of thoas MDa not clanaitiad accordins to activity atetua by the Anerican madical Aasociation.
 b) Includas phyasciana in the U.S. Poaseatione.

[^8]: * CBO plus economic long-range forecasters (scenerio number one) ** CBO plus OASDI pessimistic furecast (scenerio number two).

[^9]: SOURCE: American Dental Association, Council on Dental Education. Annual Report on Dental Education, 1980-81 through 1984-85, and Trend Analysis; Supplement to the Annual Report on Dental Education, for 1974-75 and for 1979-80.

[^10]: 1 Data exclude Inter-American University of Puerto Rico.

[^11]: COURCE: Unpublished data from the Annual Survey of Colleges of Podiatric Medicine (AACPM, 1985)

[^12]: $l_{\text {Data }}$ on basic nursing programs preparing for registered and licensed practical nurse licensure and their students cane from annual surveys of schools of nursing conducted by the National League for Nursing (NLN, 1984, 1984, 1985).

[^13]: ${ }^{2}$ Included in the discussion of baccalaureate programs are entry level nursing programs leading to advanced degrees. As of October 15, 1983, there were three basic proyrams leading to a master's degree in nursing and one basic program leading to a nursing doctorate as the first professional ciegree.

[^14]: 3 since this count far exceeds the number of enrollees ir. post-RN baccalaureate, master's and doctoral proyrams identified as nursing proyrams, it is assumed that a number of these individuals are either in prograns which are nursina-related but have not been specifically identified as nursing pre ms or that a number of these porsons are taking courses in degree-grantiny programs but are not formally registered to obtain the degree.

[^15]: 4The Division of Nursing Fkesources and the Division of Piblic fkzalth Nursing were consoliciated in 1960 to form the Division of Nursing, and the research grants program was established as a branch of the Division.

[^16]: ${ }^{5}$ Prior projections refer to series IA, Part C: Nursing Personnel in Report to the President and the Congress on the Statistics of Health Personnel in the United States. These projections are used for comparis. purposes because the underlying assumptions upon which they are based are similar to those for current projections.

[^17]: 1 As of October 15 of each year.
 2 Time period for the academic year is August 1 through Jily 31.
 3 Data not available.
 4 Includes prograns and students in generic master's and doctoral programs, where such are in existence.

 SOURCF: National League for Nursing, Nursing Student Census, 1984.

[^18]: i Includes atudents in a few generic program leading to a matera or doctoril degree.

[^19]: 1 Piquree my not and to total beceure of rounding
 2 fopulation data und tox computation of nurge-population cation are developed by the Division of muraing beged

